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Estimation of asparagus stem height and diameter in complex
environments by integrating improved YOLOvVS with point cloud
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Abstract: Identifying the maturity of asparagus is a crucial step for machine-assisted harvesting of asparagus in complex
environments. This study proposes an innovative method to evaluate the height and diameter of asparagus stems, combining an
enhanced YOLOV5 detection algorithm with point cloud data. In this method, first, the YOLOVS model was improved,
enabling efficient recognition and detection of asparagus in complex environments. Subsequently, a RealSense L515 radar
camera was deployed to capture both the original RGB images and the point cloud information. The improved YOLOVS
algorithm was then employed to detect asparagus instances within the RGB images, with the pixel positions of the detection
frames mapped onto the point cloud dataset to extract comprehensive 3D point cloud details of the asparagus. Finally, noise
was reduced through statistical filtering and Euclidean clustering, and asparagus height was determined using the oriented
bounding box methodology. Slices, each with a thickness of 10 mm, were extracted at designated measurement points, and the
asparagus diameter was calculated by assessing the disparity between the maximum and minimum coordinates perpendicular to
the growth direction of the asparagus. Experimental results showed that the mean average precision, precision, and recall of the
improved YOLOVS model increased by 4.85%, 5.09%, and 3.4%, reaching 98.21%, 97.11%, and 95.33%, respectively, which
are higher than those of the YOLOVS5 prototype network. Therefore, the proposed method could effectively detect asparagus.
The algorithm exhibited a mean absolute error of 1.08 cm, a mean absolute percentage error of 4.06%, and a root mean square
error of 1.60 cm in its estimation of asparagus height. For asparagus diameter estimation, the algorithm achieved a mean
absolute error of 0.86 mm, a mean absolute percentage error of 7.98%, and a root mean square error of 1.23 mm. These results
confirm that the proposed method can estimate the height and diameter of asparagus stems accurately, thereby providing
invaluable technical support for machine harvesting of asparagus.
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1 Introduction

Asparagus, hailed as the “king of vegetables” and considered
among the top 10 most popular vegetables worldwide!”, is a
nutritious and healthful vegetable. In 2022, China’s asparagus
cultivation spanned approximately 1.45 million hectares, yielding
an output of 7.35 million tons, thus being the global leader in
asparagus cultivation®*. However, the maturity of edible asparagus
shoots is inconsistent, requiring manual selective harvesting, which
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relies on the measurement of asparagus stem height and diameter.
Unfortunately, this approach has a number of shortcomings, such as
inefficiency, labor-intensive demands, and high operational costs,
which present challenges to the sustainable development of the
asparagus industry”™. Hence, conducting research on machine-
assisted selective harvesting of green asparagus is urgently needed.
A crucial factor in machine-assisted selective harvesting of
asparagus is the identification of asparagus maturity. Among
the height and diameter of
asparagus stems are important metrics for estimating maturity'*'".

various phenotypic parameters,

Sakai et al. developed an innovative green asparagus selective
harvesting apparatus, lidar technology for asparagus
recognition and precise measurement of stem diameter and height.
The system screened and identified harvestable targets on the basis
of predefined harvesting criteria, achieving a 75% success rate in

using

asparagus identification!"". Leu et al. of the University of Bremen in
Germany pioneered an autonomous ambulating green asparagus
selective harvesting robot. This advanced system harnessed RGB-D
camera technology to capture 3D data of asparagus and ridge
surfaces, subsequently performing filtering, clustering, and point
cloud segmentation to extract size information and assess asparagus
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maturity”. The Geiger-Lund company of the United States
developed a field-treaded green asparagus selective harvesting
machine, which uses optical detectors to gauge asparagus height.
This measurement determines asparagus maturity, thus allowing
one to decide whether a given specimen can be harvested?. Peebles
et al. compared the sensor technologies used for asparagus
harvesting and investigated the methods used to determine the
position of the ridge surface in an asparagus harvesting scenario!*'".
Kennedy et al. proposed the concept of perceptual channels based
on multiple cameras to localize green asparagus'”. Notably,
although China has conducted asparagus detection, the focus on
asparagus maturity identification technology remains relatively
limited. Liu et al. pioneered the application of an enhanced mask R-
CNN for target segmentation of asparagus in straightforward spring
settings®. Hong et al. proposed the use of the refined YOLOVS
algorithm for asparagus target detection in complex scenarios".

