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Abstract: Hemerocallis citrina Baroni is rich in nutritional value, with a clear trend of increasing market demand, and it is a
pillar industry for rural economic development. Hemerocallis citrina Baroni exhibits rapid growth, a shortened harvest cycle,
lacks a consistent maturity identification standard, and relies heavily on manual labor. To address these issues, a new method
for detecting the maturity of Hemerocallis citrina Baroni, called LTCB YOLOv7, has been introduced. To begin with, the layer
aggregation  network  and  transition  module  are  made  more  efficient  through  the  incorporation  of  Ghost  convolution,  a
lightweight  technique  that  streamlines  the  model  architecture.  This  results  in  a  reduction  of  model  parameters  and
computational  workload.  Second,  a  coordinate  attention  mechanism  is  enhanced  between  the  feature  extraction  and  feature
fusion  networks,  which  enhances  the  model  precision  and  compensates  for  the  performance  decline  caused  by  lightweight
design.  Ultimately,  a  bi-directional  feature  pyramid network with  weighted connections  replaces  the  Concatenate  function in
the  feature  fusion  network.  This  modification  enables  the  integration  of  information  across  different  stages,  resulting  in  a
gradual  improvement  in  the  overall  model  performance.  The  experimental  results  show  that  the  improved  LTCB  YOLOv7
algorithm  for Hemerocallis  citrina  Baroni  maturity  detection  reduces  the  number  of  model  parameters  and  floating  point
operations by about 1.7 million and 7.3G, respectively, and the model volume is compressed by about 3.5M. This refinement
leads  to  enhancements  in  precision  and  recall  by  approximately  0.58% and  0.18% respectively,  while  the  average  precision
metrics  mAP@0.5  and  mAP@0.5:0.95  show  improvements  of  about  1.61%  and  0.82%  respectively.  Furthermore,  the
algorithm achieves a real-time detection performance of 96.15 FPS. The proposed LTCB YOLOv7 algorithm exhibits strong
performance  in  detecting  maturity  in Hemerocallis  citrina  Baroni,  effectively  addressing  the  challenge  of  balancing  model
complexity and performance. It also establishes a standardized approach for maturity detection in Hemerocallis citrina Baroni
for identification and harvesting purposes.
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1    Introduction
The market demand for Hemerocallis citrina Baroni is steadily

rising, with the industrial chain becoming increasingly refined. This
trend plays a vital role in the development of emerging rural sectors
and the revitalization of rural areas.

The  unique  ripening  and  harvesting  period  for  Hemerocallis
citrina  Baroni  predominantly  occurs  in  the  morning  and  evening.
Currently,  the  determination  of  maturity  heavily  relies  on  manual
labor,  which  presents  several  challenges.  The  picking  process  is
highly  dependent  on  the  work  experience  of  workers,  leading  to
high  labor  costs,  low efficiency,  and  inconsistent  standards.  These
issues  significantly  affect  the  accuracy  and  productivity  of  the
harvesting  process.  Therefore,  there  is  a  pressing  need  for  an
automated  approach  to  improve  the  efficiency  and  standardization

of Hemerocallis citrina Baroni picking, making the use of computer
vision  for  maturity  detection  a  promising  solution.  However,
there  are  some  differences  in  the  identification  process  of  manual
picking,  and  the  identification  standard  is  not  uniform,  so  the
identification  with  the  help  of  computer  vision  has  a  better
application prospect.

In recent years, the performance of target detection technology
and deep learning algorithms has significantly improved, leading to
a wider application in the agricultural industry[1]. Shi et al.[2] realized
high precision and efficiency detection by improving the YOLOv4
algorithm for the problem of small variability of fig fruits and dense
plants.  Wu  et  al.[3]  used  the  YOLOv5  algorithm  to  identify  cherry
trees,  detect  pests  and  diseases  affecting  fruit  trees,  and  monitor
cherry  ripening.  In  addition,  Wang  et  al.[4]  and  Wu  et  al.[5]

incorporated  the  attention  mechanism  into  the  YOLO  algorithm,
changing  the  pattern  of  feature  extraction,  and  accomplished  the
detection  of  tomatoes  and  apples,  avoiding  pests  and  improving
the yield.

Hui  et  al.[6]  introduced  the  normalized  attention  module  to
improve  the  YOLOX  algorithm,  and  carried  out  real-time
monitoring of pollination, fertilization, picking, and other phases of
strawberry  growth.  The  results  of  the  experiment  showed  an
improvement  in  both  detection  precision  and  recall  rate,  while
keeping  the  original  model  size  unchanged.  Xu  et  al.[7]  used
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lightweight Shuffle Net to simplify the model structure, reduce the
computer  hardware  requirements  and  consumption,  and  complete
aphid detection during the growth of sugarcane, realizing the double
improvement  of  detection efficiency and precision.  Liu et  al.[8] and
Ngugi et al.[9] utilized the YOLO algorithm and convolutional neural
network to implement a supplementary residual network and depth-
separable convolution within the feature extraction network, which
compressed  the  model  volume,  improved  the  real-time recognition
efficiency,  accurately  recognized  the  growth  condition  of  grapes,
and enhanced the efficiency of the grape-picking robot[10].

