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Abstract: Identifying  the  maturity  of  asparagus  is  a  crucial  step  for  machine-assisted  harvesting  of  asparagus  in  complex
environments. This study proposes an innovative method to evaluate the height and diameter of asparagus stems, combining an
enhanced  YOLOv5  detection  algorithm  with  point  cloud  data.  In  this  method,  first,  the  YOLOv5  model  was  improved,
enabling  efficient  recognition  and  detection  of  asparagus  in  complex  environments.  Subsequently,  a  RealSense  L515  radar
camera  was  deployed  to  capture  both  the  original  RGB  images  and  the  point  cloud  information.  The  improved  YOLOv5
algorithm was then employed to detect  asparagus instances within the RGB images,  with the pixel  positions of the detection
frames mapped onto the point  cloud dataset  to  extract  comprehensive 3D point  cloud details  of  the asparagus.  Finally,  noise
was  reduced  through  statistical  filtering  and  Euclidean  clustering,  and  asparagus  height  was  determined  using  the  oriented
bounding box methodology. Slices, each with a thickness of 10 mm, were extracted at designated measurement points, and the
asparagus diameter was calculated by assessing the disparity between the maximum and minimum coordinates perpendicular to
the growth direction of the asparagus. Experimental results showed that the mean average precision, precision, and recall of the
improved YOLOv5 model increased by 4.85%, 5.09%, and 3.4%, reaching 98.21%, 97.11%, and 95.33%, respectively, which
are higher than those of the YOLOv5 prototype network. Therefore, the proposed method could effectively detect asparagus.
The algorithm exhibited a mean absolute error of 1.08 cm, a mean absolute percentage error of 4.06%, and a root mean square
error  of  1.60  cm  in  its  estimation  of  asparagus  height.  For  asparagus  diameter  estimation,  the  algorithm  achieved  a  mean
absolute error of 0.86 mm, a mean absolute percentage error of 7.98%, and a root mean square error of 1.23 mm. These results
confirm  that  the  proposed  method  can  estimate  the  height  and  diameter  of  asparagus  stems  accurately,  thereby  providing
invaluable technical support for machine harvesting of asparagus.
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 1    Introduction
Asparagus,  hailed  as  the  “king  of  vegetables”  and  considered

among  the  top  10  most  popular  vegetables  worldwide[1,2],  is  a
nutritious  and  healthful  vegetable.  In  2022,  China’s  asparagus
cultivation  spanned  approximately  1.45  million  hectares,  yielding
an  output  of  7.35  million  tons,  thus  being  the  global  leader  in
asparagus cultivation[3,4]. However, the maturity of edible asparagus
shoots is inconsistent, requiring manual selective harvesting, which

relies  on  the  measurement  of  asparagus  stem height  and  diameter.
Unfortunately, this approach has a number of shortcomings, such as
inefficiency,  labor-intensive  demands,  and  high  operational  costs,
which  present  challenges  to  the  sustainable  development  of  the
asparagus  industry[5].  Hence,  conducting  research  on  machine-
assisted selective harvesting of green asparagus is urgently needed.

A  crucial  factor  in  machine-assisted  selective  harvesting  of
asparagus  is  the  identification  of  asparagus  maturity.  Among
various  phenotypic  parameters,  the  height  and  diameter  of
asparagus  stems  are  important  metrics  for  estimating  maturity[6-10].
Sakai  et  al.  developed  an  innovative  green  asparagus  selective
harvesting  apparatus,  using  lidar  technology  for  asparagus
recognition  and precise  measurement  of  stem diameter  and height.
The system screened and identified harvestable targets on the basis
of  predefined  harvesting  criteria,  achieving  a  75%  success  rate  in
asparagus identification[11]. Leu et al. of the University of Bremen in
Germany  pioneered  an  autonomous  ambulating  green  asparagus
selective harvesting robot. This advanced system harnessed RGB-D
camera  technology  to  capture  3D  data  of  asparagus  and  ridge
surfaces,  subsequently  performing  filtering,  clustering,  and  point
cloud segmentation to extract size information and assess asparagus
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maturity[12].  The  Geiger-Lund  company  of  the  United  States
developed  a  field-treaded  green  asparagus  selective  harvesting
machine,  which  uses  optical  detectors  to  gauge  asparagus  height.
This  measurement  determines  asparagus  maturity,  thus  allowing
one to decide whether a given specimen can be harvested[13]. Peebles
et  al.  compared  the  sensor  technologies  used  for  asparagus
harvesting  and  investigated  the  methods  used  to  determine  the
position of the ridge surface in an asparagus harvesting scenario[14-16].
Kennedy  et  al.  proposed  the  concept  of  perceptual  channels  based
on  multiple  cameras  to  localize  green  asparagus[17].  Notably,
although  China  has  conducted  asparagus  detection,  the  focus  on
asparagus  maturity  identification  technology  remains  relatively
limited. Liu et al. pioneered the application of an enhanced mask R-
CNN for target segmentation of asparagus in straightforward spring
settings[18].  Hong  et  al.  proposed  the  use  of  the  refined  YOLOv5
algorithm for asparagus target detection in complex scenarios[19].