In recent years, the integration of point cloud data®*! and deep
learning detection algorithms™?% for use in the field of agriculture
has produced valuable insights into the estimation of asparagus stem
height and diameter in complex environments. Sun et al. employed
SOLOV2 to delineate apple trees in RGB images by utilizing
threshold parameters in the X-, Y-, and Z-axes to intercept the point
cloud model®. This approach facilitated the identification of
grafting positions on apple trees and enabled long-distance
estimation of trunk diameters for grafted apple trees. Qiu et al.
introduced an RGB-D camera-based method to compute maize
plant height and diameter by extracting pertinent point cloud feature
information®. Yang et al. placed an RGB-D camera over cucumber
seedlings and segmented clustered spots within the collected color
three-dimensional point cloud data®. This procedure enables
localization of individual seedlings and facilitates plant height
measurements. McGlade et al. used Kinect V2 technology to
measure outdoor tree diameters and heights, achieving a root mean
square error (RMSE) of 35.3 mm after excluding non-circular
diameters™”. Montoya et al. devised a tool for extracting point cloud
data to estimate tree stem heights and diameters®. Pires et al.
employed lasers to scan forests to intercept cross-sections of point
clusters, which were fitted with circles, and extracted tree
diameters®™. Li et al. used YOLOV3 in conjunction with RGB-D
cameras for precise 3D positioning of outdoor tea picking points,
achieving an accuracy rate of 93.1%".

In summary, although both domestic and international studies
have proposed methods for identifying green asparagus and
assessing its maturity primarily in indoor or uncomplicated
scenarios, few studies have been conducted on the identification of
asparagus maturity in complex environments. Therefore, the use of
asparagus maturity recognition technology in complex growth
environments needs to be investigated. This approach requires the
full potential of RGB-D data to be harnessed and thus enhance the
generality and resilience of feature design while reducing
computational demands to align with practical applications. This
study introduces a methodology for estimating asparagus stem
height and diameter in complex environments, thereby providing
crucial technical support for intelligent machine-assisted asparagus
harvesting. This approach involves the real-time collection of RGB
images and point cloud data via an RGB-D camera, followed by the
utilization of the improved YOLOVS algorithm to detect the green
asparagus region. 3D asparagus information was extracted from the
point cloud dataset by using the pixel positions within the detection
frames in the RGB image. Filtering, clustering, fitting, and related
procedures were then performed, thereby determining asparagus

stem height and diameter accurately, which served as maturity
indicators.

This study is organized as follows: Section 2 delineates the
complete process of asparagus height and diameter estimation.
Section 3 describes the evaluation index of the proposed estimation
method, the detection effect of the improved YOLOvVS algorithm,
the appropriate slice thickness threshold setting, and the evaluation
of the height and diameter estimation effect. The last section
summarizes the study.

2 Materials and methods

2.1 Analysis overview

During summer and autumn, the stems and leaves of asparagus
plants are clustered densely, creating a complex cultivation
environment. The similarity in both shape and color between
asparagus shoots and stems further complicates the matter, which is
aggravated by the presence of various stacking conditions. The
color of asparagus sprouts is similar to that of surrounding leaves
and weeds. As a result, many leaves and weeds may obscure the
sprouts or serve as the background. These factors collectively affect
the success rate of asparagus detection. During point cloud
processing, the 3D information of asparagus may be mixed with
these extraneous factors, which can affect the final calculation
results, thereby making the identification of asparagus maturity
difficult.

To address these challenges, this study introduced a method for
identification of asparagus stems by integrating
YOLOv5®* and point cloud technologies, respectively. This
process is illustrated in Figure 1. First, an RGB color image of
asparagus, along with the corresponding point cloud data, was
acquired using an RGB-D camera (Intel, CA, USA). The original
RGB image and depth map were captured directly using an RGB

maturity

camera and depth sensor, respectively. Subsequently, Intel
RealSense SDK2.0 was utilized to align the depth map with the
original RGB image, thereby generating point cloud data on the
basis of this synchronized depth map. The Z-coordinate value for
each point within the point cloud was derived directly from the
aligned depth map. The X- and Y-coordinates for each point in the
point cloud were computed using the Z-coordinate value, pixel
coordinates of the point, and internal parameters of the Intel
RealSense L515 camera (Intel, CA, USA).