Besides, in order to assess the yield composition and proportion
of wheat, Wu et al.[11] completed the detection and counting of multi-
scene  and  multi-scale  wheat  seeds  based  on  the  deep  learning
algorithm,  and  accurately  judged  the  quality  and  yield  of  wheat.
Zhang et al.[12] introduced lightweight convolution and SE attention
mechanism[13] of the YOLOv5 model, completed maturity detection,
and  optimized  the  model  performance  while  reducing  the  model
complexity.  Different  from  the  above  studies,  Song  et  al.[14]

innovatively  carried  out  deep  learning  algorithms  on  a  UAV[15],
realizing  UAV  remote  sensing  monitoring  of  maize’s  growth,
reducing  the  cost  and  difficulty  of  monitoring,  and  improving  the
monitoring efficiency.

In  the  field  of  agriculture,  smart  farming  is  advancing  due  to
the widespread use of computer technology and sophisticated deep
learning  algorithms[16].  However,  current  neural  networks  have
complex  model  structures,  redundant  feature  extraction,  and
unsatisfactory  detection  precision  and  recall.  Additionally,  when
faced with challenges such as dense vegetation, mutual obstruction,
and  the  complexity  of  determining  maturity  in  detecting
Hemerocallis citrina Baroni,  an algorithm for Hemerocallis citrina
Baroni maturity detection named LTCB (Lightweight efficient layer
aggregation  networks  -  Transition  module  -  Coordinate  attention
mechanism - Bidirectional  feature  pyramid network)  YOLOv7 has
been  developed.  The  key  advancements  presented  in  this  study
include:

(1)  The  Ghost  convolution[17]  method  is  presented  in  the
Efficient  Layer  Aggregation  Network  (ELAN)  and  Transition
Module (TM) to streamline feature extraction,  minimize redundant
feature  maps,  and  lower  computer  hardware  demands  and  energy
consumption.

(2)  The  Coordinate  Attention  (CA)  mechanism[18]  is
incorporated  between  the  feature  extraction  and  feature  fusion
network  to  facilitate  two-dimensional  feature  extraction.  This
mechanism  continuously  updates  the  feature  weights,  thereby
enhancing the feature extraction process and improving the model’s
localization and classification capabilities.

(3)  Within  the  feature  fusion  module,  the  utilization  of  the
Bidirectional feature pyramid network (Bi FPN)[19] is preferred over
Concatenate. This approach serves to decrease the quantity of edge
nodes  while  simultaneously  enhancing  the  information  fusion
channels.  Consequently,  it  facilitates  the  effective  integration  of
multiple information sources across the channels, thereby enhancing
the detection accuracy of the model.

The  subsequent  sections  of  this  document  are  organized  as
follows:  Section  1  presents  the  foundational  theory  underpinning
the  utilized  modules.  Section  2  outlines  the  enhanced  detection
algorithm  along  with  the  steps  taken  to  achieve  improvements.
Section  3  assesses  the  efficacy  of  different  models  and  scrutinizes
the  results  obtained.  Finally,  Section  4  provides  a  summary  of  the
thesis research. 

2    Basic theory
 

2.1    Lightweight Ghost convolution
Compared  with  traditional  convolution,  the  Ghost  convolution

with  linear  transformation  has  lower  computational  effort,  realizes
feature perception, and adaptively activates the detected object. The
Ghost  convolution  can  significantly  improve  network  performance
and provide better  real-time capabilities  than other  networks under
similar conditions.

The  lightweight  Ghost  convolutional  structure  is  shown  in
Figure  1.  Initially,  the  input  images  undergo  convolution  to  create
the  primary  feature  map,  where  the  key  attributes  are  processed
through  standard  convolution  and  Ghost  linear  transformation  to
generate  the  corresponding  conventional  feature  map  and  Ghost
feature map. Last, the concatenate information fusion method fuses
the two different feature maps to achieve the convolutional feature
map output.
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Figure 1    Lightweight Ghost convolutional structure
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Assume that in the convolution process, the input image size is
, the output image size is  , the number of input

and output channels are   and  , respectively, and the size of the
custom  convolution  kernel  is  .  Therefore,  the  comparison  of
computational  complexity  between  conventional  convolution 
and  lightweight  Ghost  convolution    is  presented  in  the
following ratio:

rs =
CT

CG

=
c · k · k ·ms ·h′ ·w′

c · k · k ·m ·h′ ·w′ +m · k · k · (s−1) ·h′ ·w′ =
c · s

c+ s−1
≈ s

1/s
The computational burden of the Ghost convolution, which is a

lighter  version,  is  roughly    times  lower  than  the  traditional
convolution  method.  This  results  in  a  notable  decrease  in
computational  demands  during  the  convolution  operation,
facilitating the development of a more resource-efficient design. 

2.2    Mechanism of coordinated attention
The  Coordinate  Attention  (CA)  mechanism integrates  channel

information  and  orientation-specific  positional  data,  effectively
combining  positional  information  with  channels  to  retain  spatial
characteristics  and  address  issues  related  to  long-range
dependencies.