In recent years, the integration of point cloud data[20-22] and deep
learning detection  algorithms[23-26]  for  use  in  the  field  of  agriculture
has produced valuable insights into the estimation of asparagus stem
height and diameter in complex environments. Sun et al. employed
SOLOv2  to  delineate  apple  trees  in  RGB  images  by  utilizing
threshold parameters in the X-, Y-, and Z-axes to intercept the point
cloud  model[27].  This  approach  facilitated  the  identification  of
grafting  positions  on  apple  trees  and  enabled  long-distance
estimation  of  trunk  diameters  for  grafted  apple  trees.  Qiu  et  al.
introduced  an  RGB-D  camera-based  method  to  compute  maize
plant height and diameter by extracting pertinent point cloud feature
information[28]. Yang et al. placed an RGB-D camera over cucumber
seedlings  and  segmented  clustered  spots  within  the  collected  color
three-dimensional  point  cloud  data[29].  This  procedure  enables
localization  of  individual  seedlings  and  facilitates  plant  height
measurements.  McGlade  et  al.  used  Kinect  V2  technology  to
measure outdoor tree diameters and heights, achieving a root mean
square  error  (RMSE)  of  35.3  mm  after  excluding  non-circular
diameters[30]. Montoya et al. devised a tool for extracting point cloud
data  to  estimate  tree  stem  heights  and  diameters[31].  Pires  et  al.
employed lasers  to  scan  forests  to  intercept  cross-sections  of  point
clusters,  which  were  fitted  with  circles,  and  extracted  tree
diameters[32].  Li  et  al.  used  YOLOv3  in  conjunction  with  RGB-D
cameras  for  precise  3D  positioning  of  outdoor  tea  picking  points,
achieving an accuracy rate of 93.1%[33].

In  summary,  although  both  domestic  and  international  studies
have  proposed  methods  for  identifying  green  asparagus  and
assessing  its  maturity  primarily  in  indoor  or  uncomplicated
scenarios, few studies have been conducted on the identification of
asparagus maturity in complex environments. Therefore, the use of
asparagus  maturity  recognition  technology  in  complex  growth
environments  needs  to  be  investigated.  This  approach  requires  the
full potential of RGB-D data to be harnessed and thus enhance the
generality  and  resilience  of  feature  design  while  reducing
computational  demands  to  align  with  practical  applications.  This
study  introduces  a  methodology  for  estimating  asparagus  stem
height  and  diameter  in  complex  environments,  thereby  providing
crucial  technical  support  for  intelligent  machine-assisted asparagus
harvesting. This approach involves the real-time collection of RGB
images and point cloud data via an RGB-D camera, followed by the
utilization  of  the  improved YOLOv5 algorithm to  detect  the  green
asparagus region. 3D asparagus information was extracted from the
point cloud dataset by using the pixel positions within the detection
frames  in  the  RGB image.  Filtering,  clustering,  fitting,  and related
procedures  were  then  performed,  thereby  determining  asparagus

stem  height  and  diameter  accurately,  which  served  as  maturity
indicators.

This  study  is  organized  as  follows:  Section  2  delineates  the
complete  process  of  asparagus  height  and  diameter  estimation.
Section 3 describes the evaluation index of the proposed estimation
method,  the  detection  effect  of  the  improved  YOLOv5  algorithm,
the appropriate slice thickness threshold setting, and the evaluation
of  the  height  and  diameter  estimation  effect.  The  last  section
summarizes the study.

 2    Materials and methods
 2.1    Analysis overview

During summer and autumn, the stems and leaves of asparagus
plants  are  clustered  densely,  creating  a  complex  cultivation
environment.  The  similarity  in  both  shape  and  color  between
asparagus shoots and stems further complicates the matter, which is
aggravated  by  the  presence  of  various  stacking  conditions.  The
color  of  asparagus  sprouts  is  similar  to  that  of  surrounding  leaves
and  weeds.  As  a  result,  many  leaves  and  weeds  may  obscure  the
sprouts or serve as the background. These factors collectively affect
the  success  rate  of  asparagus  detection.  During  point  cloud
processing,  the  3D  information  of  asparagus  may  be  mixed  with
these  extraneous  factors,  which  can  affect  the  final  calculation
results,  thereby  making  the  identification  of  asparagus  maturity
difficult.