Subsequently, the YOLOvVS algorithm was enhanced. The
foundational backbone network was substituted with FasterNet*),
enhancing the capability and efficiency of feature extraction.
Moreover, a dynamic head based on the attention mechanism was
incorporated to improve the detection head’s ability to identify
asparagus™. Wise IoU was implemented as the bounding box
regression loss function, speeding up convergence and increasing
accuracy™. The improved YOLOvS5 model was then used to
perform detection on the RGB image, producing detection boxes
and acquiring pixel coordinates. These pixel coordinates were
subsequently mapped to the point cloud dataset to facilitate the
extraction of the 3D points that correspond to the detection frame.
Finally, noise was meticulously removed through a combination of
filtering and Euclidean clustering. An enveloping box was
constructed to obtain the height information of asparagus.
Additionally, point cloud data corresponding to the measured
location of the asparagus diameter were obtained through a slicing
operation and then analyzed, thus determining the asparagus
diameter.
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2.2 Data acquisition
2.2.1 3D data acquisition

The data acquisition system utilized for capturing asparagus
data comprised a RealSense L515 depth camera, a computer, and a
tripod. According to the asparagus production process, the
asparagus undergoes stem treatment after being harvested in spring.
Therefore, asparagus stems and leaves are already present during
summer and autumn, and they become lush. As a result of the
bottom—up growth pattern of asparagus, the leaves on the top
provide sufficient shade for the asparagus. The thick foliage of
asparagus during the summer and autumn seasons was avoided by
mounting a RealSense L515 depth camera strategically on a tripod.
This camera collected data approximately 750 mm away and

200-300 mm

Computer

475 mm

v

| Generate OBB bounding box

|—>| Get the length of asparagus

Perform slice operation at the
diameter measuring point

Calculate the diameter of asparagus

Workflow of asparagus height and diameter estimation

475 mm above the ground alongside the asparagus. The collected
dataset encompasses RGB images, depth maps, and the
corresponding point cloud data, as shown in Figure 2. The depth
values, that is, the Z-coordinate values within the point cloud, were
acquired using the L515 depth camera. The X- and Y-coordinates of
the points within the point cloud can be computed by using the Z-
coordinates, the internal parameters of the RealSense L515, and the
pixel coordinates of the points, as shown in Equations (1) and (2).

The original depth map has a resolution of 640x480 pixels,
whereas the RGB image has a resolution of 1280x720 pixels.
Therefore, the depth map needs to be registered with the RGB map,
thereby expanding the generated point cloud from 640x480 to
1280x%720 pixels accordingly.

Realsense L515

Depth image

about750 mm

Point cloud

Figure 2 Data acquisition system

Data were collected within the asparagus planting base of
Hangzhou Jiahui Agricultural Development Co., Ltd. using the Jialu
No. 1 asparagus variety. The asparagus greenhouse is about 6x60 m
with four rows. The dimensions of each row are shown in Figure 1.
Sixty sets of summer asparagus RGB maps, depth maps, and point
cloud datasets were collected. For these 60 asparagus specimens,
the diameter and height measurements were manually acquired and
documented, serving as reference values for comparison with the
results generated by the algorithm.

In accordance with the typical asparagus production process, a
measuring point located 5 cm from the ground was designated as
the reference point for asparagus diameter assessment, as illustrated

in Figure 3.
(u—c)z
A . Vi 1
x 7 (1)
(v-c)z
=TTk 2
y 7 2
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where, u and v are the pixel coordinates of the point. z is the depth
value of the point collected by the depth sensor of the RealSense

L515. c,, ¢, f., and f, are the internal parameters of the RealSense
L515.

a. Growing environments of asparagus in summer and autumn

b. Measuring point location

Figure 3 Diameter measuring point location

2.2.2 RGB dataset acquisition

The summer asparagus harvest period, which is primarily in
May and June, corresponds to the time when asparagus reaches its
peak in terms of growth. Consequently, a comprehensive dataset
comprising 1302 photographs of asparagus was compiled during
this period, capturing the plants from various angles under various
lighting conditions. A total of 701 photos were collected under
sunny conditions on May 31, 2022, and 601 photos were collected
under cloudy conditions on June 3, 2022. The data collection
location was the asparagus planting base of Hangzhou Jiahui
Agricultural Development Co., Ltd. Labellmg software was used
for annotation (Intel, CA, USA). The harvesting process involved
the machine exclusively targeting the current row, which is why the

a. original photo

annotations were restricted to asparagus specimens within the
immediate row, with those situated in the background considered as
part of the backdrop.