The CA mechanism is depicted in Figure 2. Initially, the input
characteristics  (input  feature)  are  subjected  to  global  average
pooling  in  both  the  horizontal  (X)  and  vertical  (Y)  directions,
producing  feature  maps  with  dimensions  of C×H×1  in  width  and
C×1×W  in  height.  Following  this,  the  data  is  passed  through  the
Batch  Normalization  (BN)  layer  and  a  non-linear  activation
function,  accelerating  the  model’s  convergence,  preventing
overfitting,  and  mitigating  issues  related  to  gradient  vanishing.
Finally, the intermediate features undergo two parallel stages of 2D
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convolution  and  sigmoid  activation  to  complete  the  feature
extraction.
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Figure 2    CA mechanism process
  

2.3    Bi-directional feature pyramid network
Bi FPN is improved and optimized based on a feature pyramid

network  (FPN)  with  efficient  information  fusion  capability.
Compared with Concatenate,  the weights of the network nodes are
increased to realize weighted feature fusion.

Figure  3  depicts  the  Bi  FPN,  which  streamlines  the  network
nodes  between  layers,  diminishes  the  significance  of  edge
information nodes,  enhances the information fusion channel  across
stages, and assigns varying weights to individual network layers for
feature  fusion.  This  approach  allows  the  model  to  emphasize  the
importance  of  each  network  layer  and  elevates  the  precision  of
Hemerocallis citrina Baroni maturity detection[20].
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Figure 3    Structure of the Bi FPN module
  

3    Improved detection method
 

3.1    Lightweight efficient layer aggregation network
The ELAN consists of two pathways for feature extraction: the

backbone  pathway  and  the  branch  pathway.  The  improved
Lightweight  Efficient  Layer  Aggregation  Network  (L-ELAN)
incorporates a  lightweight  Ghost  convolution at  a  specific  juncture
to  decrease  the  model’s  parameter  quantity  and  computational
burden.  This  adjustment  is  implemented  in  consideration  of  the
significance  of  the  feature  extraction  process  and  convolution
operation.

The L-ELAN module, as depicted in Figure 4, involves a series
of  five conventional  convolutions in  the backbone path to  perform
stacked  feature  extraction  on  the  input  features,  resulting  in  the
acquisition  of  profound  semantic  features.  Second,  in  the  branch
path,  the  input  features  undergo  a  lightweight  Ghost  convolution
and produce shallow detail  features  containing color,  position,  and

shape.  Last,  the  deep  semantic  features  and  the  shallow  detailed
features  undergo  the  concatenate  operation  to  realize  the
information  fusion.  The  fused  feature  information  undergoes
lightweight Ghost convolution to complete the feature output.
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Figure 4    Lightweight efficient layer aggregation network
 

The  improved  L-ELAN  module  not  only  maintains  the
capability  of  the  original  network  feature  extraction,  but  also  is
lightweight and compresses the model volume. 

3.2    Lightweight transition module
The  Transition  Module  (TM)  also  consists  of  two  feature

extraction  paths,  but  it  has  fewer  convolution  operations  and  a
simple  model  structure.  Unlike  ELAN,  the  TM  adds  a  maximum
pooling operation in the backbone path,  which reduces the amount
of model data and preserves important feature information.

There  exist  two  categories  of  transition  modules  within  the
context  of  this  study:  the  feature  extraction  network  transition
module  and  the  feature  fusion  network  transition  module.  Both  of
these modules are characterized by a streamlined design approach.

As  shown  in  Figure  5,  the  improved  Lightweight  Transition
Module (L-TM) replaces the traditional conv after maximal pooling
with  the  lightweight  Ghost  conv,  which  further  filters  the  feature
information  after  pooling,  avoiding  redundancy  of  information
while retaining important information.
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Figure 5    Lightweight transition module
  

3.3    Increased CA mechanism
The  enhanced  LTCB  YOLOv7  Hemerocallis  citrina  Baroni

maturity  detection  algorithm  integrates  a  CA  mechanism  between
the  feature  extraction  and feature  fusion  network.  This  mechanism
is  implemented  to  highlight  crucial  information  during  feature
extraction  and  alleviate  any  decrease  in  performance  due  to  the
system’s lightweight architecture.

Following the integration of the CA mechanism, the model can
dynamically  acquire  channel  weights,  allowing it  to  prioritize  both
channel and location information simultaneously. This enhancement
significantly  contributes  to  the  overall  generalization  capability  of
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the model. 

3.4    Realization of multi-information fusion
During  the  convolution  process,  larger  objects  intended  for

detection exhibit a higher pixel count, while smaller objects possess
a  lower  number  of  pixels.  As  the  convolution  progresses,  the
detailed  features  of  larger  objects  are  more  likely  to  be  preserved,
while  those  of  smaller  objects  are  more  likely  to  be  overlooked.
Therefore, the application of Bi FPN instead of Concatenate enables
cross-channel information fusion to preserve feature information of
different sizes at different stages.

In  Hemerocallis  citrina  Baroni  maturity  detection,  there  are
different  sizes,  and Hemerocallis  citrina  Baroni  growing  on  stalks
of  different  heights  have  uneven  sizes  under  the  same  receptive
field[21].  Therefore,  in order to improve the detection precision,  this
paper  applies  Bi  FPN  in  the  feature  fusion  module  to  perform
simple and fast multi-scale feature fusion.

The feature fusion module, depicted in Figure 6, is essential in
the process of detecting maturity in Hemerocallis citrina Baroni. In
this  context,  the deep feature information within the feature fusion
network  undergoes  expansion  and  amplification  through
conventional  convolution  and  up-sampling[22]  techniques.
Conversely,  the  shallow  feature  information  within  the  feature
extraction  network  is  responsible  for  completing  the  feature
extraction process using traditional convolution methods.

