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Abstract: To address the limitation of low harvesting efficiency in intelligent mechanized harvesting in standardized orchards,
a  negative  pressure  adsorption  apple  harvesting  robot  has  been  designed  and  developed.  The  robot  is  based  on  a  Cartesian
coordinate system and incorporates direct negative pressure adsorption picking combined with multi-stage buffering collection
methods.  Additionally,  the  proposed  model  pipeline  integrates  YOLOv8  and  Segment  Anything  Model  for  precise  apple
picking point localization. Finally, field trials of the apple harvesting robot were conducted in a V-shaped layout apple orchard
at  Experiment  and  Demonstration  Orchard  at  Tianping  Lake.  The  experimental  results  showed  an  apple  recognition  rate  of
90.54%, an overall harvesting success rate of 83.65%, an average picking efficiency of 4.83 s per fruit, and a damage rate of
13.61%. It demonstrates the potential of the robot in improving the efficiency and reliability of automated apple harvesting. At
the same time, the results highlight the need to focus on enhancing the robustness of apple recognition algorithms under varying
lighting conditions,  and reducing apple damage rates  by shortening the transport  pipeline and optimizing the structure of  the
collection device. This study provides a promising solution for addressing global challenges in agricultural automation, offering
insights into the future optimization of intelligent harvesting technologies.
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1    Introduction
Apples are one of the most popular fruits globally[1], and China

is  a  major  producer  with  the  highest  output  in  the  world[2].
According to data from the National Bureau of Statistics of China in
2022,  China’s  apple  cultivation  area  was  1.956  million  hm2,
yielding a staggering 47.572 million tons. While the cultivation area
has decreased in recent years, production has shown a steady annual
increase.  Orchard  harvesting  is  a  highly  seasonal,  labor-intensive,
and  time-consuming  process[3].  As  modern  agriculture  moves
towards  intelligence  and  precision,  replacing  manual  labor  with
intelligent  robots  for  automated  harvesting  has  become  a  major
trend[4].  Achieving efficient and low-damage harvesting has always
been  the  primary  goal  of  automated  harvesting  systems[5].  Apples
are  predominantly  grown  in  open  fields  and  have  a  single  annual
harvest  season,  making  apple  picking  a  seasonal  labor-intensive
task.  The  shortage  of  rural  labor  has  led  to  rising  labor  costs  for
manual  harvesting,  making  the  demand  for  harvest  automation

increasingly urgent[6].
In  recent  years,  the  research  on  automated  apple  harvesting

robots has received widespread attention from numerous scholars[7,8].
Within this research, the design of end effectors for picking and the
development of apple recognition algorithms have become two key
technologies in this field. The end effectors of apple-picking robots
mainly  include  pneumatic  soft  finger  grippers,  suction-based
grippers,  and  a  combination  of  both.  In  the  research  on  pneumatic
soft finger grippers, Pi et al.[9] proposed a pneumatically driven three-
finger  gripper  that  controls  gripping  and  releasing  apples  through
inflation  and  deflation.  Chen  et  al.[10]  proposed  a  three-finger  soft
claw inspired by the fin ray effect and combined it with a constant
pressure feedback system to significantly enhance the safety of the
soft  fruit  gripper.  Li  et  al.[11]  studied  various  picking  modes  of
flexible three-finger end effectors and determined the optimal angle
for  the  wrap-around  pulling  separation  method.  In  the  area  of
suction-based  grippers,  Wang  et  al.[12]  designed  a  bionic,  non-
damaging apple-picking mechanical hand consisting of four suction
cups,  based  on  octopus  predation  mechanisms.  The  hand  uses
negative  pressure  to  adhere  to  the  apple,  then  separates  the  fruit
stem  using  rotation  and  dragging,  ultimately  delivering  the  apple
into a collection pipeline below to complete the harvesting process.
In the development of grippers combining claws and suction, Zhang
et  al.[13]  designed  and  developed  a  gripping  mechanism  that
integrates  a  hollow  flexible  tube  with  three  claws  and  has  a
swallowing  function.  This  mechanism  can  precisely  control  the
gripping  force  through  force  feedback,  effectively  reducing  the
damage rate to apples. Wang et al.[14] designed a pneumatic gripper
consisting of four conical soft fingers and a suction cup, capable of
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twisting  and  pulling  operations  to  effectively  separate  apples  from
the  tree.  The  common  feature  of  these  harvesting  methods  is  that
after  the  end  effector  contacts  and  secures  the  apple,  additional
operations  such  as  rotation  and  dragging  are  typically  required  to
detach the apple from the tree. Moreover, the harvested apples must
be  placed  into  a  designated  harvesting  box  or  directly  fall  into  a
bottom  collection  box  through  an  unloading  process.  The  entire
procedure  involves  both  harvesting  and  collecting  stages,  which
increases the time required to pick each apple.