Subsequently, dataset  augmentation
implemented to enhance the adaptability and robustness of the
model. A straightforward horizontal flip operation was applied to
the images to recognize the vertical alignment of asparagus during

measures were

harvesting. This augmentation process resulted in a dataset of 2604
samples, as shown in Figure 4. Following best practices, the dataset
was divided into training, validation, and test sets at an 8:1:1 ratio.
Consequently, 2084 photos were allocated for training, 260 photos
were used for validation, and an additional 260 photos were used

for testing.

b. photo after being flipped horizontally

Figure 4 Data enhancement

2.3 Improved YOLOVS

The YOLO model was employed to enhance the accuracy and
real-time performance of asparagus detection in complex
environments. Replacing FasterNet with a backbone feature
extraction network can improve the feature extraction capability and
efficiency. The detection head was adapted to the dynamic head to
focus on the asparagus characteristics and enhance the detection
capability. Wise IoU was employed as the bounding box regression
loss function to accelerate the convergence rate of the network, thus
allowing it to more effectively detect asparagus in complex
environments.
2.3.1 FasterNet backbone

The growth environment of asparagus in summer and autumn is
complex. FasterNet was applied to the YOLOVS network as the
backbone to extract feature information and thus achieve fast and

effective extraction of asparagus features in complex scenarios.
FasterNet utilizes a novel partial convolution (PConv), capitalizing
on the redundancy in the feature graph and applying regular
convolution (Conv) on a fraction of the input channels while
leaving the remaining channels unaffected. As a result, PConv has
lower FLOPs than regular Conv does and has higher FLOPs than
DWConv/GConv does. The computing power of the device can be
used more efficiently to identify the spatial features, as illustrated in
Figure 5. A new neural network family, FasterNet, based on PConv
is constructed, which has a fast running speed, strong feature
extraction ability, and high efficiency.
2.3.2 Dynamic head

The dynamic head is an innovative detection head that
integrates scale, spatial, and task awareness. The attention
mechanism is deployed separately on each specific dimension of the
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feature, namely, level, spatial, and channel. Scale-aware attention
modules are deployed only on the level dimension, learning the
relative importance of various semantic levels to enhance features at
an appropriate level based on the scale. The spatial-aware attention
module is deployed on the spatial dimension (i.e., heightxwidth)
and learns coherent discriminative representations in spatial
locations. The task-aware attention module is deployed on channels
and guides different feature channels to favor different tasks
according to different convolution kernel responses from the
objects, as shown in Figure 6. The brown rectangular box x, in
front of the green square represents the attention weight coefficient
obtained at the layer level. This coefficient is then multiplied with

multiple slices in front of the green square to obtain the attention
feature map at the layer level; this is known as scale-aware
attention. The black rectangular box g located directly above the
green square represents the weight coefficient of spatial attention. It
is multiplied with several spatial slices of the green square
positioned directly above to obtain the attention feature map at the
spatial level; this is referred to as spatial-aware attention. The
yellow rectangular box m. on the right side of the green square
represents the attention weight coefficient obtained at the channel
level. It is multiplied with several channel slices of the green square
on the right side to obtain the attention feature map at the channel
level; this is known as task-aware attention.

|
PConv 3x3

FasterNet Block

o o o o =
£ Stagel £ Stage2 £ Stage3 £ Stage4 2
3 FasterNet 3 FasterNet 3 FasterNet 3 FasterNet =
'§ Block @ Block '§ Block "é Block §
53| i) 5] ia) O
Input Identity Output
C, Filters

Figure 5 FasterNet backbone structure

— po—s1 —_— —Center regression
@\ \ Box regression
7 ( ) :

Figure 6 Illustration of dynamic head

The feature map is more sensitive to the proportion difference
of foreground objects after the scale-awareness attention module. It
becomes sparser and focused on discriminating the spatial location
of foreground objects after they pass through the spatial awareness
attention module. Finally, after passing through the task-awareness
attention module, these feature maps reform different activations
according to the needs of different downstream tasks.