  
Feature fusion network Feature extraction network
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feature

information

… …

Conv Conv

Bi
FPN
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feature

information
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Cross-channel information
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Figure 6    Module for feature fusion
 

Subsequently, the deep feature information and shallow feature
information undergo Bi FPN to complete simple and efficient cross-
channel information fusion and realize feature output. 

3.5    Improved LTCB YOLOv7 algorithm
The  enhanced  LTCB  YOLOv7  algorithm  comprises  five  key

elements:  the  feature  extraction  network,  the  CA  mechanism,  the
Spatial  Pyramid  Pooling-Cross  Stage  Partial  Channel  (SPP-CSPC)
module, the feature fusion network, and the multi-scale outputs.

Within  the  feature  extraction  network,  the  computational  and
parametric burdens are lessened in L-ELAN and L-TM through the
incorporation  of  a  lightweight  Ghost  convolution.  Enhancements
have been made to the connectivity attention mechanism linking the
feature  extraction  and  feature  fusion  networks,  facilitating  the
effective  exchange  of  information  between  these  elements  and
enabling the dynamic modification of weights[23].

In  the  feature  fusion  network,  optimizing  the  feature  fusion
technique  involves  replacing  Concatenate  with  Bi  FPN  in  the
transition  module  to  facilitate  cross-stage  information  fusion.  As  a
result,  the modified lightweight transition module,  after integrating
Bi FPN, is denoted as L-TM-Bi.

As illustrated in Figure 7, the input image is randomly cropped,
segmented,  and  spliced  to  complete  the  data  preprocessing,  and
feature extraction is completed by the L-ELAN and L-TM modules

alternately  after  four  traditional  convolutions  in  the  feature
extraction network.
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Figure 7    LTCB YOLOv7 algorithm structure
 

The  CA  mechanism  is  capable  of  adaptively  updating  the
weights.  The SPP-CSPC module bridges the feature extraction and
feature  fusion  networks,  and  performs  maximum pooling  by  three
different  sizes  of  convolutional  kernels,  5×5,  9×9,  and  13×13,
which  remove  the  redundant  information  and  compress  and
downscale  the  features.  At  the  multi-scale  output  prediction  end,
feature  fusion  of  different  depths  produces  output  predictions  of
different sizes as the convolution continues.

In  Hemerocallis  citrina  Baroni  maturity  detection,  different
sizes  of  output  prediction  frames  play  different  roles.  256-channel
80×80-size  prediction  frames  are  able  to  detect  mature  and  intact
Hemerocallis  citrina  Baroni  at  the  shoot  stage,  while  512-channel
40×40- and 1024-channel  20×20-size prediction frames are able to
detect  immature Hemerocallis  citrina  Baroni  at  the  leaf  spreading
stage and the sprouting stage, respectively[24]. The multi-scale output
prediction effectively  avoids  the  occurrence of  the  phenomenon of
missed  detection,  which  makes  the  detection  of  Hemerocallis
citrina Baroni maturity under different growth cycles more targeted.

Hemerocallis  citrina  Baroni  maturity  detection  poses  unique
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challenges  compared  to  other  object  detection  tasks.  These
challenges  include  complex  growing  environments,  severe
occlusions,  and  significant  fruit  size  and  shape  variations.  The
dynamic  and  diverse  conditions  under  which Hemerocallis  citrina
Baroni grows further complicate the detection process, requiring the
development  of  robust  models  capable  of  dealing  with  such
variations  and  environmental  factors.  These  unique  characteristics
make Hemerocallis citrina Baroni maturity detection a particularly
difficult task, highlighting the need for tailored methods like LTCB
YOLO for effective maturity detection. 

4    Experiments and analysis of results
 

4.1    Experimental environment platform
This  study’s  investigation  used  the  Python  3.9.18  and  CUDA

11.8  frameworks.  The  computational  resources  utilized  were  an
Intel  Core  i9-10900k  processor  operating  at  3.7  GHz,  an  NVidia
GeForce RTX 4090, 24564MiB.

The  dimensions  of  the  image  input  were  set  at  6960×4640
pixels,  with  an  initial  learning  rate  of  0.01  and  a  final  One-Cycle
learning rate of 0.1. Image augmentation strategies involved a 50%
likelihood of horizontally flipping the image and the application of
HSV  value  augmentation  coefficients  of  0.4  and  saturation
enhancement  coefficients  of  0.7.  The  training  procedure
encompassed 200 epochs utilizing a batch size of 10. 

4.2    Model training
The  images  of Hemerocallis  citrina  Baroni were  collected  on

site  in  Yunzhou  District,  Datong  City,  Shanxi  Province,  the
hometown  of Hemerocallis  citrina  Baroni,  captured  by  the  high-
definition  equipment  Canon  EOS  90D,  with  a  resolution  size  of
6960×4640 pixels. 795 images were selected as the dataset through
screening  and  organizing.  This  study’s  dataset  comprising  795
images  is  divided  into  three  subsets:  597  images  for  training,  148
for validation, and 50 for testing. The loss function is employed as a
metric  during the model’s  training to  evaluate  its  performance and
guide the learning process.