To address these challenges, this study introduced a method for
maturity  identification  of  asparagus  stems  by  integrating
YOLOv5[34-37]  and  point  cloud  technologies,  respectively.  This
process  is  illustrated  in  Figure  1.  First,  an  RGB  color  image  of
asparagus,  along  with  the  corresponding  point  cloud  data,  was
acquired  using  an  RGB-D  camera  (Intel,  CA,  USA).  The  original
RGB  image  and  depth  map  were  captured  directly  using  an  RGB
camera  and  depth  sensor,  respectively.  Subsequently,  Intel
RealSense  SDK2.0  was  utilized  to  align  the  depth  map  with  the
original  RGB  image,  thereby  generating  point  cloud  data  on  the
basis  of  this  synchronized  depth  map.  The Z-coordinate  value  for
each  point  within  the  point  cloud  was  derived  directly  from  the
aligned depth map.  The X- and Y-coordinates for  each point  in the
point  cloud  were  computed  using  the  Z-coordinate  value,  pixel
coordinates  of  the  point,  and  internal  parameters  of  the  Intel
RealSense L515 camera (Intel, CA, USA).

Subsequently,  the  YOLOv5  algorithm  was  enhanced.  The
foundational  backbone  network  was  substituted  with  FasterNet[38],
enhancing  the  capability  and  efficiency  of  feature  extraction.
Moreover,  a  dynamic  head  based  on  the  attention  mechanism was
incorporated  to  improve  the  detection  head’s  ability  to  identify
asparagus[39].  Wise  IoU  was  implemented  as  the  bounding  box
regression  loss  function,  speeding  up  convergence  and  increasing
accuracy[40].  The  improved  YOLOv5  model  was  then  used  to
perform  detection  on  the  RGB  image,  producing  detection  boxes
and  acquiring  pixel  coordinates.  These  pixel  coordinates  were
subsequently  mapped  to  the  point  cloud  dataset  to  facilitate  the
extraction of  the  3D points  that  correspond to  the  detection frame.
Finally, noise was meticulously removed through a combination of
filtering  and  Euclidean  clustering.  An  enveloping  box  was
constructed  to  obtain  the  height  information  of  asparagus.
Additionally,  point  cloud  data  corresponding  to  the  measured
location of  the asparagus diameter  were obtained through a slicing
operation  and  then  analyzed,  thus  determining  the  asparagus
diameter.
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Figure 1    Workflow of asparagus height and diameter estimation
 

 2.2    Data acquisition
 2.2.1    3D data acquisition

The  data  acquisition  system  utilized  for  capturing  asparagus
data comprised a RealSense L515 depth camera, a computer, and a
tripod.  According  to  the  asparagus  production  process,  the
asparagus undergoes stem treatment after being harvested in spring.
Therefore,  asparagus  stems  and  leaves  are  already  present  during
summer  and  autumn,  and  they  become  lush.  As  a  result  of  the
bottom–up  growth  pattern  of  asparagus,  the  leaves  on  the  top
provide  sufficient  shade  for  the  asparagus.  The  thick  foliage  of
asparagus  during the  summer  and autumn seasons  was  avoided by
mounting a RealSense L515 depth camera strategically on a tripod.
This  camera  collected  data  approximately  750  mm  away  and

475  mm  above  the  ground  alongside  the  asparagus.  The  collected
dataset  encompasses  RGB  images,  depth  maps,  and  the
corresponding  point  cloud  data,  as  shown  in  Figure  2.  The  depth
values, that is, the Z-coordinate values within the point cloud, were
acquired using the L515 depth camera. The X- and Y-coordinates of
the points  within the point  cloud can be computed by using the Z-
coordinates, the internal parameters of the RealSense L515, and the
pixel coordinates of the points, as shown in Equations (1) and (2).

The  original  depth  map  has  a  resolution  of  640×480  pixels,
whereas  the  RGB  image  has  a  resolution  of  1280×720  pixels.
Therefore, the depth map needs to be registered with the RGB map,
thereby  expanding  the  generated  point  cloud  from  640×480  to
1280×720 pixels accordingly.
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Figure 2    Data acquisition system
 

Data  were  collected  within  the  asparagus  planting  base  of
Hangzhou Jiahui Agricultural Development Co., Ltd. using the Jialu
No. 1 asparagus variety. The asparagus greenhouse is about 6×60 m
with four rows. The dimensions of each row are shown in Figure 1.
Sixty sets of summer asparagus RGB maps, depth maps, and point
cloud  datasets  were  collected.  For  these  60  asparagus  specimens,
the diameter and height measurements were manually acquired and
documented,  serving  as  reference  values  for  comparison  with  the
results generated by the algorithm.

In accordance with the typical asparagus production process, a
measuring  point  located  5  cm  from  the  ground  was  designated  as
the reference point for asparagus diameter assessment, as illustrated
in Figure 3.

x =
(u− cx)z

fx

(1)

y =
(v− cy)z

fy

(2)
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u v zwhere,   and   are the pixel coordinates of the point.   is the depth
value  of  the  point  collected  by  the  depth  sensor  of  the  RealSense

cx cy fx fyL515.  ,  ,  , and   are the internal parameters of the RealSense
L515.
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Figure 3    Diameter measuring point location
 

 2.2.2    RGB dataset acquisition
The  summer  asparagus  harvest  period,  which  is  primarily  in

May and June, corresponds to the time when asparagus reaches its
peak  in  terms  of  growth.  Consequently,  a  comprehensive  dataset
comprising  1302  photographs  of  asparagus  was  compiled  during
this  period,  capturing the plants  from various angles under various
lighting  conditions.  A  total  of  701  photos  were  collected  under
sunny conditions on May 31, 2022, and 601 photos were collected
under  cloudy  conditions  on  June  3,  2022.  The  data  collection
location  was  the  asparagus  planting  base  of  Hangzhou  Jiahui
Agricultural  Development  Co.,  Ltd.  LabelImg  software  was  used
for  annotation  (Intel,  CA,  USA).  The  harvesting  process  involved
the machine exclusively targeting the current row, which is why the

annotations  were  restricted  to  asparagus  specimens  within  the
immediate row, with those situated in the background considered as
part of the backdrop.