2.3.3 WiseloU

The original YOLOVS5s adopted CloU loss as the loss function
of the prediction frame. Based on DIoU, the CloU loss function
introduces the aspect ratio between the predicted boundary frame
and the real boundary frame, which can accelerate the regression
speed of the prediction frame to a certain extent. Network
optimization is hindered by the lack of clarity in defining the aspect
ratio of the two boundary frames. In this study, the Wise-loU v3
loss function is used. Unlike the former, Wise-IoU v3 does not
introduce the aspect ratio calculation. Instead, it adopts a dynamic
non-monotone focusing mechanism on the attention-based
bounding frame loss Wise-IoU v1, using the outlier to describe the
quality of the anchor frame.

First, the attention-based bounding frame loss Wise-IoU vl is

calculated as follows:

Lyioun = RwiouLusu (3)

(x_xgx)2+(y_ygx)2> (4)

where, Wise-IoU vl is the boundary frame loss; L,y is the
boundary frame loss loU; R,y is the distance attention; x and y are
the horizontal and vertical coordinates of the center point of the
prediction frame, respectively; x, and y, are the horizontal and
vertical coordinates of the center point of the real frame,
respectively; and W, and H, are the width and height of the
minimum external rectangle of the prediction frame and the real
frame, respectively. * indicates the separation of the operation from
the computed graph to make it constant without a gradient.

The outlier is then used to describe the quality of the anchor
frame, defined as follows:

L*
B== €[0,+) (5)
Ly
where, L, is the sliding average.
Finally, the non-monotone focusing frame loss Wise-IoU v3 is
constructed using the outlier degree 3, and the calculation formula

is as follows:

Ly = kLWlOUVl (6)
B

where, Ly is the boundary frame loss Wise-IoU v3, k= S

and the hyperparameters @ and ¢ in this study are set to 1.9 and 3.0,
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respectively.
2.4 Target point cloud extraction

The point cloud data were transformed into three 1280x720
coordinate matrices to precisely determine the pixel coordinates that
index the position of asparagus. These matrices comprise the X, ¥,
and Z coordinates of the points within the point cloud. The point
encapsulates comprehensive  three-dimensional
information about the object, encompassing the X-, Y-, and Z-

cloud data

coordinates, all expressed in meters. In this context, the x-axis
corresponds to the height direction, the y-axis represents the
diameter direction, and the z-axis represents the depth direction.

During RealSense L515 data acquisition, the coordinate values
of the points are stored in the PLY format point cloud and arranged
in columns to align with the depth map. Subsequently, pixel
coordinate transformation is facilitated by employing the center
point of the prediction frame. Once the pixel coordinates of the
center point within the prediction box are obtained, the
corresponding points within the point cloud are matched using
coordinate transformation formulas, as shown in Equations (7)
and (8).

Object
Dataset detection

o

RGB image

Detection result

x,=1279-x, (7

yp =719~y ®)

where, (x;, y;) is the pixel coordinate of one point in the original
RGB image, and (x,, y,) is the coordinate of the corresponding
point in the three coordinate matrices.

A point cluster near the center point was isolated by setting the
thresholds in the X- and Y-directions as half of the height and width
of the prediction box, respectively. All points that meet the criteria
outlined in formulas (9) and (10) were used in calculating asparagus
height and diameter.

Xneight — Di/2 < X < Xpeigne + bi/2 (9)

Yuian = b /2 £ Y < Yyian + b1 /2 (10)
where, (x, y) are the coordinates of the points extracted to calculate
the asparagus information, (Xueem, Ywian) are the coordinates of the
center point of the prediction box, and b,, b, are the height and
width of the prediction box, respectively. This process is illustrated
in Figure 7.