The  characteristics  of  Hemerocallis  citrina  Baroni  are
influenced  by  different  weather  conditions,  lighting,  and
background complexity.  For  instance,  under  warm sunlight  or  in  a
complex  background,  shading  and  lighting  conditions  resembling
Hemerocallis  citrina  Baroni  features  can  increase  identification
difficulty.  Conversely,  the  targeted  features  are  more  distinct  and
shaped  under  low  light  with  a  simple  background,  making  feature
areas easier to detect.

The  annotation  process  was  carried  out  using  LabelImg
software.  The  researchers  manually  annotated  the  dataset  by
drawing  bounding  boxes  around  the  target  areas  in  each  image,
strictly  following  the  edge  range  of  the  targets  to  minimize
background  interference.  The  annotation  mode  was  set  to  YOLO
format, ensuring compatibility with the model’s input requirements.
Each annotation file was saved in txt format, corresponding one-to-
one with the image file. These files contained the target’s category
number  and  normalized  coordinates,  including  the  x  and  y
coordinates  of  the  center  point  and  the  width  and  height  of  the
bounding box.

The  loss  function  applied  during  training  directly  impacts  the
model’s  optimization  and  prediction  precision.  Figure  8
demonstrates the convergence behavior of the loss function for the
LTCB  YOLOv7  algorithm  in  identifying  the  maturity  of
Hemerocallis  citrina  Baroni.  The  improved  algorithm  shows  a
slightly faster convergence rate during the initial  pre-training stage
compared  to  the  original  YOLOv7,  while  both  follow  a  similar

convergence  pattern  throughout  training.  The  final  convergence
value of the loss function is approximately 0.0310.
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Figure 8    Loss function convergence curve
 

The  loss  function  during  validation  further  highlights  the
improved performance of the LTCB YOLOv7 algorithm. As shown
in  Figure  8,  the  LTCB  YOLOv7  algorithm  achieves  a  superior
convergence  value  of  approximately  0.0569,  compared  to  0.0117
for  the  original  YOLOv7  algorithm.  This  result  indicates  that  the
enhanced  LTCB  YOLOv7  algorithm  provides  more  accurate  and
efficient detection of Hemerocallis citrina Baroni maturity. 

4.3    Ablation experiments
In the realm of deep learning, particularly within intricate deep

neural  networks,  ablation  experiments  are  utilized  to  demonstrate
the  essentiality  of  specific  modules[25].  In  the  study  involving
Hemerocallis citrina Baroni maturity detection, researchers utilized
lightweight  and  efficient  layer  aggregation  networks  to  conduct  a
series of seven ablation experiments. These experiments underscore
the  importance  of  lightweight  convolution,  attention  mechanism,
and  cross-channel  multi-information  fusion  in  enhancing  the
detection process.

As  shown in Table  1,  based  on  the  YOLOv7 model,  Model  1
and Model 2 introduce L-ELAN and L-TM in the feature extraction
network  in  turn.  Based  on  Model  2,  Models  3  and  4  introduce  L-
ELAN  and  L-TM  sequentially  in  the  feature  fusion  network.
However,  the  gradual  realization of  lightweight  detection accuracy
has been reduced to varying degrees.
  

Table 1    Ablation experiments

Model
Feature extraction network Feature fusion

network CA Bi FPN
L-ELAN L-TM L-ELAN L-TM

YOLOv7
Model 1 √
Model 2 √ √
Model 3 √ √ √
Model 4 √ √ √ √
Model 5 √ √ √ √ √

LTCB YOLOv7 √ √ √ √ √ √
 

Based on the framework of Model 4, Model 5 enhances the CA
mechanism,  leading  to  a  notable  enhancement  in  model
performance.  This  paper  introduces  the  LTCB  YOLOv7  model,
which  integrates  Bi  FPN  into  Model  5,  resulting  in  a  refined
precision in object detection. 

4.4    Lightweight analysis
The operability of  large-scale detection equipment is  seriously

affected by the vast cultivation area and dense plants in the field of
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Hemerocallis  citrina  Baroni.  Therefore,  simplifying  structure  and
reducing computation of the model meets the development needs of
smart agriculture, and it is also the future development direction of
neural networks[26].

The  enhanced  LTCB YOLOv7  algorithm  offers  clear  benefits
in terms of being lightweight,  and a comparison of the lightweight
characteristics of various models is presented in Table 2.
 
 

Table 2    Model lightweight analysis

Model Network
layers

Parameters/
Millions

Flops/
G

Time/
h

Model
volume

YOLOv5 468 46.14 107.9 8.067 92.7
YOLOv7 415 37.20 104.8 8.025 74.8
Model 1 455 35.82 99.0 7.816 72.1
Model 2 470 35.48 98.4 7.616 71.4
Model 3 490 34.68 96.7 7.724 69.8
Model 4 500 34.64 96.7 7.776 69.7
Model 5 508 35.43 97.5 7.690 71.3
Model 6 473 36.17 97.2 8.333 73.7
Model 7 621 71.29 100.3 10.537 124.5

LTCB YOLOv7 508 35.43 97.5 7.703 71.3
 

The  table  demonstrates  that  the  YOLOv7  algorithm  utilizes  a
multi-branch  stacking  strategy,  resulting  in  a  decrease  of  53
network  layers  in  comparison  to  the  YOLOv5  algorithm.  This
adjustment  also  results  in  a  reduction in  the  number  of  parameters
from 46.14 million to 37.20 million. Furthermore, the floating-point
operations decrease from 107.9 G to 104.8 G, and the model size is
compressed by 17.9 M.