Subsequently,  dataset  augmentation  measures  were
implemented  to  enhance  the  adaptability  and  robustness  of  the
model.  A  straightforward  horizontal  flip  operation  was  applied  to
the images to recognize the vertical  alignment of  asparagus during
harvesting. This augmentation process resulted in a dataset of 2604
samples, as shown in Figure 4. Following best practices, the dataset
was divided into training, validation, and test sets at an 8:1:1 ratio.
Consequently,  2084 photos were allocated for  training,  260 photos
were  used  for  validation,  and  an  additional  260  photos  were  used
for testing.

 
 

a. original photo b. photo after being flipped horizontally

Figure 4    Data enhancement
 

 2.3    Improved YOLOv5
The YOLO model was employed to enhance the accuracy and

real-time  performance  of  asparagus  detection  in  complex
environments.  Replacing  FasterNet  with  a  backbone  feature
extraction network can improve the feature extraction capability and
efficiency. The detection head was adapted to the dynamic head to
focus  on  the  asparagus  characteristics  and  enhance  the  detection
capability. Wise IoU was employed as the bounding box regression
loss function to accelerate the convergence rate of the network, thus
allowing  it  to  more  effectively  detect  asparagus  in  complex
environments.
 2.3.1    FasterNet backbone

The growth environment of asparagus in summer and autumn is
complex.  FasterNet  was  applied  to  the  YOLOv5  network  as  the
backbone  to  extract  feature  information  and  thus  achieve  fast  and

effective  extraction  of  asparagus  features  in  complex  scenarios.
FasterNet utilizes a novel partial  convolution (PConv), capitalizing
on  the  redundancy  in  the  feature  graph  and  applying  regular
convolution  (Conv)  on  a  fraction  of  the  input  channels  while
leaving the remaining channels  unaffected.  As a  result,  PConv has
lower  FLOPs  than  regular  Conv  does  and  has  higher  FLOPs  than
DWConv/GConv does. The computing power of the device can be
used more efficiently to identify the spatial features, as illustrated in
Figure 5. A new neural network family, FasterNet, based on PConv
is  constructed,  which  has  a  fast  running  speed,  strong  feature
extraction ability, and high efficiency.
 2.3.2    Dynamic head

The  dynamic  head  is  an  innovative  detection  head  that
integrates  scale,  spatial,  and  task  awareness.  The  attention
mechanism is deployed separately on each specific dimension of the
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πL

feature,  namely,  level,  spatial,  and  channel.  Scale-aware  attention
modules  are  deployed  only  on  the  level  dimension,  learning  the
relative importance of various semantic levels to enhance features at
an appropriate level based on the scale. The spatial-aware attention
module  is  deployed  on  the  spatial  dimension  (i.e.,  height×width)
and  learns  coherent  discriminative  representations  in  spatial
locations. The task-aware attention module is deployed on channels
and  guides  different  feature  channels  to  favor  different  tasks
according  to  different  convolution  kernel  responses  from  the
objects,  as  shown  in  Figure  6.  The  brown  rectangular  box    in
front of the green square represents the attention weight coefficient
obtained at  the  layer  level.  This  coefficient  is  then multiplied with

πS

πC

multiple  slices  in  front  of  the  green  square  to  obtain  the  attention
feature  map  at  the  layer  level;  this  is  known  as  scale-aware
attention.  The  black  rectangular  box    located  directly  above  the
green square represents the weight coefficient of spatial attention. It
is  multiplied  with  several  spatial  slices  of  the  green  square
positioned directly above to obtain the attention feature map at the
spatial  level;  this  is  referred  to  as  spatial-aware  attention.  The
yellow  rectangular  box    on  the  right  side  of  the  green  square
represents  the  attention  weight  coefficient  obtained  at  the  channel
level. It is multiplied with several channel slices of the green square
on the right  side to obtain the attention feature map at  the channel
level; this is known as task-aware attention.
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The feature map is  more sensitive to the proportion difference
of foreground objects after the scale-awareness attention module. It
becomes sparser and focused on discriminating the spatial  location
of foreground objects after they pass through the spatial awareness
attention module.  Finally,  after passing through the task-awareness
attention  module,  these  feature  maps  reform  different  activations
according to the needs of different downstream tasks.
 2.3.3    Wise IoU

