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Abstract: In the unstructured litchi orchard, precise identification and localization of litchi fruits and picking points are crucial
for litchi-picking robots.  Most studies adopt multi-step methods to detect fruit  and locate picking points,  which are slow and
struggle  to  cope  with  complex  environments.  This  study  proposes  a  YOLOv8-iGR  model  based  on  YOLOv8n-pose
improvement,  integrating  end-to-end  network  for  both  object  detection  and  key  point  detection.  Specifically,  this  study
considers  the  influence  of  auxiliary  points  on  picking  point  and  designs  four  litchi  key  point  strategies.  Secondly,  the
architecture named iSaE is proposed, which combines the capabilities of CNN and attention mechanism. Subsequently, C2f is
replaced by Generalized Efficient Layer Aggregation Network (GELAN) to reduce model redundancy and improve detection
accuracy.  Finally,  based  on  RFAConv,  RFAPoseHead  is  designed  to  address  the  issue  of  parameter  sharing  in  large
convolutional kernels, thereby more effectively extracting feature information. Experimental results demonstrate that YOLOv8-
iGR achieves an AP of 95.7% in litchi fruit detection, and the Euclidean distance error of picking points is less than 8 pixels
across  different  scenes,  meeting  the  requirements  of  litchi  picking.  Additionally,  the  GFLOPs  of  the  model  are  reduced  by
10.71%.  The  accuracy  of  the  model’s  localization  for  picking  points  was  tested  through  field  picking  experiments.  In
conclusion,  YOLOv8-iGR  exhibits  outstanding  detection  performance  along  with  lower  model  complexity,  making  it  more
feasible for implementation on robots. This will provide technical support for the vision system of the litchi-picking robot.
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1    Introduction
China is the leading producer of litchi, accounting for over half

of  the  world’s  total  production[1].  However,  litchi  harvesting  is  the
most  time-consuming  and  labor-intensive  part  of  the  entire  fruit
production  cycle,  due  to  its  seasonality,  high  labor  intensity,  and
significant costs. Currently, litchi harvesting relies on manual labor,
resulting  in  high  labor  intensity  and  low  picking  efficiency[2].
Therefore,  to  reduce  fruit  production  costs  and  increase  farmers’
income,  there  is  an  urgent  need  to  develop  intelligent  harvesting
robots suitable for litchi.

When  harvesting  litchi,  it  is  necessary  to  first  identify  the
picking  point  on  the  main  fruit-bearing  branch  and  then  proceed
with  cutting  to  prevent  damage  to  the  fruit[3].  Therefore,  accurate
identification and localization of the picking point are crucial issues
for  achieving  intelligent  operation  of  litchi  harvesting  robots.  In
natural  environments,  the  challenges  of  accurately  detecting  the
picking  point  on  the  litchi  include:  1)  complex  backgrounds  in
outdoor orchards; 2) occlusion; and 3) lighting conditions[4].