In  the  research  conducted  on  identifying  maturity  in
Hemerocallis  citrina  Baroni,  the  LTCB  YOLOv7  algorithm  was
augmented  with  an  additional  93  network  layers  in  comparison  to
the  original  YOLOv7  algorithm.  Despite  this  augmentation,  there
has  been  a  reduction  in  the  number  of  model  parameters  and
training  duration  to  different  degrees,  leading  to  a  more  compact
model  size.  Empirical  results  suggest  that  the  LTCB  YOLOv7
algorithm has decreased the count of parameters and floating-point
operations  by  around  4.76%  and  6.97%,  correspondingly.  The
model training time has been shortened from 8.025 hours to 7.703 h,
and the model size has been compressed from 74.8 M to 71.3 M.

Model 6 and Model 7 are modeled using the backbone network
for  EfficientNet[19]  and  MobileNetv3[27]  based  on  the  fusion  CA
mechanism and the updated Bi FPN information fusion mechanism.
Compared  with  Model  6  and  Model  7,  LTCB  YOLOv7  shows
significant  advantages  in  terms  of  modeling  efficiency,
computational  cost,  and  practical  deployment.  Although  Model  6
has fewer network layers, its training time of 8.333 hours and model
volume  of  73.7  MB  are  higher  than  those  of  the  LTCB  YOLOv7
model.  Model  7  is  not  as  efficient  in  lightweight  scenarios,  with  a
deeper network, a parameter count of 71.29 M, and a model volume
of 124.5 MB, which results in a computation time of 10.537 hours,
greatly  limiting  its  performance  in  resource-limited  environments.
In  contrast,  the  LTCB  YOLOv7  model  introduces  Ghost
convolutional optimization for lightweighting, which is particularly
suitable  for  real-time  detection  tasks  in  agricultural  environments,
combining  a  lightweight  design  with  high  efficiency  and  robust
performance. 

4.5    Precision analysis
The  food  and  medicinal  applications  of Hemerocallis  citrina

Baroni vary due to different maturity levels,  which directly affects
the  economic  benefits.  Therefore,  it  is  important  to  precisely

determine the maturity of Hemerocallis citrina Baroni[28].
Frequently  employed  performance  evaluation  metrics

encompass  precision  (P),  recall  (R),  F1  score,  receiver  operating
characteristic  (R-P)  curve,  mean  average  precision  at  intersection
over  union  (mAP@0.5),  and  mean  average  precision  across
different  intersection  over  union  thresholds  (mAP@0.5:0.95).  The
F1 score, a metric derived from the harmonic mean of precision and
recall,  is  sensitive  to  the  confidence threshold and offers  a  holistic
evaluation  of  the  model’s  effectiveness.  The  area  under  the  R-P
curve  signifies  the  average  precision  (AP)  attained  during  the
training of the model.

The  metric  mAP@0.5  denotes  the  mean  average  precision
calculated for different categories where the intersection over union
(IoU)  ratio  between  predicted  and  labeled  boxes  exceeds  0.5.
Conversely,  mAP@0.5:0.95  refers  to  the  average  precision  mean
computed  across  diverse  categories  using  IoU thresholds  that  vary
from 0.5 to 0.95 in increments of 0.05, yielding a set of 10 distinct
values.

In Figure 9, the evaluation results of the precision performance
index for various models detecting maturity in Hemerocallis citrina
Baroni  are  presented.  The  figure  demonstrates  that  as  models  are
refined  and  optimized,  the  performance  indices  within  each  model
typically  exhibit  a  consistent  trend  of  both  increasing  and
decreasing.
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Figure 9    Comparison of the precision of different models
 

After  the  gradual  introduction  of  the  lightweight  Ghost
convolution, although Model 1 to Model 4 achieved lightweight, the
performance  indices  showed  a  decreasing  trend[29].  Compared  with
the  YOLOv7  algorithm,  the  performance  of  Model  4  after
lightweight  decreases  significantly.  The P  is  reduced  from 0.73  to
0.6772,  and  the  R  is  also  reduced  from  0.7708  to  0.7383.
Furthermore,  there  is  a  decrease  of  approximately  0.0434  in
mAP@0.5  and  0.0595  in  mAP@0.5:0.95.  The F1  harmonic  mean
retains its value of 0.84, in line with the initial YOLOv7 algorithm.

The  devised  LTCB  YOLOv7  algorithm  increases  the  CA
mechanism  and  Bi  FPN  on  the  basis  of  Model  4,  which  not  only
maintains  the  advantage  of  lightweight,  but  also  exceeds  the
original  algorithm  in  each  precision  index.  The  P,  R,  mAP@0.5,
and  mAP@0.5:0.95  of  the  LTCB  YOLOv7  algorithm  are  0.7358,
0.7726, 0.8001, and 0.6369, respectively. Compared to the original
algorithm,  these  four  indices  improved  by  about  0.0058,  0.0018,
0.016, and 0.0082, respectively. At a confidence level of 0.583, the
LTCB YOLOv7 model demonstrates a notable improvement with a
harmonic mean F1 score of 0.85.

The R-P curve is a visual depiction in which the horizontal axis
represents  R  and  the  vertical  axis  represents  P.  This  graphical
representation  elucidates  the  correlation  between  P  and  R,
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demonstrating  the  fluctuations  in  model  precision  with  changes  in
recall.

