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Synchronous detection method for litchi fruits and picking points of a litchi-
picking robot based on improved YOLOvVS8-pose
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Abstract: In the unstructured litchi orchard, precise identification and localization of litchi fruits and picking points are crucial
for litchi-picking robots. Most studies adopt multi-step methods to detect fruit and locate picking points, which are slow and
struggle to cope with complex environments. This study proposes a YOLOvV8-iGR model based on YOLOv8n-pose
improvement, integrating end-to-end network for both object detection and key point detection. Specifically, this study
considers the influence of auxiliary points on picking point and designs four litchi key point strategies. Secondly, the
architecture named iSaE is proposed, which combines the capabilities of CNN and attention mechanism. Subsequently, C2f is
replaced by Generalized Efficient Layer Aggregation Network (GELAN) to reduce model redundancy and improve detection
accuracy. Finally, based on RFAConv, RFAPoseHead is designed to address the issue of parameter sharing in large
convolutional kernels, thereby more effectively extracting feature information. Experimental results demonstrate that YOLOVS-
iGR achieves an AP of 95.7% in litchi fruit detection, and the Euclidean distance error of picking points is less than 8 pixels
across different scenes, meeting the requirements of litchi picking. Additionally, the GFLOPs of the model are reduced by
10.71%. The accuracy of the model’s localization for picking points was tested through field picking experiments. In
conclusion, YOLOv8-iGR exhibits outstanding detection performance along with lower model complexity, making it more
feasible for implementation on robots. This will provide technical support for the vision system of the litchi-picking robot.
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When harvesting litchi, it is necessary to first identify the

1 Introduction picking point on the main fruit-bearing branch and then proceed

China is the leading producer of litchi, accounting for over half
of the world’s total production"!. However, litchi harvesting is the
most time-consuming and labor-intensive part of the entire fruit
production cycle, due to its seasonality, high labor intensity, and
significant costs. Currently, litchi harvesting relies on manual labor,
resulting in high labor intensity and low picking efficiency™.
Therefore, to reduce fruit production costs and increase farmers’
income, there is an urgent need to develop intelligent harvesting
robots suitable for litchi.
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with cutting to prevent damage to the fruit’. Therefore, accurate
identification and localization of the picking point are crucial issues
for achieving intelligent operation of litchi harvesting robots. In
natural environments, the challenges of accurately detecting the
picking point on the litchi include: 1) complex backgrounds in
outdoor orchards; 2) occlusion; and 3) lighting conditions!.

With the rapid development of deep convolutional neural
networks in object recognition, some researchers have applied deep
learning to litchi picking recognition. Peng et al.”! constructed a
ResDense-focal-DeepLabV3+ network for accurate segmentation of
litchi branches in orchard environments, achieving improved mloU
in simple, medium, and complex images compared to other models.
Qi et al.”? employed YOLOVS to detect stems in litchi images,
extracting region of interest (ROI) for the main stem and
segmenting them using PSPNet. Post-processing operations on the
segmented images provided pixel coordinates of picking points on
the main stem, with an accuracy rate of 92.50%. While these
methods ensure the accuracy of picking point localization, they face
challenges. The multi-step operations (e.g., ROI extraction+
segmentation+post-processing) result in significantly
detection speeds (e.g., 15 FPS as reported in Qi et al.”)) compared to
end-to-end approaches. Such delays hinder real-time robotic
operations in dynamic orchard environments.