Fusion

Target region point cloud

Point cloud

Figure 7 Target point cloud extraction

2.5 Height and diameter calculation

A series of essential steps was performed to ascertain the height
and diameter of the asparagus. Initially, statistical filtering was
applied to the point cloud, followed by Euclidean clustering to
eliminate noise, thereby yielding a clean asparagus point cloud. In
statistical filtering, the nb_neighbors (number of neighbors around
the target point) was set to 5 and the std ratio (standard deviation
ratio) was set to 1. This balances computational efficiency with
filtering intensity, enabling rapid removal of significant outliers. In
Euclidean clustering, the tolerance (maximum allowable Euclidean
distance between two points for them to be considered part of the
same cluster) was set to 0.012, the minimum cluster size (minimum
number of points required to form a valid cluster) to 1200, and the
maximum cluster size (maximum number of points allowed in a
single cluster) to 10 000. This specific configuration achieved
precise object segmentation and efficient noise filtering based on
the physical constraints and point cloud density characteristics of
the typical asparagus greenhouse environment. Subsequently, an
oriented bounding box (OBB) was constructed to obtain height
information regarding asparagus. The primary direction was
determined through principal component analysis transformation,
with the X-direction corresponding to the height and the Y-direction
to the diameter. A suitable threshold was established along the X-

direction to precisely measure the diameter of the asparagus.
Subsequently, a section of the point cloud was sliced at a distance of
50 mm from the bottom of the OBB, which represented the point for
measuring the asparagus diameter. With the use of the OBB, the
asparagus diameter was determined by calculating the difference
between the maximum and minimum coordinate values along the Y-
axis direction, as illustrated in Figure 8.

3 Results

3.1 Training environment

Model training was conducted on a platform equipped with an
Intel i5-6500 (3.2 GHz) 4-core CPU, an Nvidia GeForce RTX 3060
GPU (with 12 GB video memory), and a Windows 10 64-bit
operating system with 24 GB of RAM. The deep learning
framework employed was PyTorch, with PyCharm serving as the
compilation tool. GPU acceleration was facilitated through CUDA
11.1 and CUDNN 8.0.5.

All images were adjusted to a standardized size of 640x640
pixels to adhere to the input requirements of the model algorithm.
Given the constraints imposed by computer hardware, the batch size
was set to 16. Network optimization was executed using the SGD
optimizer, with a momentum parameter of 0.937, an initial learning
rate of 0.01, a decay index of 0.0005, and 300 training rounds.
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Figure 8 Obtaining the height and diameter of asparagus

3.2 Performance evaluation

Detection accuracy and speed are important metrics for
assessing the YOLO detection model. Detection accuracy
encompasses precision (P), recall (R), average precision (AP), and
mean average precision (mAP), which are defined in Equations (11)
to (14).

— TP 0

— TP 0,
1

AP = L P(R)AR (13)
L

mAP = > AP, (14)

i=1

where, TP represents the count of correctly predicted positive
samples, FP denotes the number of erroneously predicted positive
samples, FN signifies the count of incorrectly predicted negative
samples, n corresponds to the number of target categories detected,
and AP, represents the average precision (AP) for the i th target
class.

The performance assessment of the proposed method for height
and diameter estimation in this study was conducted using the
evaluation metrics of mean absolute error (MAE), mean absolute
percentage error (MAPE), and RMSE when compared with manual
measurements as the ground truth. MAE, MAPE, and RMSE were
calculated using Equations (15)-(17), respectively.

Lo
MAE= % "I(fi~g) (15)

i=1

MAPE =

fi—&
Z A ‘ (16)

i=1

1 — R
RMSE= /=% " (fi~g) (17

where, n is the number of samples used to estimate the height and
diameter, f; is the estimated value of the i sample, and g, is the
ground truth of the i sample.
3.3 Performance of YOLOVS model
3.3.1 Training assessment of YOLOV5 model

Throughout the model training process, the efficacy of the
model was assessed on the basis of two crucial metrics: mAP value
and loss value. The training trajectory for mAP and loss is depicted
in Figure 9. The mAP indicates asparagus detection accuracy,
whereas the loss value reflects the model’s fitting performance
during training. After 273 training epochs, the loss curve converged
gradually and stabilized. The minimum recorded box loss and
object loss were 0.0172 and 0.01, respectively, with mAP@0.5
reaching a high value of 0.97. This finding indicates that the model
effectively captures the distinctive characteristics of asparagus,
enabling efficient asparagus detection. This result forms a robust

foundation for subsequent asparagus height and diameter
estimations.
1.0}
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Figure 9 Loss value and mAP curve