The original YOLOv5s adopted CIoU loss as the loss function
of  the  prediction  frame.  Based  on  DIoU,  the  CIoU  loss  function
introduces  the  aspect  ratio  between  the  predicted  boundary  frame
and  the  real  boundary  frame,  which  can  accelerate  the  regression
speed  of  the  prediction  frame  to  a  certain  extent.  Network
optimization is hindered by the lack of clarity in defining the aspect
ratio  of  the  two  boundary  frames.  In  this  study,  the  Wise-IoU  v3
loss  function  is  used.  Unlike  the  former,  Wise-IoU  v3  does  not
introduce  the  aspect  ratio  calculation.  Instead,  it  adopts  a  dynamic
non-monotone  focusing  mechanism  on  the  attention-based
bounding frame loss Wise-IoU v1, using the outlier to describe the
quality of the anchor frame.

First,  the  attention-based  bounding  frame  loss  Wise-IoU v1  is
calculated as follows:

LWIoUv1 = RWIoULIoU (3)

RWIoU = exp
Å

(x− xgt)
2
+ (y− ygt)

2

(W2
g +H2

g )∗

ã
(4)

LIoU

RIoU

xgt ygt

Wg Hg

where,  Wise-IoU  v1  is  the  boundary  frame  loss;    is  the
boundary frame loss IoU;   is the distance attention; x and y are
the  horizontal  and  vertical  coordinates  of  the  center  point  of  the
prediction  frame,  respectively;    and    are  the  horizontal  and
vertical  coordinates  of  the  center  point  of  the  real  frame,
respectively;  and    and    are  the  width  and  height  of  the
minimum  external  rectangle  of  the  prediction  frame  and  the  real
frame, respectively. * indicates the separation of the operation from
the computed graph to make it constant without a gradient.

The  outlier  is  then  used  to  describe  the  quality  of  the  anchor
frame, defined as follows:

β =
L∗IoU
LIoU

∈ [0,+∞) (5)

LIoUwhere,   is the sliding average.

β

Finally, the non-monotone focusing frame loss Wise-IoU v3 is
constructed using the outlier  degree  ,  and the calculation formula
is as follows:

LWIoUv3 = kLWIoUv1 (6)

LWIoUv3 k =
β

δαβ−δ

α δ

where,    is  the boundary frame loss  Wise-IoU v3,  ,

and the hyperparameters   and   in this study are set to 1.9 and 3.0,
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respectively.
 2.4    Target point cloud extraction

The  point  cloud  data  were  transformed  into  three  1280×720
coordinate matrices to precisely determine the pixel coordinates that
index the position of asparagus.  These matrices comprise the X, Y,
and Z  coordinates  of  the  points  within  the  point  cloud.  The  point
cloud  data  encapsulates  comprehensive  three-dimensional
information  about  the  object,  encompassing  the  X-,  Y-,  and  Z-
coordinates,  all  expressed  in  meters.  In  this  context,  the  x-axis
corresponds  to  the  height  direction,  the  y-axis  represents  the
diameter direction, and the z-axis represents the depth direction.

During RealSense L515 data acquisition, the coordinate values
of the points are stored in the PLY format point cloud and arranged
in  columns  to  align  with  the  depth  map.  Subsequently,  pixel
coordinate  transformation  is  facilitated  by  employing  the  center
point  of  the  prediction  frame.  Once  the  pixel  coordinates  of  the
center  point  within  the  prediction  box  are  obtained,  the
corresponding  points  within  the  point  cloud  are  matched  using
coordinate  transformation  formulas,  as  shown  in  Equations  (7)
and (8).

xp = 1279− xi (7)

yp = 719− yi (8)

xi yi

xp yp

where,  ( ,  )  is  the  pixel  coordinate  of  one  point  in  the  original
RGB  image,  and  ( ,  )  is  the  coordinate  of  the  corresponding
point in the three coordinate matrices.

A point cluster near the center point was isolated by setting the
thresholds in the X- and Y-directions as half of the height and width
of the prediction box, respectively. All points that meet the criteria
outlined in formulas (9) and (10) were used in calculating asparagus
height and diameter.

xheight −bh/2 ≤ x ≤ xheight +bh/2 (9)

ywidth −bw/2 ≤ y ≤ ywidth +bw/2 (10)
x y

xheight ywidth

bh bw

where, ( ,  ) are the coordinates of the points extracted to calculate
the  asparagus  information,  ( ,  )  are  the  coordinates  of  the
center  point  of  the  prediction  box,  and  ,    are  the  height  and
width of the prediction box, respectively. This process is illustrated
in Figure 7.
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Figure 7    Target point cloud extraction
 