The relationship between the variables P and R is illustrated in
Figure  10,  indicating  a  negative  correlation  between  the  two.  The
graph  illustrates  that  the  LTCB  YOLOv7  algorithm  shows  a
significantly greater area under the R-P curve in comparison to the
conventional  YOLOv7  algorithm,  leading  to  an  increased  average
precision.  Specifically,  the  average  precision  of  the  YOLOv7
algorithm  is  91.3%,  whereas  the  enhanced  LTCB  YOLOv7
algorithm achieves a higher average precision of 91.7%, surpassing
the performance of the original algorithm.
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Figure 10    Comparison of R-P curves
 

When  the  value  of P  is  equivalent  to R,  the  equilibrium  line
exhibits a slope of 1 and intersects the R-P curve at two points. The
equilibrium  line  intersects  the  YOLOv7  algorithm  at  the  point
(0.8326,  0.8326)  and  the  LTCB  YOLOv7  algorithm  at  the  point
(0.8401, 0.8401). It can be seen that when the model P is balanced
with  the  R,  the  LTCB  YOLOv7  model  has  a  better  balancing
performance,  with  both P  and R  at  the  same  time  in  a  relatively
optimal  state.  Eventually,  not  only  was  the  detection  precision
improved[30], but the leakage rate was also reduced. 

4.6    Comparison of experimental results
Detecting  process  maturity  can  be  challenging  due  to  factors

such  as  light  exposure,  environmental  conditions,  and  growth
variations.  Hence,  the  YOLOv7  algorithm  incorporates  a  non-
maximum  suppression  (NMS)  technique  to  enhance  the  model’s
local  search  capability.  This  strategy  effectively  eliminates  non-
maximum  elements,  thereby  enhancing  detection  accuracy  and
reducing the occurrence of redundant detections [31].

In order to evaluate the model’s performance comprehensively,
the  detection  of Hemerocallis  citrina  Baroni was  performed under
different lighting conditions, occlusion degrees, and target sizes.

The  detection  effectiveness  was  evaluated  using  a  confidence
threshold and an Intersection over Union (IoU) threshold set at 0.2
concurrently  to  validate  the  model’s  detection  performance.  The
Hemerocallis  citrina  Baroni was  detected  in  four  scenarios:  under
normal  lighting  conditions,  during  early  morning,  in  the  evening,
and on a rainy day. The detection results are depicted in Figure 11,
with the YOLOv7 algorithm’s detection outcomes shown on the left
side of the diagram and the improved LTCB YOLOv7 algorithm’s
detection results displayed on the right side.

In the light scene, the LTCB YOLOv7 algorithm introduces the
CA  mechanism,  which  is  able  to  detect  more  occluded
Hemerocallis citrina Baroni  in the complex scene. Meanwhile,  the
Bi  FPN  is  used  to  increase  the  information  fusion  channel  and

reduce  the  edge  leakage  detection  rate.  So,  in  heat  maps,  the
improved  LTCB  YOLOv7  algorithm  has  better  performance  in
detecting  large  and  obviously  mature Hemerocallis  citrina  Baroni,
and the thermographic detection is more obvious.

In  early  morning  conditions,  when  light  is  insufficient,  the
LTCB  YOLOv7  algorithm  excels  by  focusing  on  mature
Hemerocallis  citrina  Baroni  with  higher  confidence.  It
demonstrates improved detection accuracy with a confidence score
of  0.93  for  mature Hemerocallis  citrina  Baroni,  compared  to  0.63
for YOLOv7.

Meanwhile,  since  early  morning  is  the  best  time  to  pick
Hemerocallis  citrina  Baroni,  the  LTCB  YOLOv7  algorithm  was
very  effective  in  heat  map  detection,  realizing  a  near-fitting
detection of mature Hemerocallis citrina Baroni.

The  LTCB  YOLOv7  algorithm  decreases  the  loss  function
value  during  both  model  training  and  validation.  It  also  enhances
the  NMS  during  the  detection  phase.  Consequently,  it  attains  a
higher level of accuracy in identifying the maturity of Hemerocallis
citrina Baroni by precisely determining the ideal bounding box and
eliminating redundant localization boxes.

In  the  evening  scene  illustrated  in  Figure  11c,  the  YOLOv7
algorithm  detects  an  early-stage  and  fully  developed  instance  of
Hemerocallis  citrina  Baroni  utilizing  a  common  NMS  technique.
The immature detection is reported with a confidence level of 0.87,
while  the  mature  detection  is  indicated  with  a  confidence  level  of
0.41.  The  improved  LTCB  YOLOv7  algorithm  gives  only  one
mature  detection  with  a  confidence  level  of  0.87.  The  improved
LTCB  YOLOv7  algorithm  decreases  misdetection  incidents,
featuring a more pronounced heat map detection and enhanced non-
maximal suppression screening capability.

In  inclement  weather  conditions,  the  YOLOv7  algorithm
successfully  detected  the  mature  stage  of  Hemerocallis  citrina
Baroni  with  a  confidence  level  of  0.46.  Conversely,  the  LTCB
YOLOv7 algorithm accurately recognized the plant’s maturity with
a  higher  confidence  level  of  0.94.  The  LTCB YOLOv7 algorithm,
with the addition of the lightweight Ghost convolution, streamlines
feature  extraction,  simplifies  the  process,  and  prevents  false
detections.