With  the  rapid  development  of  deep  convolutional  neural
networks in object recognition, some researchers have applied deep
learning  to  litchi  picking  recognition.  Peng  et  al.[5]  constructed  a
ResDense-focal-DeepLabV3+ network for accurate segmentation of
litchi branches in orchard environments, achieving improved mIoU
in simple, medium, and complex images compared to other models.
Qi  et  al.[2]  employed  YOLOv5  to  detect  stems  in  litchi  images,
extracting  region  of  interest  (ROI)  for  the  main  stem  and
segmenting  them using  PSPNet.  Post-processing  operations  on  the
segmented  images  provided  pixel  coordinates  of  picking  points  on
the  main  stem,  with  an  accuracy  rate  of  92.50%.  While  these
methods ensure the accuracy of picking point localization, they face
challenges.  The  multi-step  operations  (e.g.,  ROI  extraction+
segmentation+post-processing)  result  in  significantly  lower
detection speeds (e.g., 15 FPS as reported in Qi et al.[2]) compared to
end-to-end  approaches.  Such  delays  hinder  real-time  robotic
operations in dynamic orchard environments.
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Key  point  detection  was  initially  applied  in  human  pose
estimation.  In  recent  years,  some  researchers  have  attempted  to
apply key point  detection methods to the detection of fruit  picking
points. Zheng et al.[6] integrated pixel-level instance segmentation of
mangoes  and  picking  point  detection  into  an  end-to-end  network.
This  network  demonstrated  strong  robustness  to  various  lighting
conditions and complex backgrounds, achieving good segmentation
and  picking  point  detection  performance  for  medium  and  large
mangoes.  Du  et  al.[7]  proposed  the  YOLO-lmk  model  based  on
YOLOv5s, which combined tomato bounding box detection and key
point detection. YOLO-lmk achieved a detection accuracy of 93.4%
for  tomato  bounding  boxes,  with  a  Euclidean  distance  of  7.9
between  the  ground  truth  and  predicted  key  points.  The  above
methods integrate two tasks into an end-to-end network, improving
detection  speed.  Existing  key  point  detection  methods  primarily
focus  on  medium-to-large  fruits  (mangoes,  tomatoes)  where  high-
level  semantic  features  dominate  detection  performance.  However,
litchi  fruits  are  smaller  in  size  (typically  3-5  cm  in  diameter)  and
often occluded by dense branches or leaves in natural environments.
Directly  applying feature  pyramid-based approaches  (e.g.,  FPN) to
litchi  detection  may  lead  to  two  issues:  1)  High-level  features
generated by deep layers lack sufficient spatial resolution to capture
fine-grained details of small litchi fruits; and 2) Multi-scale feature
fusion  introduces  computational  redundancy,  which  conflicts  with
the lightweight requirements of robotic systems. For a litchi-picking
robot,  the  vision  system  needs  to  meet  the  following  two
requirements:  Firstly,  due  to  limited  computational  resources,  the
model  needs  to  be  lightweight  without  sacrificing  performance.
Secondly,  multi-step  operations  are  cumbersome  for  robots  and
difficult to adapt to changing environments, thus requiring fast end-
to-end  models.  To  meet  the  robot’s  needs,  this  paper  proposes  the
YOLOv8-iGR  detection  model  based  on  improvements  to
YOLOv8n-pose,  achieving  synchronous  recognition  of  litchi  fruits
and  picking  points.  The  main  contributions  of  this  study  are  as
follows:

1)  Expand  the  application  scenarios  of  key  point  detection  by
establishing a key point dataset containing multiple litchi varieties,
angles,  and  environmental  factors,  and  design  four  key  point
distribution  strategies  based  on  the  spatial  relationship  between
litchi fruits and key points.

2) Propose the iSaE architecture, and combine the GELAN and
RFAPoseHead  modules  to  implement  a  lightweight  and  high-
performance YOLOv8-iGR algorithm.

3)  Compare  YOLOv8-iGR  with  mainstream  detection
algorithms  in  detection  tasks  involving  differences  in  lighting,
background  factors,  and  branches  occlusion.  The  results
demonstrate  that  YOLOv8-iGR outperforms other  models  in terms
of detection performance and efficiency. 

2    Datasets
 

2.1    Acquisition of datasets
The image data collected for this study were captured between

May 26, 2023 and June 1, 2023, in the litchi orchard at South China
Agricultural University. Images of ripe litchi fruits were taken using
Realsense  D435i  camera  for  training  and  testing  purposes.  The
cameras  were  positioned  30-100  cm  away  from  the  targets.  The
litchi varieties included “Feizixiao”, “Guiwei”, and “Nuomici”. The
obtained  images  were  saved  as  pixel  RGB images.  To  ensure  that
the  datasets  reflected  the  orchard  characteristics  in  natural
environments, a total of 1281 images of different litchi tree varieties
were  captured  within  the  orchard  at  different  times  (9:00  am,

2:00  pm,  6:00  pm).  Representative  images  depicting  various
environmental factors are shown in Figure 1.
 
 

a. Adequate lighting b. Upward angle shot c. Hard light

d. Low light e. Tree leaves obstruction f. Branches obstruction

Figure 1    Representative sample datasets in different states
  
2.2    Annotation of datasets

Labelme  was  used  to  annotate  litchi  and  key  points.  The
bounding  box  of  the  mature  litchi  target  was  labeled  as  “mature”.
To  further  analyze  the  influence  of  the  number  of  key  points  and
their  spatial  relationships  on  the  detection  performance  of  picking
key points, four key point strategies were designed during litchi key
point annotation. Strategy 1 (1P): P1 represents the picking point on
the main stem of the litchi. Strategy 2 (2P): Two key points are set,
with auxiliary point P2 located at the junction of the litchi fruit and
the  main  stem.  Strategy  3  (3P):  Three  key  points  are  set,  with  P3
defined as the centroid of the litchi fruit’s bounding box. Strategy 4
(5P): Five key points are set, with P4 and P5 located on either side
of the litchi fruit, symmetrically about line segment P2-P3. The four
key point strategies are shown in Figure 2.
 