lower
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Key point detection was initially applied in human pose
estimation. In recent years, some researchers have attempted to
apply key point detection methods to the detection of fruit picking
points. Zheng et al.” integrated pixel-level instance segmentation of
mangoes and picking point detection into an end-to-end network.
This network demonstrated strong robustness to various lighting
conditions and complex backgrounds, achieving good segmentation
and picking point detection performance for medium and large
mangoes. Du et al.”’ proposed the YOLO-Imk model based on
YOLOVS5s, which combined tomato bounding box detection and key
point detection. YOLO-Imk achieved a detection accuracy of 93.4%
for tomato bounding boxes, with a Euclidean distance of 7.9
between the ground truth and predicted key points. The above
methods integrate two tasks into an end-to-end network, improving
detection speed. Existing key point detection methods primarily
focus on medium-to-large fruits (mangoes, tomatoes) where high-
level semantic features dominate detection performance. However,
litchi fruits are smaller in size (typically 3-5 cm in diameter) and
often occluded by dense branches or leaves in natural environments.
Directly applying feature pyramid-based approaches (e.g., FPN) to
litchi detection may lead to two issues: 1) High-level features
generated by deep layers lack sufficient spatial resolution to capture
fine-grained details of small litchi fruits; and 2) Multi-scale feature
fusion introduces computational redundancy, which conflicts with
the lightweight requirements of robotic systems. For a litchi-picking
robot, the vision system needs to meet the following two
requirements: Firstly, due to limited computational resources, the
model needs to be lightweight without sacrificing performance.
Secondly, multi-step operations are cumbersome for robots and
difficult to adapt to changing environments, thus requiring fast end-
to-end models. To meet the robot’s needs, this paper proposes the
YOLOV8-iGR detection model based on improvements to
YOLOv8n-pose, achieving synchronous recognition of litchi fruits
and picking points. The main contributions of this study are as
follows:

1) Expand the application scenarios of key point detection by
establishing a key point dataset containing multiple litchi varieties,
angles, and environmental factors, and design four key point
distribution strategies based on the spatial relationship between
litchi fruits and key points.

2) Propose the iSaE architecture, and combine the GELAN and
RFAPoseHead modules to implement a lightweight and high-
performance YOLOVS-iGR algorithm.

3) Compare YOLOvV8-iGR with mainstream detection
algorithms in detection tasks involving differences in lighting,
background factors, and branches occlusion. The results
demonstrate that YOLOVS-iGR outperforms other models in terms
of detection performance and efficiency.

2 Datasets

2.1 Acquisition of datasets

The image data collected for this study were captured between
May 26, 2023 and June 1, 2023, in the litchi orchard at South China
Agricultural University. Images of ripe litchi fruits were taken using
Realsense D4351 camera for training and testing purposes. The
cameras were positioned 30-100 cm away from the targets. The
litchi varieties included “Feizixiao”, “Guiwei”, and “Nuomici”. The
obtained images were saved as pixel RGB images. To ensure that
the datasets reflected the orchard characteristics in natural
environments, a total of 1281 images of different litchi tree varieties
were captured within the orchard at different times (9:00 am,

2:00 pm, 6:00 pm). Representative images depicting various
environmental factors are shown in Figure 1.

d. Low light e. Tree leaves obstruction f. Branches obstruction

Figure 1 Representative sample datasets in different states

2.2 Annotation of datasets

Labelme was used to annotate litchi and key points. The
bounding box of the mature litchi target was labeled as “mature”.
To further analyze the influence of the number of key points and
their spatial relationships on the detection performance of picking
key points, four key point strategies were designed during litchi key
point annotation. Strategy 1 (1P): P1 represents the picking point on
the main stem of the litchi. Strategy 2 (2P): Two key points are set,
with auxiliary point P2 located at the junction of the litchi fruit and
the main stem. Strategy 3 (3P): Three key points are set, with P3
defined as the centroid of the litchi fruit’s bounding box. Strategy 4
(5P): Five key points are set, with P4 and P5 located on either side
of the litchi fruit, symmetrically about line segment P2-P3. The four
key point strategies are shown in Figure 2.

b. 2P c.3P

Figure 2 Four key point strategies

The datasets are randomly partitioned into a training set (1025
images), a validation set (128 images), and a test set (128 images),
following an 8:1:1 ratio.

3 Methodologies

3.1 YOLOv8n-pose model improvement strategy

The design intention of YOLOv8n-pose is based on a single-
stage human key point detection model. Compared to human poses,
litchi present variations in the number of key points and significant
differences in features, so improvements are needed for YOLOv8n-
pose to enhance the model’s performance in litchi and picking point
detection. In this study, the iSaE structure is proposed, which
integrates the capabilities of both convolution and attention
mechanisms. Compared to using a convolution or an attention
mechanism alone, the iSaE module significantly improves the
model’s performance. Additionally, to deploy the model on mobile
devices, the introduction of GELAN achieves a reduction in
computational overhead without sacrificing performance. The
RFAPoseHead detection head is used to simultaneously detect the
key points of both the litchi fruit and the main branch. It is built
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upon the foundation of RFAConv to enhance the efficiency of
feature extraction. The network architecture of YOLOv8-iGR is
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depicted in Figure 3, with theoretical analysis and implementation
details of each module elaborated in Sections 3.2-3.4.