Subsequently,  in  heat  map  detection,  combined  with  image
analysis,  Hemerocallis  citrina  Baroni  was  significantly  yellower
and  matured.  In  contrast  to  the  initial  algorithm,  the  enhanced
LTCB  YOLOv7  algorithm  offers  a  broader  detection  scope  and  a
more consistent and well-suited thermal detection distribution.

Furthermore,  to  demonstrate  the  effectiveness  of  the  model,
tests  were  carried  out  on  the Hemerocallis  citrina  Baroni  dataset.
These experiments involved comparing the LTCB YOLOv7 model
introduced  in  this  study  with  the  Ghost-SE YOLOv5 model[32],  the
YOLO-CBAM  model  from  Okafor  et  al.[33],  and  the  YOLOv7-TP
model from Du et al.[34]

Zhang  et  al.  and  Okafor  et  al.[32,33]  added  SE  and  CBAM
mechanisms to the YOLOv5 algorithm, respectively. However, Du
et  al.[34]  introduced  the  lightweight  pruned  method  based  on  the
YOLOv7 algorithm. The incomplete findings from the comparison
experiments are displayed in Table 3. However, the model structural
parameters and experimental results may vary slightly depending on
the training equipment and parameters.

As  can  be  seen  from  Table  3,  both  Ghost-SE  YOLOv5  and
YOLO-CBAM models are based on the YOLOv5 algorithm, which
has a simple structure and a small  number of  parameters,  but  their
performance  is  not  ideal.  Despite  enhancements  in  all  aspects,  the
YOLOv7-TP  model  demonstrates  precision  and  recall  rates  of
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71.02% and 73.59%, respectively, which remain slightly inferior to
those  of  the  LTCB  YOLOv7  model  by  2.56%  and  3.67%,
respectively.

The LTCB YOLOv7 maturity detection method can effectively
be  implemented  in  agricultural  production  to  detect Hemerocallis
citrina Baroni maturity in farmland. The model has been integrated
into  a  practical  detection  system  encapsulated  using  PyQt5,
achieving  functions  such  as  maturity  detection,  counting,  and
dynamic  adjustment  of  detection  parameters.  As  depicted  in

Figure 12, the system interface includes options for detection type,
parameter  configurations,  and  threshold  modifications,  with
immediate visualization of detection results.

However,  challenges  may  arise  when  deploying  the  model  in
real-world  environments.  Factors  such  as  changing  lighting
conditions,  occlusions  caused  by  overlapping  plants,  and  varying
growth  states  in  farmland  may  affect  detection  accuracy.
Additionally,  the  model’s  computational  efficiency  may  require
optimization  for  deployment  on  edge  devices  with  limited
processing power. Future work will focus on enhancing the model’s
robustness against environmental variability and further integrating
lightweight hardware solutions to ensure real-time performance.

In  summary,  the  improved  LTCB  YOLOv7  algorithm
combines  a  lightweight  design  with  enhanced  feature  extraction
capabilities  through  an  attention  mechanism  and  cross-channel
information  fusion.  These  improvements  effectively  reduce  false
edge  detections  and  increase  the  accuracy  of  maturity  detection.
With  further  refinements,  this  approach  can  serve  as  a  reliable
machine  vision  solution  for  precision  agriculture,  including
applications in automated harvesting systems.
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Figure 11    Comparison of different detection results
 

Table 3    Comparison experiments

Model Ghost-SE
YOLOv5[32]

YOLO-
CBAM[33]

YOLOv7-
TP[34]

LTCB
YOLOv7

GPU/G 6.43 3.45 7.74 7.20
Flops/G 52.5 60.1 96.7 97.5

Parameters/million 25.77 26.52 34.66 35.43
Training times/h 5.102 5.435 7.314 7.703

p 61.45% 65.47% 71.02% 73.58%
R 58.62% 70.28% 73.59% 77.26%

Real-time performance 82.33 91.26 86.53 96.15
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a. YOLOv7 maturity detection method b. LTCB YOLOv7 maturity detection method

Figure 12    System interface and detection
 
 

5    Conclusions
This research proposes an improved LTCB YOLOv7 algorithm

for  identifying  the  maturity  level  of Hemerocallis  citrina  Baroni.
This  study’s  innovations  lie  in  its  lightweight  design  and  efficient
layer  aggregation  strategy,  which  effectively  reduce  computational
requirements  while  enhancing  detection  accuracy  and  real-time
performance.  The  proposed  method  demonstrates  strong  practical
value,  serving  as  a  reliable  machine  vision  solution  for  automated
harvesting systems, such as Hemerocallis citrina Baroni harvesting
robots.

Experimental  results  confirm  that  the  LTCB  YOLOv7
algorithm achieves superior detection performance compared to the
baseline model, offering significant benefits in accuracy, efficiency,
and robustness under varying conditions.

Future  research  will  explore  integrating  multimodal
approaches,  such  as  combining  visual  and  spectral  information,  to
improve  the  detection  accuracy  further.  Additionally,  the  adoption
of reinforcement learning techniques will be investigated to enhance
the  model’s  adaptability  in  complex  and  dynamic  field
environments, further advancing intelligent harvesting systems. 
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