 

a. 1P b. 2P c. 3P d. 5P

Figure 2    Four key point strategies
 

The datasets are randomly partitioned into a training set (1025
images), a validation set (128 images), and a test set (128 images),
following an 8:1:1 ratio. 

3    Methodologies
 

3.1    YOLOv8n-pose model improvement strategy
The  design  intention  of  YOLOv8n-pose  is  based  on  a  single-

stage human key point detection model. Compared to human poses,
litchi present variations in the number of key points and significant
differences in features, so improvements are needed for YOLOv8n-
pose to enhance the model’s performance in litchi and picking point
detection.  In  this  study,  the  iSaE  structure  is  proposed,  which
integrates  the  capabilities  of  both  convolution  and  attention
mechanisms.  Compared  to  using  a  convolution  or  an  attention
mechanism  alone,  the  iSaE  module  significantly  improves  the
model’s performance. Additionally, to deploy the model on mobile
devices,  the  introduction  of  GELAN  achieves  a  reduction  in
computational  overhead  without  sacrificing  performance.  The
RFAPoseHead  detection  head  is  used  to  simultaneously  detect  the
key  points  of  both  the  litchi  fruit  and  the  main  branch.  It  is  built
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upon  the  foundation  of  RFAConv  to  enhance  the  efficiency  of
feature  extraction.  The  network  architecture  of  YOLOv8-iGR  is

depicted  in Figure  3,  with  theoretical  analysis  and  implementation
details of each module elaborated in Sections 3.2-3.4.
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Figure 3    YOLOv8-iGR overall framework and its constituent modules
 
 

3.2    iSaE Block
In  recent  years,  the  effectiveness  of  attention  mechanisms  in

enhancing model expressiveness and precise object localization has
been  well-validated  in  the  realm  of  computer  vision.  The  Squeeze
aggregated  Excitation  (SaE)  module,  proposed  by  SENetv2[8],  is  a
novel  aggregated  multilayer  perceptron.  Compared  to  SE[9],  this
fusion  enhances  the  network’s  ability  to  capture  channel
information and global knowledge.

The  working  principle  of  SaE  is  illustrated  in Figure  4.  Input
features  are  adjusted  in  size  and  channel  count  through  the

convolutional  layer.  These  features  are  then  aggregated  using  a
global  average  pooling  layer  to  capture  channel  information.  The
aggregated  information is  passed through FC layers  for  squeezing.
Subsequently,  the outputs  of  all  FC branches are concatenated and
subjected  to  excitation  operations  to  restore  the  size  to  its  initial
shape.  Finally,  the  squeezed  and  excited  results  are  concatenated
with  the  input  of  the  residual  module.  The  formula  for  the  SaE
module is articulated as follows:

SaE = x+F
Ä

x ·Ex

Ä∑
S q(x)
ää

(1)
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Figure 4    Working principle of SaE

　268 　 August, 2025 Int J Agric & Biol Eng　　　Open Access at https://www.ijabe.org Vol. 18 No. 4　

https://www.ijabe.org


In  Equation  (1),  the  ‘Sq’  function  represents  the  squeezing
operation,  which  includes  the  FC  layers.  The  ‘Ex’  function
represents the excitation operation.

Inspired  by  Zhang  et  al.[10],  this  study  focuses  on  designing  a
module that combines lightweight CNN with attention mechanisms,
called iSaE. It absorbs the efficient feature extraction capabilities of
the Inverted Residual Block (IRB) from the CNN architecture[11]  to
model  local  features,  as  well  as  the  comprehensive  information
capture capabilities of the SaE architecture to model global features.
The structure of iSaE is depicted in Figure 5. Figure 6 illustrates the
attention  heat  map  for  picking  points  generated  by  IRB,  SaE,  and

iSaE. The influence on picking point localization correlates with the
intensity of the red hue in its heat map. It can be observed that the
picking point localization by IRB deviates from the branch. Due to
the  fixed  weight  parameters  used  in  computing  attention  weights,
SaE  is  susceptible  to  interference  from  background  information,
severely affecting the localization of the picking point.  In contrast,
iSaE  combines  the  advantages  of  both  approaches  and  accurately
predicts  the  picking  point  location.  The  introduction  of  the  iSaE
module  effectively  addresses  the  issues  of  accuracy  degradation
caused  by  lightweight  CNN  and  the  deficiencies  in  the  SaE
attention mechanism.
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a. IRB b. SaE c. iSaE