k=1,5=1,p=0

Maxpool2d

Maxpool2d

Maxpool2d

Conv
k=1,5=1,p=0

k=3,5=2,p=1

Conv

J=35=2,p=1 | 40X40X512

80X 80X256

*I RFAPose
80X 80X256

Conv

Je3gmap=] | 20%20X1024

[Upsample ] 2020 x 1024

20X20X1024

40X 40X512 o[ Concat__]40X40X512
40 X40X512
ELAN ‘I AP
G 20X 20X 517 lirarose
Conv
Sn=2p=1
R (o 20X20X1024
GELAN

rI RFAPose
20X20X 1024

Figure 3 ' YOLOVS-iGR overall framework and its constituent modules

3.2 iSaE Block

In recent years, the effectiveness of attention mechanisms in
enhancing model expressiveness and precise object localization has
been well-validated in the realm of computer vision. The Squeeze
aggregated Excitation (SaE) module, proposed by SENetv2®, is a
novel aggregated multilayer perceptron. Compared to SEY), this
fusion enhances the network’s ability to capture channel
information and global knowledge.

The working principle of SaE is illustrated in Figure 4. Input
features are adjusted in size and channel count through the

F, A
/' I¥1xC

convolutional layer. These features are then aggregated using a
global average pooling layer to capture channel information. The
aggregated information is passed through FC layers for squeezing.
Subsequently, the outputs of all FC branches are concatenated and
subjected to excitation operations to restore the size to its initial
shape. Finally, the squeezed and excited results are concatenated
with the input of the residual module. The formula for the SaE
module is articulated as follows:

SaE:x+F(x~EX(ZSq(x))) (1)
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/////////
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Figure 4 Working principle of SaE
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In Equation (1), the ‘S, function represents the squeezing
operation, which includes the FC layers. The °‘E,” function
represents the excitation operation.

Inspired by Zhang et al.'), this study focuses on designing a
module that combines lightweight CNN with attention mechanisms,
called iSaE. It absorbs the efficient feature extraction capabilities of
the Inverted Residual Block (IRB) from the CNN architecture!'" to
model local features, as well as the comprehensive information
capture capabilities of the SaE architecture to model global features.
The structure of iSaE is depicted in Figure 5. Figure 6 illustrates the
attention heat map for picking points generated by IRB, SaE, and

HxWxC,

Figure 5

a. IRB

b. SaE

c.iSaE

Figure 6 Visual heat maps of picking point attention of
different modules

3.3 GELAN Block

Existing methods often suffer from information bottleneck
issues during feature extraction across layers, resulting in the loss of
crucial information. Therefore, there is a need to design a structure
capable of capturing sufficient information. Wang et al.'” proposed
a Generalized Efficient Layer Aggregation Network (GELAN) by
combining CSPNet!"" and ELAN".

The main concept of CSPNet is to segment gradient flows,
allowing gradient flow information to propagate through different
paths. The primary objective of this design is to reduce model
computation while achieving richer gradient combinations, enabling
the model to be deployed on mobile devices without sacrificing

3x3 DW-Conv \
A
\d

iSaE. The influence on picking point localization correlates with the
intensity of the red hue in its heat map. It can be observed that the
picking point localization by IRB deviates from the branch. Due to
the fixed weight parameters used in computing attention weights,
SaE 1is susceptible to interference from background information,
severely affecting the localization of the picking point. In contrast,
iSaE combines the advantages of both approaches and accurately
predicts the picking point location. The introduction of the iSaE
module effectively addresses the issues of accuracy degradation
caused by lightweight CNN and the deficiencies in the SaE
attention mechanism.