In  the  research on apple  recognition algorithms,  in  addition to
using  traditional  machine  learning  methods  for  apple  region
segmentation[15],  the  performance  of  instance  segmentation  and
object  detection  algorithms  has  significantly  improved  with  the
development  of  deep  learning  technologies.  In  terms  of  instance
segmentation, Wang et al.[16] developed an improved version of the
Mask Region-based Convolutional Neural Network (Mask RCNN),
and  Tang  et  al.[17]  proposed  an  improved  SOLOv2  high-precision
apple  instance  segmentation  method.  Both  methods  demonstrated
excellent  apple  target  segmentation  performance.  In  the  field  of
object  detection,  due  to  their  outstanding  performance,  YOLO
series  algorithms  have  been  widely  applied  in  fruit  and  vegetable
recognition.  Yan  et  al.[18]  proposed  a  real-time  apple  harvesting
recognition method based on an improved YOLOv5m, Zhou et al.[19]

proposed  a  panoramic  apple  recognition  method  based  on  an
improved  YOLOv4  and  threshold-based  bounding  box  matching
merging  algorithm,  and  Wang  et  al.[20]  developed  a  fast  apple
recognition  and  tracking  method  based  on  an  improved  YOLOv5
algorithm.  All  these  methods  achieved  high  recognition  rates  and
efficiency.  However,  the  rectangular  bounding  boxes  generated  by
object  detection  algorithms  sometimes  do  not  perfectly  align  with
the  apple  contours,  leading  to  errors  in  locating  the  apple’s  center
point,  which  affects  harvesting  accuracy.  While  instance
segmentation  algorithms  can  more  accurately  extract  apple
contours, they typically use polygon annotations that need to fit the
target  contour  as  closely  as  possible.  Compared  to  the  rectangular
bounding  box  annotations  in  object  detection,  this  significantly
increases the labeling workload and is  not  conducive to expanding
the  dataset  for  different  apple  varieties  in  the  future.  Based  on
thorough  research  on  apple  harvesting  robot  end  effectors  and
object detection algorithms, this paper proposes using a harvesting-
integrated  soft  hose  for  direct  adsorption  as  the  end  effector  to
improve  harvesting  efficiency.  Additionally,  combining  YOLOv8
and  Segment  Anything  Model  (SAM)  for  apple  visual  recognition
and  segmentation  aims  to  reduce  the  manual  annotation  time  for
image segmentation datasets.

This  study  aims  to  design  and  develop  a  Cartesian  coordinate
apple  harvesting  robot  system  based  on  negative  pressure
adsorption  principles.  The  goal  is  to  reduce  the  single-fruit
harvesting time while ensuring a certain level of harvesting success
rate, thereby effectively improving harvesting efficiency. First, this
paper  provides  a  detailed  introduction  to  the  overall  system
architecture  of  the  apple  harvesting  robot,  covering  its  mechanical
structure, control system, and visual detection algorithm workflow.
Then,  field  harvesting  tests  are  conducted  in  a  structured  apple
orchard,  with  a  comprehensive  explanation  of  relevant  evaluation
indicators. Finally, by analyzing the statistical harvesting results and
comparing the key performance indicators of this system with those
of  other  apple  harvesting  robots  developed  in  recent  years,  the
advantages  and  limitations  of  the  proposed  system  are  thoroughly
examined, and future optimization directions are clearly identified. 