Figure 6    Visual heat maps of picking point attention of
different modules

  
3.3    GELAN Block

Existing  methods  often  suffer  from  information  bottleneck
issues during feature extraction across layers, resulting in the loss of
crucial information. Therefore, there is a need to design a structure
capable of capturing sufficient information. Wang et al.[12] proposed
a  Generalized  Efficient  Layer  Aggregation  Network  (GELAN)  by
combining CSPNet[13] and ELAN[14].

The  main  concept  of  CSPNet  is  to  segment  gradient  flows,
allowing  gradient  flow  information  to  propagate  through  different
paths.  The  primary  objective  of  this  design  is  to  reduce  model
computation while achieving richer gradient combinations, enabling
the  model  to  be  deployed  on  mobile  devices  without  sacrificing

performance. The implementation details of CSPNet are as follows:

y =C(x1,T (B(x2))) (2)

where,  the  input  features  x  are  split  along  the  channels  into  two
parts,  represented  as  [x1, x2]. T  is  the  transition  function  for  inter-
stage gradient flow, C is the function for merging two parts, and B
is  the  function  of  the  bottleneck  module.  This  is  achieved  by
dividing the feature map of the input layer into two parts and then
merging  them  through  a  cross-stage  hierarchical  structure.
However,  as  the  number  of  stacked  modules  in  CSPNet  increases,
the performance of the model tends to decrease because adding each
module  only  increases  the  longest  path  for  gradient  flow
propagation.  To  address  this  issue,  ELAN  was  designed.  This
architecture  is  based  on  the  design  of  the  network  architecture
according  to  the  gradient  propagation  path.  The  main  idea  behind
ELAN  is  to  increase  the  shortest  gradient  path  of  the  model  for
faster  convergence,  which  helps  to  reduce  feature  redundancy  and
enhance  feature  representation  capability.  GELAN  is  a  new
architecture  derived  from  the  capabilities  of  ELAN,  which  can
employ  any  computational  block.  In  this  study,  the  BottleNeck  in
C2f  is  applied  to  GELAN,  and  the  architecture  of  GELAN  is
illustrated in Figure 7. 

3.4    RFAPoseHead
For  the  task  of  identifying  and  locating  litchi  fruits  and  key

points, the shapes and distributions of targets in images can vary. In
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convolution  operations,  convolutional  kernels  utilize  the  same
weights to extract features within different receptive fields, ignoring
differential  information  from  various  locations.  Additionally,  the
spatial  attention  mechanism  cannot  fully  address  the  parameter

sharing  issue  posed  by  large  convolutional  kernels  [Equation  (3)].
To  address  these  challenges,  Zhang  et  al.[15]  proposed  a  Receptive
Field Attention (RFA) approach. The core idea is to integrate spatial
attention mechanisms with convolution operation.
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Figure 7    GELAN Block
 

FN = XN1 ×A11 ×K1 + ...+X19 ×A19 ×K9 (3)

where, ‘K’ represents the parameter values of the 1×1 convolutional
kernel,  and  ‘A’  represents  the  values  at  different  positions  of  the
attention map. When the convolutional kernel extracts features from
each receptive field, each sliding window shares the weights of the
spatial attention map.

RFAConv  (Figure  8)  divides  the  input  features  into  two
pathways.  One  pathway  utilizes  grouped  convolutions  of  corres-
ponding sizes to dynamically generate feature information based on
the  receptive  field.  The  other  pathway  aggregates  global  informa-

tion  for  each  receptive  field  feature  using  Avgpool  and  interacts
with  the  feature  information  using  1×1  convolution.  Finally,  the
feature information from the two pathways is combined to generate
spatial feature information at different positions within the receptive
field.  The  spatial  feature  information  of  the  receptive  field  is
dynamically  generated  based  on  the  size  of  the  convolutional
kernel, thus addressing the parameter-sharing issue of convolutional
kernels.  In  this  study,  RFAConv  is  incorporated  into  the  detection
head of YOLOv8n-pose (Figure 9), replacing standard convolution.
RFAPoseHead enables the model to adapt to changes in the natural
environment, thereby enhancing the robustness of the model.