 2.5    Height and diameter calculation
A series of essential steps was performed to ascertain the height

and  diameter  of  the  asparagus.  Initially,  statistical  filtering  was
applied  to  the  point  cloud,  followed  by  Euclidean  clustering  to
eliminate  noise,  thereby yielding  a  clean  asparagus  point  cloud.  In
statistical  filtering,  the  nb_neighbors  (number  of  neighbors  around
the  target  point)  was  set  to  5  and  the  std_ratio  (standard  deviation
ratio)  was  set  to  1.  This  balances  computational  efficiency  with
filtering intensity, enabling rapid removal of significant outliers. In
Euclidean clustering,  the tolerance (maximum allowable Euclidean
distance  between  two  points  for  them to  be  considered  part  of  the
same cluster) was set to 0.012, the minimum cluster size (minimum
number of points required to form a valid cluster) to 1200, and the
maximum  cluster  size  (maximum  number  of  points  allowed  in  a
single  cluster)  to  10  000.  This  specific  configuration  achieved
precise  object  segmentation  and  efficient  noise  filtering  based  on
the  physical  constraints  and  point  cloud  density  characteristics  of
the  typical  asparagus  greenhouse  environment.  Subsequently,  an
oriented  bounding  box  (OBB)  was  constructed  to  obtain  height
information  regarding  asparagus.  The  primary  direction  was
determined  through  principal  component  analysis  transformation,
with the X-direction corresponding to the height and the Y-direction
to  the  diameter.  A  suitable  threshold  was  established  along  the X-

direction  to  precisely  measure  the  diameter  of  the  asparagus.
Subsequently, a section of the point cloud was sliced at a distance of
50 mm from the bottom of the OBB, which represented the point for
measuring  the  asparagus  diameter.  With  the  use  of  the  OBB,  the
asparagus  diameter  was  determined  by  calculating  the  difference
between the maximum and minimum coordinate values along the Y-
axis direction, as illustrated in Figure 8.

 3    Results
 3.1    Training environment

Model training was conducted on a platform equipped with an
Intel i5-6500 (3.2 GHz) 4-core CPU, an Nvidia GeForce RTX 3060
GPU  (with  12  GB  video  memory),  and  a  Windows  10  64-bit
operating  system  with  24  GB  of  RAM.  The  deep  learning
framework  employed  was  PyTorch,  with  PyCharm  serving  as  the
compilation  tool.  GPU acceleration  was  facilitated  through CUDA
11.1 and CUDNN 8.0.5.

All  images  were  adjusted  to  a  standardized  size  of  640×640
pixels  to  adhere  to  the  input  requirements  of  the  model  algorithm.
Given the constraints imposed by computer hardware, the batch size
was  set  to  16.  Network  optimization  was  executed  using  the  SGD
optimizer, with a momentum parameter of 0.937, an initial learning
rate of 0.01, a decay index of 0.0005, and 300 training rounds.
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 3.2    Performance evaluation

P R AP
mAP

Detection  accuracy  and  speed  are  important  metrics  for
assessing  the  YOLO  detection  model.  Detection  accuracy
encompasses precision ( ), recall ( ), average precision ( ), and
mean average precision ( ), which are defined in Equations (11)
to (14).

P =
TP

TP + FP ×100% (11)

R =
TP

TP + FN ×100% (12)

AP =
w 1

0
P(R)dR (13)

mAP = 1
n

n∑
i=1

APi (14)

TP
FP
FN
n

APi i

where,    represents  the  count  of  correctly  predicted  positive
samples,    denotes  the  number  of  erroneously  predicted  positive
samples,    signifies  the  count  of  incorrectly  predicted  negative
samples,   corresponds to the number of target categories detected,
and    represents  the  average  precision  (AP)  for  the    th  target
class.

The performance assessment of the proposed method for height
and  diameter  estimation  in  this  study  was  conducted  using  the
evaluation  metrics  of  mean  absolute  error  (MAE),  mean  absolute
percentage error (MAPE), and RMSE when compared with manual
measurements as the ground truth.  MAE, MAPE, and RMSE were
calculated using Equations (15)-(17), respectively.

MAE = 1
n

n∑
i=1

|( fi −gi)| (15)

MAPE = 1
n

n∑
i=1

∣∣∣∣ fi −gi

gi

∣∣∣∣ (16)

RMSE =

√
1
n

n∑
i=1

( fi −gi)
2 (17)

n
fi ith gi

ith

where,    is the number of samples used to estimate the height and
diameter,    is  the  estimated  value  of  the    sample,  and    is  the
ground truth of the   sample.
 3.3    Performance of YOLOv5 model
 3.3.1    Training assessment of YOLOv5 model

Throughout  the  model  training  process,  the  efficacy  of  the
model was assessed on the basis of two crucial metrics: mAP value
and loss value. The training trajectory for mAP and loss is depicted
in  Figure  9.  The  mAP  indicates  asparagus  detection  accuracy,
whereas  the  loss  value  reflects  the  model’s  fitting  performance
during training. After 273 training epochs, the loss curve converged
gradually  and  stabilized.  The  minimum  recorded  box  loss  and
object  loss  were  0.0172  and  0.01,  respectively,  with  mAP@0.5
reaching a high value of 0.97. This finding indicates that the model
effectively  captures  the  distinctive  characteristics  of  asparagus,
enabling  efficient  asparagus  detection.  This  result  forms  a  robust
foundation  for  subsequent  asparagus  height  and  diameter
estimations.
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Figure 9    Loss value and mAP curve
 