3.3.2 Detection results of improved YOLOvV5 model

The improved YOLOvVS5 model demonstrated commendable
performance in asparagus detection, as illustrated in Figure 10. The
detection results of the model served as the foundation for
subsequent asparagus height and diameter measurements. The test
results for the test set are summarized in Table 1, achieving a
precision value of 97.11%, recall value of 95.33%, and mAP@0.5
value of 98.21%. Compared with those of the YOLOVS prototype
network, the mAP@0.5, precision value, and recall value of the
improved YOLOVS model increased by 4.85%, 5.09%, and 3.4%,
respectively. Compared to advanced detection algorithms, the
detection effect is slightly better than YOLOvVS. These results show
that the model is able to detect asparagus rapidly and accurately in
complex environments, effectively meeting the requirements for
asparagus height and diameter measurements in later stages.

Table 1 Detection results of improved YOLOVS model

Model P/% R/% mAP@0.5
Improved YOLOVS5s 97.11 95.33 98.21
YOLOv8s 96.98 95.17 98.14
YOLOvVS5s 92.02 91.93 93.36
YOLOv4 93.50 79.74 92.28
YOLOvV3 90.48 76.24 88.84
Faster-RCNN 76.98 93.36 92.92

3.4 Determining the threshold in the x-direction

After the asparagus point cloud has been extracted, slicing
needs to be performed at the designated asparagus diameter
measurement point to compute the asparagus diameter accurately.
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The thickness of this slice, which denotes the distance along the x-
axis after principal component analysis, affects the diameter
calculation results. Hence, determining the appropriate slice
thickness is crucial to ensure that the asparagus diameter is
estimated accurately.

Five distance thresholds—5.0, 7.5, 10.0, 12.5, and 15.0 mm—
were established to investigate the effects of various section
thicknesses on the diameter estimation results. The proposed
method was subsequently applied to estimate asparagus diameter
under each of these conditions. Figure 11 depicts the ratio between
the diameter estimated by this method and the manually measured
values across the five slice thicknesses.
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Figure 11 Results of estimating diameter with different

distance thresholds

The appropriate slice thickness was determined by configuring
five distinct distance thresholds along the x-axis, and the proposed
method was applied for estimation. Table 2 lists the MAE and
MAPE values for the five thresholds. Notably, when the slice
thickness was less than 10 mm, both the MAE and MAPE values
increased, which was primarily attributed to the sparseness of the
point cluster captured by the RealSense L515 sensor. Conversely,
when the slice thickness exceeded 10 mm, an excess of nontarget
points within the slice contributed to elevated MAE and MAPE

Figure 10 Asparagus detection effect

-

values. Remarkably, the most favorable results were achieved with
a thickness of 10 mm, yielding the smallest MAE and MAPE values
of 0.86 mm and 7.98%, respectively. Thus, establishing a threshold
of 10 mm was optimal for obtaining accurate results.

Table 2 MAEs and MAPEs with different thresholds

Distance threshold in X-direction/mm MAE/mm MAPE
5.0 1.99 26.19%
7.5 1.10 12.02%
10.0 0.86 7.98%
12.5 1.86 15.07%
15.0 431 28.86%

3.5 Evaluation of estimating height and diameter

In this study, a method for estimating the height and diameter
of asparagus that integrates deep learning and point cloud data
acquired from a depth camera was introduced to facilitate selective
asparagus harvesting. The measurement results obtained using this
method are presented in Figures 12 and 13. With regard to the
asparagus height measurement, the MAE, MAPE, and RMSE were
1.08 mm, 4.06%, and 1.60 cm, respectively. For asparagus diameter
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Figure 12 Results of estimating height compared with
manual measurement
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measurement, the corresponding metrics were 0.86 mm, 7.98%, and
1.23 mm, respectively. A substantial correlation between the
proposed approach and the manual measurements can be observed.
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Figure 13 Results of estimating diameter compared with
manual measurement