 
 

Avgpool

Conv
BN+ReLU

Scale
Conv

Conv

k=3,s=1,p=1

k=1,s=1,p=0

k=3,s=3,p=0
x

Figure 8    RFAConv structure diagram
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4    Experiments
 

4.1    Training details
The network training was based on the Ubuntu system and the

PyTorch framework. The main hardware configuration included an
i9-10900k CPU, GeForce RTX 3090 GPU, CUDA 12.3, and Python
3.8.  The  training  environment  for  different  algorithms  was  the
same, and the training parameters were set as follows: the batch size
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of the model was set to 32, the maximum number of iterations was
300 epochs, and training stopped if the model performance did not
improve in 50 consecutive epochs. The input image size was set to
640×640  pixels,  the  initial  learning  rate  was  0.01,  the  decay  rate
was 0.2, and the weight decay coefficient was 0.0005. 

4.2    Evaluation metrics 

4.2.1    Evaluation metrics of key point detection
The  key  point  detection  metric  was  inspired  by  object

detection. Precision and Recall were calculated using the quantities
of True Positives (TP), False Positives (FP), False Negatives (FN),
and True Negatives (TN). The correct detection of harvesting points
(TP) should meet the following criteria: 1) Litchi and picking point
must  be  manually  labeled,  meaning  that  litchi  in  the  foreground
should be medium- or large-sized, and either all or part of the litchi
stem  should  be  visible.  Litchi  that  is  too  small  or  completely
obscured  is  not  considered  for  manual  annotation  or  automatic
detection. 2) The detected picking point is on the stem of the litchi
fruit. In the above two cases, incorrect picking point detection (FP)
may occur (for example, when the picking point falls on the fruit or
non-fruit  main  stem),  and  there  may  also  be  cases  of  missed
detection  (FN).  The  above  criteria  can  be  evaluated  using  OKS
(Object Key point Similarity) as the evaluation metric for key point
detection algorithms[16]. The equation for OKS is as follows:

OKS =

∑
i

exp(−d2
pi/2S 2σ2

i )δ∑
i

δ
, δ =

®
1, (Vpi > 0)

0, (Vpi < 0)
(4)

The evaluation metrics for key point detection include precision
(Pkp),  recall  (Rkp),  average  precision  (APkp),  and  mean  average
precision (mAPkp). Their formulas are as follows:

Pkp =
TP

TP+FP
(5)

Rkp =
TP

TP+FN
(6)

APkp =

∑
n

∑
i

β∑
n

∑
i

1
, β =

®
OKSi, (OKSi > T )

0, (OKSi ≤ T )
(7)

mAPkp =

C∑
i

APkp

C
(8)

where, dpi represents the Euclidean distance between the ith detected
key  point  and  the  corresponding  key  point  in  the  target;  S  is  the
scale  factor  of  the  point;  Vpi  denotes  the  visibility  of  the  point,
where  “0”  indicates  unannotated,  “1”  denotes  annotated  points
obscured,  and  “2”  indicates  annotated  points  visible; σi  represents
the  normalization  factor  of  the  ith  key  point;  β  is  the  visibility
indicator  for  each  key  point; T  is  the  OKS threshold;  and C  is  the
number of key point categories. 

4.2.2    Evaluation metrics of key point position error
In  the  experiment  evaluating  the  prediction  of  picking  point

location,  the  evaluation  metric  was  the  pixel  Euclidean  distance
error  between the predicted point  (Pre)  and the ground truth  (GT).
Assuming  the  pixel  coordinates  of  the  predicted  picking  point  are
(x, y) and the pixel coordinates of the ground truth picking point are
(x1, y1), and the input image resolution is W×H, the distance (dx) in
the  X-axis  direction  between  the  predicted  point  and  the  ground

truth  point  can  be  calculated  using  Equation  (9),  and  the  distance
(dy)  in  the Y-axis  direction  can  be  calculated  using  Equation  (10).
The  pixel  Euclidean  distance  (E)  between  two  points  can  be
calculated using Equation (11).

dx =W |x1 − x| (9)

dy = H |y1 − y| (10)

E =
√

d2
x +d2

y (11)
 

4.3    Experiments with different key point strategies
To select the most suitable key point skeleton for litchi picking,

the average distance error  between the predicted picking point  and
the  ground  truth  was  used  as  the  evaluation  metric.  Error  analysis
was performed using the coordinates of 100 picking points detected
by the YOLOv8n-pose model under different key point strategies.