2    System overall design
 

2.1    Orchard environment and robot workspace
Standardized  apple  orchards  in  China  typically  adopt  “V-

shaped”, “Y-shaped”, or “wall-shaped” structures with dwarf close-
planting  cultivation  methods.  These  orchards  are  characterized  by
compact  tree  structures,  open  canopy  space,  and  good  ventilation
and  light  penetration,  which  effectively  enhance  fruit  quality  and
yield.  Compared  to  traditional  orchards,  although  standardized
orchards  require  higher  initial  investment,  their  lower  tree  height
and  reduced  fruit  obstruction  by  branches  and  leaves  make  them
more  suitable  for  robotic  harvesting,  aligning  with  the  needs  of
agricultural automation development[21].  As a result,  this cultivation
model  has  been  strongly  promoted  by  the  Chinese  government,
along  with  corresponding  policy  support.  The  apple  harvesting
robot  developed  in  this  study  is  specifically  designed  for
standardized apple orchards. The experimental site is located at the
Tianping Lake Experimental  Demonstration  Base  of  the  Shandong
Fruit  and  Vegetable  Research  Institute,  where  the  V-shaped  tree
planting method is adopted, as shown in Figure 1.
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Figure 1    Planting structure and accessible harvest space of V-
shaped apple orchard

 

The  fruit  trees  boast  a  row  spacing  of  approximately  3  m,  a
plant spacing of 1.5 m, and an average plant height of around 3.5 m[22].
The  orchard  primarily  cultivates  the  Fuji  apple  variety,  currently
during its peak fruiting season, displaying predominantly red fruits.
Noteworthy is the main stem’s inclination at a 60-degree angle from
left  to  right  concerning  the  ground,  stabilized  by  iron  wires
stretched  horizontally  across  supporting  steel  pipes  placed  at
intervals.  Approximately  90%  of  the  apples  cluster  beneath  the
main  stem  in  a  relatively  dense  arrangement,  with  the  majority
naturally  hanging  downwards  due  to  gravity,  concentrated  below
the  canopy  of  branches  and  leaves.  The  experimental  prototype’s
harvesting  range  is  delimited  by  the  Cartesian  coordinate  system
track’s  length  constraints,  limiting  access  to  the  harvest  space
between 0.5-1.9 m in height and 0.8 m in depth, as delineated by the
yellow area in Figure 1. 

2.2    Robot overall structure
The apple harvesting robot uses a harvesting method based on

the principle of negative pressure adsorption[23]. During the negative
pressure  harvesting  operation,  the  end  effector  is  connected  to  a
vacuum  high-pressure  centrifugal  fan  via  a  pipeline.  The  fan
extracts  air  from  the  negative  pressure  gas  path  to  the  external
environment, generating a negative pressure source at the port of the
end effector, which in turn generates an adsorption force to achieve
the  negative  pressure  picking  function.  As  the  end  effector
approaches  the  fruit,  this  negative  pressure  sucks  the  fruit  into  the
flow  channel.  Compared  to  gripper  methods,  the  method  of  direct
negative pressure adsorption offers two main advantages: (1) It does
not  require  precise  image  positioning  or  picking  point  positioning;
as long as the end effector is close to a certain position around the
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target  fruit,  negative  pressure  can  suck  the  fruit  into  the  channel.
(2)  It  allows  for  continuous  harvesting  without  the  need  for
additional  operations  through  end  effector  to  place  apples  into  the
collection  box,  thereby  reducing  harvesting  time  for  individual
fruits and enhancing overall efficiency.

The 3D model and physical image of the apple harvesting robot
are  exhibited  in  Figure  2.  This  robot  is  mainly  composed  of  a
Cartesian  mechanical  structure,  a  pneumatic  picking  device,  a
buffer  collection  device,  a  vision  system,  a  control  system,  and  a
mobile transport platform. Cartesian mechanical structure is used to
transport  the  negative  pressure  adsorption  end  effector  to  the
designated  picking  point  position.  The  vision  system,  pneumatic
picking  device,  and  buffering  collection  device  are  respectively
used  for  apple  detection  and  positioning,  picking,  and  collection.
The control  system coordinates  the  operation of  various  functional
modules,  including  the  fan  and  the  robotic  arm’s  movements.  The
mobile  transport  platform  is  used  to  install  all  components  of  the
robot,  which  is  towed  by  the  tractor  head  to  move  on  the  inter-
orchard road for continuous harvesting operations.
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1.  Mobile  transport  platform;  2.  Cartesian  robotic  arm;  3.  Negative  pressure
adsorption  head;  4.  Depth  camera;  5.  Hose;  6.  Adsorption  box;  7.  Outlet  pipe;
8.  Rim;  9.  High-pressure  centrifugal  fan;  10.  Collection  box;  11.  Voltage
regulator; 12. Computer; 13. Control cabinet; 14. Gasoline generator
Figure 2    3D model (left) and physical image (right) of the apple