4 Discussion

To enhance the detection of asparagus targets in complex
environments, this study made several modifications. First, the
backbone network of YOLOvSs was replaced with FasterNet.
Second, the detection head was replaced with dynamic head. Lastly,
Wise IoU was implemented as the boundary box regression loss
function. These changes considerably improved the success rate of
detecting green asparagus in complex environments. Compared
with Peebles’s use of Faster-RCNN for spring asparagus detection,
this method achieved a 12.21% increase in detection success rate,
reaching 98.21%. Furthermore, when compared with Hong et al.’s
utilization of YOLOvSm for green asparagus detection in complex
environments, the improved YOLOVSs achieved a similar detection
success rate. However, 27 cases of false detection and missing
detection still exist. Analysis revealed that these cases primarily
occur in two situations: 1) when asparagus is heavily obstructed by
asparagus stems, leaves, and grass, resulting in errors and missed
detections; 2) when asparagus is positioned at the image’s edge,
especially if the asparagus bud head is located outside the image,
leading to a higher occurrence of incorrect and missed detections.
These conditions occur alone or together. The specific statistics are
listed in Table 3. Moving forward, the future research will focus on
investigating the characteristics of green asparagus stems (excluding
the asparagus bud heads), allowing accurate identification of green
asparagus even when the bud heads are heavily obscured or out of
sight.

Table 3 Statistics of the main reasons for detection failure

Asparagus is Asparagus is positioned
heavily obstructed at the image’s edge

Quantity 18 15

Main cause

This study integrates YOLOVSs and point cloud technology to
design an algorithm for estimating the length and width of green
asparagus stems. The algorithm enables the extraction of 3D
information, noise removal, and accurate estimation of stem length
and width. Currently, no existing studies have estimated the length
and width of green asparagus specifically, but previous research
examined the length and width estimation of other plants such as
corn and apple trees. For instance, Sun et al. employed SOLOV2 to

segment apple trees in RGB maps, mapped and intercepted the point
cloud model, and successfully estimated the trunk diameter of
grafted apple trees from a distance. In comparison, estimating the
dimensions of green asparagus is more challenging due to its
smaller size and unique shape. However, the present study achieves
an MAPE of only 7.98% and an MAE of merely 0.86 mm,
considerably outperforming Sun et al.’s measurement method. Qiu
et al. utilized an RGB-D depth camera to collect point cloud data for
calculating the height and stem diameter of maize. Corn stems have
a cylindrical and straightforward shape, while green asparagus
stems exhibit more curvature. Despite the complexity in measuring
the length and width of green asparagus, this study successfully
reduces the MAE and MAPE. Qiu et al. employed traditional
methods for image segmentation processing, while this study
combines deep learning with point cloud analysis to achieve a more
robust and real-time estimation of asparagus height and diameter.
However, this study’s algorithm may introduce large errors when
estimating the dimensions of green asparagus with significant
curvature. For future work, a crucial task is to further consider the
influence of asparagus curvature on length and width estimation and
refine the algorithm accordingly to enhance accuracy.

5 Conclusions

To address the challenge of machine-based asparagus maturity
identification in complex environments, this study introduces a
method for estimating asparagus stem height and diameter by
leveraging depth camera technology and integrating the improved
YOLOVS with a point cloud. The improved YOLOv5 model was
employed to detect asparagus by pinpointing its precise location,
thus enabling robust detection even in complex surroundings.
Subsequently, 3D point cloud information for asparagus was
derived from the pixel positions. The height of asparagus was
estimated by constructing an OBB via point cloud data processing.
Finally, asparagus diameter was estimated by slicing the asparagus
at the designated measurement point.

The results showed that mAP@0.5, precision, and recall of the
improved YOLOVS model increased by 4.85%, 5.09%, and 3.4%,
reaching 98.21%, 97.11%, and 95.33%, respectively. These
outcomes indicate a highly successful asparagus detection.
Furthermore, this study elucidates the influence of slice thickness
on asparagus diameter, identifying 10 mm as the optimal thickness.
For asparagus height estimation, the proposed method yielded
MAE, MAPE, and RMSE values of 1.08 cm, 4.06%, and 1.60 cm,
respectively. For asparagus diameter estimation, the corresponding
values were 0.86 mm, 7.98%, and 1.23 mm, respectively. These
findings highlight the effectiveness of the method in accurately
height
environmental conditions, thereby offering valuable technical

estimating asparagus and diameter under complex

support for selective machine harvesting of asparagus.
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