The vertical and horizontal lines of different colors in Figure 10
visualize  the  average  distance  errors  between  all  predicted  points
and  ground  truth  points  in  the X-axis  and Y-axis  directions  under
different  strategies  of  the  YOLOv8n-pose  model.  It  visually
illustrates the performance gap between YOLOv8n-pose-5p and the
other  strategies  in  terms  of  localization  accuracy.  Therefore,
selecting  the  5P  key  point  strategy  as  the  key  point  skeleton  for
litchi  picking  was  appropriate,  and  all  subsequent  experiments  on
picking point detection were based on the 5P key point skeleton.
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4.4    Ablation experiment

The YOLOv8-iGR model proposed in this study is based on the
YOLOv8n-pose  with  three  improvements:  U:  integrating  the  iSaE
module  into  the  feature  extraction  network;  V:  replacing  the  C2f
with the GELAN; and W: replacing the original detection head with
the  RFAPoseHead.  To  validate  the  effectiveness  of  the  integrated
modules,  ablation  experiments  were  conducted.  The  results  are
listed in Table 1.
  

Table 1    Comparison results of different models for
ablation experiments

U V W Pbox/% APbox/% Pkp/% mAPkp/% GFLOPs/% FPS

× × × 87.2 93.1 87.4 90.3 8.4 99.3

√ × × 91.0 94.1 90.2 94.4 8.5 93.1

× √ × 91.7 95.5 91.7 94.6 7.1 93.4

× × √ 87.4 94.6 88.9 94.2 8.8 91.7

√ √ √ 92.0 95.7 92.3 95.6 7.5 90.9
 

Integrating the iSaE module designed in this study into the base
model  resulted  in  improvements  of  4.36%  and  3.20%  in Pbox  and
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Pkp,  respectively.  This is  because the inclusion of the iSaE module
enhanced the network’s ability to capture feature information while
suppressing irrelevant interference. Replacing the C2f module in the
base model with GELAN led to a decrease of 15.48% in GFLOPs,
accompanied  by  improvements  of  2.58%  and  4.76%  in  APbox  and
mAPkp,  demonstrating the  effective  reduction in  model  complexity
achieved  by  the  GELAN  module.  Substituting  the  detection  head
with RFAPoseHead resulted in improvements of 1.61% and 4.32%
in  APbox  and  mAPkp.  The  combination  of  iSaE,  GELAN,  and
RFAPoseHead  enhanced  the  model’s  detection  performance  for
litchi fruits and picking points, reducing GFLOPs by 10.71% while
increasing Pbox,  APbox, Pkp,  and  mAPkp  by  5.51%,  2.79%,  5.61%,
and 5.87%, respectively. 

4.5    Comparison experiment
To  demonstrate  the  comprehensive  performance  of  the

proposed  YOLOv8-iGR algorithm in  litchi  fruit  detection  and  key
point  detection,  comparisons  were  made  with  several  mainstream
object  detection  and  key  point  detection  algorithms.  Due  to  the
inability of the RT-DETR model to directly identify key points, the
detection head was replaced with the detection head of YOLOv8n-
pose  in  this  experiment.  The  comparison  results  for  different
algorithms are presented in Table 2. Except for the RT-DETR-pose,
all  models  are  lightweight  detection  models.  YOLOv8n-pose
achieved  the  highest  detection  speed  of  109.3  fps,  demonstrating
relatively good detection performance,  hence,  YOLOv8n-pose was
chosen  as  the  baseline  model.  Compared  to  YOLOv3n-pose,
YOLOv5n-pose,  YOLOv6n-pose,  and  RT-DETR-pose,  YOLOv8-
iGR showed the highest APbox in object detection, which was higher
by 3.0%, 2.5%, 1.17%, and 19%, respectively. In terms of key point
detection,  the  mAPkp  of  YOLOv8-iGR  was  higher  by  3.24%,
4.36%,  1.81%,  and  3.24%,  respectively.  Although  the  detection
speed of YOLOv8-iGR decreased by 8.5% compared to YOLOv8n-
pose,  the  precision  of  object  detection  and  key  point  detection
increased  by  5.5%  and  5.6%,  respectively.  The  decrease  in  the
detection speed of YOLOv8-iGR is attributed to the addition of the
attention  mechanism,  which  requires  additional  computational
operations  and  storage  of  extra  attention  weights  leading  to
increased  memory  consumption.  However,  considering  the
robustness  provided  by  the  iSaE  module  and  the  improvement  in
detection  performance,  this  decrease  is  acceptable.  A  detection
speed  of  90.9  fps  still  meets  the  requirements  for  real-time
detection.
 