harvesting robot
  

2.2.1    Cartesian mechanical structure
In  V-shaped  apple  orchards,  apple  positions  can  be  described

using  a  Cartesian  coordinate  system.  The  Cartesian  robot  system
provides  a  rectangular  workspace  tailored  to  the  fruit  tree’s  shape.
Cartesian coordinate robotic arms have the characteristics of simple
structure, high dynamic performance, high motion accuracy, simple
inverse  kinematics  scheme,  and  low  cost[24,25].  Compared  to
articulated  robots,  Cartesian  coordinate  systems  generate  fewer
steps during harvesting and reduce operational downtime, enhancing
harvesting efficiency[26]. The Cartesian coordinate mechanical struc-
ture  is  composed  of  four  standard  linear  modules  forming  an
orthogonal gantry-style Cartesian coordinate structure (as shown in
Component  2  of  Figure  2).  The  Z-axis  is  driven  by  two  synch-
ronized  linear  modules,  forming  a  high-load  gantry  structure  with
the X-axis  modules.  The  Z-axis  motor  drives  the  Z-axis  modules,
which  in  turn  move  the  X-axis  module  on  the  slider.  The  Y-axis
module  is  mounted  orthogonally  to  the X-axis.  The X-axis  motor
moves the X-axis module, driving the slider and the Y-axis module.
The  Y-axis  motor  moves  the  Y-axis  module.  A  negative  pressure
suction  end  effector  is  attached  to  the Y-axis,  and  the  robotic  arm
moves the effector along the X-, Y-, and Z-axes to harvest apples. 

2.2.2    End effector
The  apple  harvesting  robot  uses  direct  adsorption  to  harvest

apples.  Under  the  condition  of  constant  fan  power,  the  airflow
output  remains  unchanged,  and  the  intake  airflow  at  the  straight
pipe inlet also remains constant. Based on the relationship between
airflow rate, pipe inlet area, and airflow velocity, the intake velocity

at the end effector’s pipe inlet can be determined.

Q = S · v (1)

Q

S

v

where,   is the airflow rate of the centrifugal fan during operation.
The centrifugal fan used in this harvesting robot has an airflow rate
ranging from 2280 to  2504 m3/h.    is  the inlet  area of  the suction
pipe,  which  is  calculated  based  on  the  pipe  diameter  of  0.13  m,
resulting  in  an  inlet  area  of  0.0133  m2.  Therefore,  the  theoretical
intake velocity   is determined to be in the range of 47.6-52.3 m/s.
This  velocity  is  significantly  higher  than  the  airflow  velocity  in  a
natural  environment,  allowing  the  effect  of  atmospheric  airflow to
be neglected.

Furthermore, according to the Bernoulli equation formula:

P+ρgh+1/2ρv2 =C (2)

P ρ

g h
C

where,    is  the  airflow  pressure,  Pa;    is  the  air  density
(1.225 kg/m3);   is the gravitational acceleration (9.8 m/s²);   is the
height  of  the  airflow,  m;  and    is  a  constant.  From this,  it  can  be
inferred that under the assumption that the height of the end effector
port  remains  unchanged  during  apple  harvesting,  as  the  inflow
velocity increases, the pressure in the airflow region decreases. This
phenomenon  provides  a  theoretical  basis  for  the  increase  in  the
adsorption force.

According to the adsorption force equation, it can be concluded
that:

F = S · (P0 −P1) = π(D/2)2 (P0 −P1) (3)

F P0

P1

where,    is  the  picking  adsorption  force,  N;    is  the  standard
atmospheric pressure,  Pa;    is  the pipeline inlet  pressure,  Pa;  and
D  is  the  pipe  diameter,  m.  Therefore,  the  theoretical  range  of
adsorption force is from 18.5 to 22.3 N.