——————— AT T T T T
]
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I
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iSaE Block

performance. The implementation details of CSPNet are as follows:

y=C(x,,T(B(xy))) 2)

where, the input features x are split along the channels into two
parts, represented as [x;, x,]. T is the transition function for inter-
stage gradient flow, C is the function for merging two parts, and B
is the function of the bottleneck module. This is achieved by
dividing the feature map of the input layer into two parts and then
structure.
However, as the number of stacked modules in CSPNet increases,
the performance of the model tends to decrease because adding each

merging them through a cross-stage hierarchical

module only increases the longest path for gradient flow
propagation. To address this issue, ELAN was designed. This
architecture is based on the design of the network architecture
according to the gradient propagation path. The main idea behind
ELAN is to increase the shortest gradient path of the model for
faster convergence, which helps to reduce feature redundancy and
enhance feature representation capability. GELAN is a new
architecture derived from the capabilities of ELAN, which can
employ any computational block. In this study, the BottleNeck in
C2f is applied to GELAN, and the architecture of GELAN is
illustrated in Figure 7.
3.4 RFAPoseHead

For the task of identifying and locating litchi fruits and key
points, the shapes and distributions of targets in images can vary. In
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convolution operations, convolutional kernels utilize the same
weights to extract features within different receptive fields, ignoring
differential information from various locations. Additionally, the
spatial attention mechanism cannot fully address the parameter
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sharing issue posed by large convolutional kernels [Equation (3)].
To address these challenges, Zhang et al."” proposed a Receptive
Field Attention (RFA) approach. The core idea is to integrate spatial
attention mechanisms with convolution operation.
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Figure 7 GELAN Block

Fy=Xu XA XK +...+ Xjg X A1y X Ky 3)

where, ‘K’ represents the parameter values of the 1x1 convolutional
kernel, and ‘A’ represents the values at different positions of the
attention map. When the convolutional kernel extracts features from
each receptive field, each sliding window shares the weights of the
spatial attention map.

RFAConv (Figure 8) divides the input features into two
pathways. One pathway utilizes grouped convolutions of corres-
ponding sizes to dynamically generate feature information based on
the receptive field. The other pathway aggregates global informa-

tion for each receptive field feature using Avgpool and interacts
with the feature information using 1x1 convolution. Finally, the
feature information from the two pathways is combined to generate
spatial feature information at different positions within the receptive
field. The spatial feature information of the receptive field is
dynamically generated based on the size of the convolutional
kernel, thus addressing the parameter-sharing issue of convolutional
kernels. In this study, RFAConv is incorporated into the detection
head of YOLOv8n-pose (Figure 9), replacing standard convolution.
RFAPoseHead enables the model to adapt to changes in the natural
environment, thereby enhancing the robustness of the model.

Conv
i
-1 —»  BN+ReLU \
Conv
Scale [—¥ = —
Conv /
Avgpool ) 1.0
Figure 8 RFAConv structure diagram
Conv Box
RFAConv RFAConv B TLass
Conv Cls
RFAConv RFAConv =1,5=1,p=0 Loss
Conv Key point
RFAConv RFAConv o -

Figure 9 RFAPoseHead structure diagram

4 Experiments

4.1 Training details
The network training was based on the Ubuntu system and the

PyTorch framework. The main hardware configuration included an
19-10900k CPU, GeForce RTX 3090 GPU, CUDA 12.3, and Python
3.8. The training environment for different algorithms was the
same, and the training parameters were set as follows: the batch size
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of the model was set to 32, the maximum number of iterations was
300 epochs, and training stopped if the model performance did not
improve in 50 consecutive epochs. The input image size was set to
640%x640 pixels, the initial learning rate was 0.01, the decay rate
was 0.2, and the weight decay coefficient was 0.0005.
4.2 Evaluation metrics
4.2.1 Evaluation metrics of key point detection

The key point detection metric was inspired by object
detection. Precision and Recall were calculated using the quantities
of True Positives (TP), False Positives (FP), False Negatives (FN),
and True Negatives (TN). The correct detection of harvesting points
(TP) should meet the following criteria: 1) Litchi and picking point
must be manually labeled, meaning that litchi in the foreground
should be medium- or large-sized, and either all or part of the litchi
stem should be visible. Litchi that is too small or completely
obscured is not considered for manual annotation or automatic
detection. 2) The detected picking point is on the stem of the litchi
fruit. In the above two cases, incorrect picking point detection (FP)
may occur (for example, when the picking point falls on the fruit or
non-fruit main stem), and there may also be cases of missed
detection (FN). The above criteria can be evaluated using OKS
(Object Key point Similarity) as the evaluation metric for key point
detection algorithms!®, The equation for OKS is as follows:

> exp(-d2 /2500
: L (Vi>0)
OKS = - , 6= { “)

Za 0, (V, <0)