 

Table 2    Comparison of detection performance among
different network models

Model Pbox/
%

Rbox/
%

APbox/
%

Pkp/
%

Pkp/
%

mAPkp/
%

GFLOPs/
G FPS

YOLOv8n-pose 87.2 91.8 93.1 87.4 91.4 90.3 8.4 99.3
YOLOv5n-pose 86.7 89.8 93.3 86.4 90.4 91.6 7.3 93.3
YOLOv3n-pose 88.9 89.7 92.9 87.9 87.5 92.6 11.4 98.1
YOLOv6n-pose 87.5 90.3 94.6 86.8 89.5 93.9 12.0 93.6
RT-DETR-pose 86.6 91.1 93.9 85.9 90.6 92.6 139.4 36.3
YOLOv8-iGR 92.0 93.9 95.7 92.3 93.5 95.6 7.5 90.9

 

Figures  11  and  12  visualize  the  detection  results  of  litchi  in
scenes  with  occlusion  and  complex  scenes.  In  these  figures,  the
litchi missed by the model was marked with orange ellipses, while
the  litchi  incorrectly  detected  by  the  model  was  marked  with  blue
rectangles. In cases of occlusion, certain features of the litchi were
obstructed,  affecting  the  detection  performance  of  the  model.
Figure  11  illustrates  the  performance of  the  model  in  a  scene with

branches occlusion,  where YOLOv5n-pose missed the detection of
litchi fruits and key points, while YOLOv6n-pose, YOLOv3n-pose,
and  RT-DETR-pose  exhibited  low  confidence  levels  in  their
predictions.  Figure  12  depicts  a  dense  litchi  orchard  scene,  where
both  YOLOv8n-pose  and  RT-DETR-pose  encountered  detection
errors,  and  YOLOv3n-pose  missed  litchi  farther  from  the  camera.
The  proposed  YOLOv8-iGR  demonstrates  robust  performance  in
both  simple  and  complex  scenes.  Even  when  litchi  is  occluded  by
leaves  and  branches,  YOLOv8-iGR  effectively  completes  the  task
of litchi detection and key point prediction.
  

a. b. c.

d. e. f.

Note: (a) YOLOv8n-pose (base model), (b) YOLOv6n-pose, (c) YOLOv5n-pose,
(d) YOLOv3n-pose, (e) RT-DETR-pose, (f) YOLOv8-iGR (ours).

Figure 11    Detection results of branches occlusion

  

a. b. c.

d. e. f.

Note: (a) YOLOv8n-pose (base model), (b) YOLOv6n-pose, (c) YOLOv5n-pose,
(d) YOLOv3n-pose, (e) RT-DETR-pose, (f) YOLOv8-iGR (ours).

Figure 12    Detection results of dense scene
  
4.6    Comparison experiment of picking point position error

To validate the localization performance of models in different
natural  environments,  this  section  conducted  experiments  in  two
scenes:  Scene  1:  intense  natural  light  conditions;  Scene  2:  low
natural  light  conditions.  Figures  13  and  14  illustrate  the  picking

 

a. b. c.

d. e. f.

Note: (a) YOLOv8n-pose (base model), (b) YOLOv6n-pose, (c) YOLOv5n-pose,
(d) YOLOv3n-pose, (e) RT-DETR-pose, (f) YOLOv8-iGR (this study).

Figure 13    Detection results of picking point in Scene 2
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point  detection  results.  Each  scene  included  100  picking  points
detectable  by  the  models,  with  the  average  pixel  distance  error
between  predicted  and  ground  truth  points  used  as  the  evaluation
metric. Figure 15 presents the analysis of the average pixel distance
error  in  the  X-axis,  Y-axis,  and  Euclidean  directions  for  the  100
predicted  picking points  across  different  models  and scenes.  Other
key  points  served  only  as  auxiliaries  for  localization.  To  visually
assess the detection performance of litchi key points, all key points
were visualized and connected to form a litchi skeleton.