 3.3.2    Detection results of improved YOLOv5 model
The  improved  YOLOv5  model  demonstrated  commendable

performance in asparagus detection, as illustrated in Figure 10. The
detection  results  of  the  model  served  as  the  foundation  for
subsequent  asparagus  height  and  diameter  measurements.  The  test
results  for  the  test  set  are  summarized  in  Table  1,  achieving  a
precision value  of  97.11%,  recall  value  of  95.33%,  and mAP@0.5
value  of  98.21%.  Compared  with  those  of  the  YOLOv5  prototype
network,  the  mAP@0.5,  precision  value,  and  recall  value  of  the
improved  YOLOv5  model  increased  by  4.85%,  5.09%,  and  3.4%,
respectively.  Compared  to  advanced  detection  algorithms,  the
detection effect is slightly better than YOLOv8. These results show
that the model is able to detect asparagus rapidly and accurately in
complex  environments,  effectively  meeting  the  requirements  for
asparagus height and diameter measurements in later stages.
  

Table 1    Detection results of improved YOLOv5 model
Model P/% R/% mAP@0.5

Improved YOLOv5s 97.11 95.33 98.21
YOLOv8s 96.98 95.17 98.14
YOLOv5s 92.02 91.93 93.36
YOLOv4 93.50 79.74 92.28
YOLOv3 90.48 76.24 88.84

Faster-RCNN 76.98 93.36 92.92
 

 3.4    Determining the threshold in the x-direction
After  the  asparagus  point  cloud  has  been  extracted,  slicing

needs  to  be  performed  at  the  designated  asparagus  diameter
measurement  point  to  compute  the  asparagus  diameter  accurately.
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The thickness of this slice, which denotes the distance along the x-
axis  after  principal  component  analysis,  affects  the  diameter
calculation  results.  Hence,  determining  the  appropriate  slice
thickness  is  crucial  to  ensure  that  the  asparagus  diameter  is
estimated accurately.

Five distance thresholds—5.0, 7.5,  10.0, 12.5, and 15.0 mm—
were  established  to  investigate  the  effects  of  various  section
thicknesses  on  the  diameter  estimation  results.  The  proposed
method  was  subsequently  applied  to  estimate  asparagus  diameter
under each of these conditions. Figure 11 depicts the ratio between
the  diameter  estimated  by  this  method and the  manually  measured
values across the five slice thicknesses.
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Figure 11    Results of estimating diameter with different
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The appropriate slice thickness was determined by configuring
five distinct  distance thresholds along the x-axis,  and the proposed
method  was  applied  for  estimation.  Table  2  lists  the  MAE  and
MAPE  values  for  the  five  thresholds.  Notably,  when  the  slice
thickness  was  less  than  10  mm,  both  the  MAE and  MAPE values
increased,  which  was  primarily  attributed  to  the  sparseness  of  the
point  cluster  captured  by  the  RealSense  L515  sensor.  Conversely,
when  the  slice  thickness  exceeded  10  mm,  an  excess  of  nontarget
points  within  the  slice  contributed  to  elevated  MAE  and  MAPE

values. Remarkably, the most favorable results were achieved with
a thickness of 10 mm, yielding the smallest MAE and MAPE values
of 0.86 mm and 7.98%, respectively. Thus, establishing a threshold
of 10 mm was optimal for obtaining accurate results.
 
 

Table 2    MAEs and MAPEs with different thresholds
Distance threshold in X-direction/mm MAE/mm MAPE

5.0 1.99 26.19%
7.5 1.10 12.02%
10.0 0.86 7.98%
12.5 1.86 15.07%
15.0 4.31 28.86%

 

 3.5    Evaluation of estimating height and diameter
In this  study,  a  method for  estimating the height  and diameter

of  asparagus  that  integrates  deep  learning  and  point  cloud  data
acquired from a depth camera was introduced to facilitate selective
asparagus  harvesting.  The  measurement  results  obtained  using  this
method  are  presented  in  Figures  12  and  13.  With  regard  to  the
asparagus height measurement, the MAE, MAPE, and RMSE were
1.08 mm, 4.06%, and 1.60 cm, respectively. For asparagus diameter
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measurement, the corresponding metrics were 0.86 mm, 7.98%, and
1.23  mm,  respectively.  A  substantial  correlation  between  the
proposed approach and the manual measurements can be observed.
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Figure 13    Results of estimating diameter compared with
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 4    Discussion
To  enhance  the  detection  of  asparagus  targets  in  complex