The evaluation metrics for key point detection include precision
(Pyp), recall (Ry,), average precision (APy,), and mean average
precision (mAP,,). Their formulas are as follows:

TP
Po= 15 v ®)
TP
Rio= 1o+ FN ©)
B
AP ZZ _ [OKS,, (OKS,>T) o
TS P10, (ks <)
C
> AP,
mAP,, = LA (8)

C

where, d,; represents the Euclidean distance between the i" detected
key point and the corresponding key point in the target; S is the
scale factor of the point; V,; denotes the visibility of the point,
where “0” indicates unannotated, “1” denotes annotated points
obscured, and “2” indicates annotated points visible; o; represents
the normalization factor of the i* key point; f is the visibility
indicator for each key point; 7 is the OKS threshold; and C is the
number of key point categories.
4.2.2  Evaluation metrics of key point position error

In the experiment evaluating the prediction of picking point
location, the evaluation metric was the pixel Euclidean distance
error between the predicted point (Pre) and the ground truth (GT).
Assuming the pixel coordinates of the predicted picking point are
(x, v) and the pixel coordinates of the ground truth picking point are
(x1, ¥1), and the input image resolution is WxH, the distance (d,) in
the X-axis direction between the predicted point and the ground

truth point can be calculated using Equation (9), and the distance
(d,) in the Y-axis direction can be calculated using Equation (10).
The pixel Euclidean distance (E) between two points can be
calculated using Equation (11).

d,=W|x, — x| ©

d,=Hly, -yl (10)

E= \/E+d (11)

4.3 Experiments with different key point strategies

To select the most suitable key point skeleton for litchi picking,
the average distance error between the predicted picking point and
the ground truth was used as the evaluation metric. Error analysis
was performed using the coordinates of 100 picking points detected
by the YOLOv8n-pose model under different key point strategies.

The vertical and horizontal lines of different colors in Figure 10
visualize the average distance errors between all predicted points
and ground truth points in the X-axis and Y-axis directions under
different strategies of the YOLOv8n-pose model. It visually
illustrates the performance gap between YOLOv8n-pose-5p and the
other strategies in terms of localization accuracy. Therefore,
selecting the 5P key point strategy as the key point skeleton for
litchi picking was appropriate, and all subsequent experiments on
picking point detection were based on the 5P key point skeleton.
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Figure 10 Comparison of average pixel error of
different strategies

4.4 Ablation experiment

The YOLOvV8-iGR model proposed in this study is based on the
YOLOv8n-pose with three improvements: U: integrating the iSaE
module into the feature extraction network; V: replacing the C2f
with the GELAN; and W: replacing the original detection head with
the RFAPoseHead. To validate the effectiveness of the integrated
modules, ablation experiments were conducted. The results are
listed in Table 1.

Table 1 Comparison results of different models for
ablation experiments

U V W Po/% AP% Py/% mAP/% GFLOPs/% FPS
x x  x 872 93.1 87.4 90.3 8.4 993
vox o ox 910 94.1 90.2 94.4 8.5 93.1
x A ox 917 95.5 91.7 94.6 7.1 93.4
x x N 874 94.6 88.9 94.2 8.8 91.7
NN N 920 95.7 923 95.6 75 90.9

Integrating the iSaE module designed in this study into the base
model resulted in improvements of 4.36% and 3.20% in Py, and



272 August, 2025 Int J Agric & Biol Eng

Open Access at https://www.ijabe.org

Vol. 18 No. 4

Py, respectively. This is because the inclusion of the iSaE module
enhanced the network’s ability to capture feature information while
suppressing irrelevant interference. Replacing the C2f module in the
base model with GELAN led to a decrease of 15.48% in GFLOPs,
accompanied by improvements of 2.58% and 4.76% in APy, and
mAP,,, demonstrating the effective reduction in model complexity
achieved by the GELAN module. Substituting the detection head
with RFAPoseHead resulted in improvements of 1.61% and 4.32%
in APy, and mAP,, The combination of iSaE, GELAN, and
RFAPoseHead enhanced the model’s detection performance for
litchi fruits and picking points, reducing GFLOPs by 10.71% while
increasing Ppoy, APpoy, Py, and mAPy, by 5.51%, 2.79%, 5.61%,
and 5.87%, respectively.
4.5 Comparison experiment