Figure 13 presents the recognition results of different models in
Scene 1. Influenced by strong lighting, the image features of litchis
became  blurred.  YOLOv8-iGR  achieved  picking  point  prediction
with  an  average  pixel  error  of  7.20.  In Figure  14,  under  low  light
conditions,  YOLOv8-iGR completed  picking  point  prediction  with
an average error  of  less  than 6 pixels.  It  is  worth noting that  other
models  exhibit  instances  of  missed  detection  (marked  with  orange
ellipses). In fact, assuming the operating range of the end effector is
60  mm,  as  demonstrated  by  Xiong  et  al.[17]  when  the  camera  is
positioned 30-100 cm away from the target, the pixel error within a
range of 60 mm is approximately 35-80 pixels[18].  Therefore,  in the
above  scenes,  YOLOv8-iGR’s  ability  to  locate  picking  points  can
meet the harvesting requirements.
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Figure 15    Average pixel distance error predicted by different models for picking points
 
 

4.7    Field picking test
To  validate  the  accuracy  of  this  study’s  method,  this  study

conducted field picking experiments in the litchi orchard from June
23 to July 3, 2024. Figure 16 illustrates the actual integration of the
experimental  environment  for  the  litchi-picking robot.  The picking
times were from 8:00 am to 11:00 am and from 3:00 pm to 5:00 pm.
The  experiments  were  based  on  the  Xarm  6-axis  robotic  arm
platform, with a Realsense D435i camera mounted on the arm in an
eye-in-hand  configuration.  After  training  the  proposed  YOLOv8-
iGR  model,  it  was  deployed  on  the  robotic  arm  for  detection.  In
each experiment, to simulate real-world harvesting scenarios where
litchi clusters vary in density and spatial distribution, 12 fruits were
randomly  placed  from  different  tree  heights  (1.3-1.5  m)  and
arranged in randomized layouts (e.g., sparse, dense, occluded). This
design  ensures  that  the  model  is  tested  under  diverse  conditions
reflective  of  actual  orchard environments,  conducting a  total  of  10
experiments with 120 litchi in total. The success rate of picking was
95.0%.  The  main  reason  for  picking  failures  was  the  litchi’s  low
position, which caused depth value deviations in the depth camera,

which  in  turn  led  to  coordinate  analysis  errors  and  resulted  in
incorrect movement paths for the robotic arm.
 
 

Figure 16    Field picking experiment 

 

a. b. c.

d. e. f.

Note: (a) YOLOv8n-pose (base model), (b) YOLOv6n-pose, (c) YOLOv5n-pose,
(d) YOLOv3n-pose, (e) RT-DETR-pose, (f) YOLOv8-iGR (ours).

Figure 14    Detection results of picking point in Scene 3
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5    Conclusions
YOLOv8-iGR  is  a  novel  method  for  litchi-picking  point

identification  using  a  key point  detection  model.  Initially  designed
for  human  pose  estimation,  key  point  detection  algorithms  are
expanded in this study to a new application scenario. By integrating
the iSaE, GELAN, and RFAPoseHead architectures into YOLOv8n-
pose,  an  enhanced detector  capable  of  simultaneous  recognition  of
litchi  fruits  and  picking  points  is  developed.  Additionally,  the
Object  Key point  Similarity (OKS) metric  is  employed to evaluate
key point  detection performance,  while  pixel  Euclidean distance is
utilized  to  assess  the  prediction  error  of  picking  point  position.
Experimental  results  demonstrate  that  YOLOv8-iGR  achieves  a
precision improvement in litchi picking point detection from 87.4%
to 92.3%, with a reduction in computational complexity from 8.4 G
to  7.5  G.  The  average  pixel  Euclidean  distance  error  between
predicted and ground true picking point positions is within 8 pixels.
Compared  to  various  mainstream  detection  algorithms,  YOLOv8-
iGR exhibits significant advantages in detection performance under
complex  and  dynamic  environmental  conditions.  These  results
underscore  the  potential  of  the  proposed  YOLOv8-iGR  model  to
support the visual systems of picking robots. 
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