environments,  this  study  made  several  modifications.  First,  the
backbone  network  of  YOLOv5s  was  replaced  with  FasterNet.
Second, the detection head was replaced with dynamic head. Lastly,
Wise  IoU  was  implemented  as  the  boundary  box  regression  loss
function.  These changes considerably improved the success rate of
detecting  green  asparagus  in  complex  environments.  Compared
with Peebles’s use of Faster-RCNN for spring asparagus detection,
this  method  achieved  a  12.21% increase  in  detection  success  rate,
reaching  98.21%.  Furthermore,  when compared  with  Hong et  al.’s
utilization of  YOLOv5m for green asparagus detection in complex
environments, the improved YOLOv5s achieved a similar detection
success  rate.  However,  27  cases  of  false  detection  and  missing
detection  still  exist.  Analysis  revealed  that  these  cases  primarily
occur in two situations: 1) when asparagus is heavily obstructed by
asparagus  stems,  leaves,  and  grass,  resulting  in  errors  and  missed
detections;  2)  when  asparagus  is  positioned  at  the  image’s  edge,
especially  if  the  asparagus  bud  head  is  located  outside  the  image,
leading  to  a  higher  occurrence  of  incorrect  and  missed  detections.
These conditions occur alone or together. The specific statistics are
listed in Table 3. Moving forward, the future research will focus on
investigating the characteristics of green asparagus stems (excluding
the asparagus bud heads),  allowing accurate identification of green
asparagus even when the bud heads are heavily obscured or out of
sight.
 
 

Table 3    Statistics of the main reasons for detection failure

Main cause Asparagus is
heavily obstructed

Asparagus is positioned
at the image’s edge

Quantity 18 15
 

This study integrates YOLOv5s and point cloud technology to
design  an  algorithm  for  estimating  the  length  and  width  of  green
asparagus  stems.  The  algorithm  enables  the  extraction  of  3D
information, noise removal, and accurate estimation of stem length
and width. Currently, no existing studies have estimated the length
and  width  of  green  asparagus  specifically,  but  previous  research
examined  the  length  and  width  estimation  of  other  plants  such  as
corn and apple trees. For instance, Sun et al. employed SOLOv2 to

segment apple trees in RGB maps, mapped and intercepted the point
cloud  model,  and  successfully  estimated  the  trunk  diameter  of
grafted  apple  trees  from  a  distance.  In  comparison,  estimating  the
dimensions  of  green  asparagus  is  more  challenging  due  to  its
smaller size and unique shape. However, the present study achieves
an  MAPE  of  only  7.98%  and  an  MAE  of  merely  0.86  mm,
considerably  outperforming Sun et  al.’s  measurement  method.  Qiu
et al. utilized an RGB-D depth camera to collect point cloud data for
calculating the height and stem diameter of maize. Corn stems have
a  cylindrical  and  straightforward  shape,  while  green  asparagus
stems exhibit more curvature. Despite the complexity in measuring
the  length  and  width  of  green  asparagus,  this  study  successfully
reduces  the  MAE  and  MAPE.  Qiu  et  al.  employed  traditional
methods  for  image  segmentation  processing,  while  this  study
combines deep learning with point cloud analysis to achieve a more
robust  and  real-time  estimation  of  asparagus  height  and  diameter.
However,  this  study’s  algorithm  may  introduce  large  errors  when
estimating  the  dimensions  of  green  asparagus  with  significant
curvature.  For future work,  a crucial  task is  to further consider the
influence of asparagus curvature on length and width estimation and
refine the algorithm accordingly to enhance accuracy.

 5    Conclusions
To address the challenge of machine-based asparagus maturity

identification  in  complex  environments,  this  study  introduces  a
method  for  estimating  asparagus  stem  height  and  diameter  by
leveraging  depth  camera  technology  and  integrating  the  improved
YOLOv5  with  a  point  cloud.  The  improved  YOLOv5  model  was
employed  to  detect  asparagus  by  pinpointing  its  precise  location,
thus  enabling  robust  detection  even  in  complex  surroundings.
Subsequently,  3D  point  cloud  information  for  asparagus  was
derived  from  the  pixel  positions.  The  height  of  asparagus  was
estimated by constructing an OBB via point cloud data processing.
Finally, asparagus diameter was estimated by slicing the asparagus
at the designated measurement point.

The results showed that mAP@0.5, precision, and recall of the
improved  YOLOv5  model  increased  by  4.85%,  5.09%,  and  3.4%,
reaching  98.21%,  97.11%,  and  95.33%,  respectively.  These
outcomes  indicate  a  highly  successful  asparagus  detection.
Furthermore,  this  study  elucidates  the  influence  of  slice  thickness
on asparagus diameter, identifying 10 mm as the optimal thickness.
For  asparagus  height  estimation,  the  proposed  method  yielded
MAE, MAPE, and RMSE values of 1.08 cm, 4.06%, and 1.60 cm,
respectively.  For  asparagus  diameter  estimation,  the  corresponding
values  were  0.86  mm,  7.98%,  and  1.23  mm,  respectively.  These
findings  highlight  the  effectiveness  of  the  method  in  accurately
estimating  asparagus  height  and  diameter  under  complex
environmental  conditions,  thereby  offering  valuable  technical
support for selective machine harvesting of asparagus.
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