To demonstrate the comprehensive performance of the
proposed YOLOVS-iGR algorithm in litchi fruit detection and key
point detection, comparisons were made with several mainstream
object detection and key point detection algorithms. Due to the
inability of the RT-DETR model to directly identify key points, the
detection head was replaced with the detection head of YOLOv8n-
pose in this experiment. The comparison results for different
algorithms are presented in Table 2. Except for the RT-DETR-pose,
all models are lightweight detection models. YOLOv8n-pose
achieved the highest detection speed of 109.3 fps, demonstrating
relatively good detection performance, hence, YOLOv8n-pose was
chosen as the baseline model. Compared to YOLOv3n-pose,
YOLOv5n-pose, YOLOv6n-pose, and RT-DETR-pose, YOLOVS-
iGR showed the highest AP, in object detection, which was higher
by 3.0%, 2.5%, 1.17%, and 19%, respectively. In terms of key point
detection, the mAPy, of YOLOvV8-iGR was higher by 3.24%,
4.36%, 1.81%, and 3.24%, respectively. Although the detection
speed of YOLOVS-iGR decreased by 8.5% compared to YOLOv8n-
pose, the precision of object detection and key point detection
increased by 5.5% and 5.6%, respectively. The decrease in the
detection speed of YOLOVS8-iGR is attributed to the addition of the
attention mechanism, which requires additional computational
operations and storage of extra attention weights leading to
increased memory However, considering the
robustness provided by the iSaE module and the improvement in

consumption.

detection performance, this decrease is acceptable. A detection
speed of 90.9 fps still meets the requirements for real-time
detection.

Table 2 Comparison of detection performance among
different network models

Pyl Roox/ AP/ P/ P/ mAP/ GFLOPs/
Model o o o o o % G FPS
YOLOv8n-pose 87.2 91.8 93.1 874 914 903 8.4 99.3
YOLOv5n-pose 86.7 89.8 933 864 904 91.6 7.3 93.3

YOLOv3n-pose 88.9 89.7 929 879 875 92.6 11.4 98.1
YOLOvé6n-pose 87.5 90.3 946 86.8 89.5 93.9 12.0 93.6
RT-DETR-pose 86.6 91.1 939 859 90.6 92.6 1394 363

YOLOV8-iGR 92.0 939 957 923 935 956 7.5 90.9

Figures 11 and 12 visualize the detection results of litchi in
scenes with occlusion and complex scenes. In these figures, the
litchi missed by the model was marked with orange ellipses, while
the litchi incorrectly detected by the model was marked with blue
rectangles. In cases of occlusion, certain features of the litchi were
obstructed, affecting the detection performance of the model.
Figure 11 illustrates the performance of the model in a scene with

branches occlusion, where YOLOv5n-pose missed the detection of
litchi fruits and key points, while YOLOv6n-pose, YOLOv3n-pose,
and RT-DETR-pose exhibited low confidence levels in their
predictions. Figure 12 depicts a dense litchi orchard scene, where
both YOLOv8n-pose and RT-DETR-pose encountered detection
errors, and YOLOv3n-pose missed litchi farther from the camera.
The proposed YOLOVS-iGR demonstrates robust performance in
both simple and complex scenes. Even when litchi is occluded by
leaves and branches, YOLOvV8-iGR effectively completes the task
of litchi detection and key point prediction.

Note: (a) YOLOv8n-pose (base model), (b) YOLOv6n-pose, (¢) YOLOv5n-pose,
(d) YOLOv3n-pose, (¢) RT-DETR-pose, (f) YOLOVS8-iGR (ours).
Figure 11  Detection results of branches occlusion

d. e. f.
Note: (a) YOLOv8n-pose (base model), (b) YOLOv6n-pose, (¢) YOLOv5n-pose,
(d) YOLOv3n-pose, (¢) RT-DETR-pose, (f) YOLOVS8-iGR (ours).

Figure 12 Detection results of dense scene

4.6 Comparison experiment of picking point position error

To validate the localization performance of models in different
natural environments, this section conducted experiments in two
scenes: Scene 1: intense natural light conditions; Scene 2: low
natural light conditions. Figures 13 and 14 illustrate the picking

Note: (a) YOLOv8n-pose (base model), (b) YOLOv6n-pose, (¢) YOLOv5n-pose,
(d) YOLOv3n-pose, (¢) RT-DETR-pose, (f) YOLOvS-iGR (this study).
Figure 13 Detection results of picking point in Scene 2
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b. c.

e. f.
Note: (a) YOLOv8n-pose (base model), (b) YOLOv6n-pose, (¢) YOLOvSn-pose,
(d) YOLOv3n-pose, (¢) RT-DETR-pose, (f) YOLOVS-iGR (ours).

d.

Figure 14 Detection results of picking point in Scene 3
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point detection results. Each scene included 100 picking points
detectable by the models, with the average pixel distance error
between predicted and ground truth points used as the evaluation
metric. Figure 15 presents the analysis of the average pixel distance
error in the X-axis, Y-axis, and Euclidean directions for the 100
predicted picking points across different models and scenes. Other
key points served only as auxiliaries for localization. To visually
assess the detection performance of litchi key points, all key points
were visualized and connected to form a litchi skeleton.

Figure 13 presents the recognition results of different models in
Scene 1. Influenced by strong lighting, the image features of litchis
became blurred. YOLOvV8-iGR achieved picking point prediction
with an average pixel error of 7.20. In Figure 14, under low light
conditions, YOLOV8-iGR completed picking point prediction with
an average error of less than 6 pixels. It is worth noting that other
models exhibit instances of missed detection (marked with orange
ellipses). In fact, assuming the operating range of the end effector is
60 mm, as demonstrated by Xiong et al.'”’ when the camera is
positioned 30-100 cm away from the target, the pixel error within a
range of 60 mm is approximately 35-80 pixels"®. Therefore, in the
above scenes, YOLOv8-iGR’s ability to locate picking points can
meet the harvesting requirements.

Cx

1oy - oy
=k

Average pixel distance error

(=}

Note: X: Average pixel distance error in the X-axis direction. Y: Average pixel distance error in the Y-axis direction. E: Average pixel Euclidean distance error.

Figure 15 Average pixel distance error predicted by different models for picking points

4.7 Field picking test

To validate the accuracy of this study’s method, this study
conducted field picking experiments in the litchi orchard from June
23 to July 3, 2024. Figure 16 illustrates the actual integration of the
experimental environment for the litchi-picking robot. The picking
times were from 8:00 am to 11:00 am and from 3:00 pm to 5:00 pm.
The experiments were based on the Xarm 6-axis robotic arm
platform, with a Realsense D435i camera mounted on the arm in an
eye-in-hand configuration. After training the proposed YOLOv8-
iGR model, it was deployed on the robotic arm for detection. In
each experiment, to simulate real-world harvesting scenarios where
litchi clusters vary in density and spatial distribution, 12 fruits were
randomly placed from different tree heights (1.3-1.5 m) and
arranged in randomized layouts (e.g., sparse, dense, occluded). This
design ensures that the model is tested under diverse conditions
reflective of actual orchard environments, conducting a total of 10
experiments with 120 litchi in total. The success rate of picking was
95.0%. The main reason for picking failures was the litchi’s low
position, which caused depth value deviations in the depth camera,

which in turn led to coordinate analysis errors and resulted in
incorrect movement paths for the robotic arm.

Figure 16 Field picking experiment
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5 Conclusions

YOLOvV8-iGR is a novel method for litchi-picking point
identification using a key point detection model. Initially designed
for human pose estimation, key point detection algorithms are
expanded in this study to a new application scenario. By integrating
the iSaE, GELAN, and RFAPoseHead architectures into YOLOv8n-
pose, an enhanced detector capable of simultaneous recognition of
litchi fruits and picking points is developed. Additionally, the
Object Key point Similarity (OKS) metric is employed to evaluate
key point detection performance, while pixel Euclidean distance is
utilized to assess the prediction error of picking point position.
Experimental results demonstrate that YOLOv8-iGR achieves a
precision improvement in litchi picking point detection from 87.4%
to 92.3%, with a reduction in computational complexity from 8.4 G
to 7.5 G. The average pixel Euclidean distance error between
predicted and ground true picking point positions is within § pixels.
Compared to various mainstream detection algorithms, YOLOVS-
iGR exhibits significant advantages in detection performance under
complex and dynamic environmental conditions. These results
underscore the potential of the proposed YOLOv8-iGR model to
support the visual systems of picking robots.
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