Experiments conducted by horizontally pulling apples from the
branches  in  the  orchard  showed  that  95% of  the  apples  required  a
minimum horizontal pulling force of less than 35 N to be harvested.
However, in actual operation, the flow of gas within the pipeline is
affected by frictional resistance, and the frictional losses reduce the
airflow,  thereby  decreasing  the  adsorption  force.  For  this  apple
harvesting robot,  factors such as the length of the pipeline, surface
roughness,  and  bends  increase  the  frictional  losses,  thus  reducing
the  actual  adsorption  force  generated  by  the  fan.  Therefore,  the
required adsorption force for apple harvesting is clearly greater than
the theoretical  adsorption force of the negative pressure adsorption
system. To address this, a solution is proposed: installing a silicone
sleeve with an inner hole at the harvesting end of the end effector.
The  silicone  sleeve  not  only  enhances  the  adsorption  force  by
reducing the inlet diameter but also serves as a cushioning layer to
effectively  reduce  the  direct  impact  between  the  apple  and  the
pipe inlet.

During  the  harvesting  operation,  the  blades  of  the  centrifugal
fan  rotate  and  draw  air  outwards.  In  this  process,  the  end  effector
gradually approaches the apple, the inlet area continually decreases,
and  the  airflow  velocity  increases  while  maintaining  a  constant
airflow rate. This leads to an increasing pressure difference on both
sides  of  the  apple,  thus  enhancing  the  picking  suction  as  the
pressure difference grows. When the suction reaches a certain level,
the  connection  between  the  fruit  stem  and  the  branch  breaks,  and
the  apple  is  then  sucked  into  the  pipeline.  However,  in  actual
harvesting,  due  to  potential  positioning  errors  of  the  end  effector,
the  surface  of  the  apple  may  not  fully  fit  the  hole  of  the  silicone
sleeve.  Positioning  errors  can  affect  the  airflow  velocity  and  its
distribution, thereby influencing the magnitude and direction of the
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suction  force,  ultimately  impacting  the  effectiveness  of  the  apple
harvesting process.

To  select  the  appropriate  silicone  sleeve  with  a  suitable  inner
diameter,  harvesting  tests  were  conducted  using  silicone  sleeves
with  inner  diameters  of  6  cm,  7  cm,  8  cm,  and  9  cm.  The  results
showed that  the  silicone  sleeves  with  inner  diameters  of  8  cm and
9 cm experienced insufficient suction during the harvesting process.
This  was primarily  due to  positioning errors  that  caused the actual
suction  force  to  exceed  the  maximum  suction  force  that  the
centrifugal fan could provide under full load. On the other hand, the
silicone sleeve with an inner diameter of 6 cm caused apples, with
an approximate  diameter  of  10 cm, to  become stuck at  the  suction
port  and  fail  to  enter  the  flow  path  smoothly.  This  was  due  to
compression  deformation  when  the  silicone  sleeve  made  contact
with the apple surface, reaching its strain limit, causing the apple to
become stuck in the inner hole of the silicone sleeve and preventing
it from being successfully sucked in. Ultimately, the end effector of
the  apple  harvesting  robot  used  a  silicone  sleeve  with  an  inner
diameter  of  7  cm,  which  demonstrated  the  best  suction  and
harvesting  performance  during  the  tests.  It  effectively  met  the
harvesting  requirements  for  apples  with  diameters  ranging  from  6
cm to 12 cm. 

2.2.3    Pneumatic picking and buffering collection device
The  apple  harvesting  robot  uses  direct  adsorption  to  harvest

apples.  As  shown  in  Figure  3,  the  important  components  of  the
apple  pneumatic  picking  and  buffering  collection  device  are
displayed.  During  apple  harvesting,  the  apple,  which  can  be
approximated  as  a  nearly  spherical  object,  has  its  center  of  mass
directly  used  as  a  positioning  point  for  the  negative  pressure
adsorption[27].
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Figure 3    Schematic diagram of apple pneumatic picking and
buffering collection device

 

The hose is made of polyurethane air duct material, known for
its  excellent  elasticity,  plasticity,  and  flexibility.  It  also  has  good
extensibility,  allowing  it  to  adapt  to  the  contraction  caused  by  the
movement of the robotic arm during the harvesting process. During
the  negative  pressure  adsorption  harvesting  operation,  the  leaves
may  be  sucked  into  the  hose  along  with  the  apples,  and  the
separation of apples and leaves is completed in the adsorption box.
The top of the adsorption box functions as the air outlet, the side as
the air inlet, and the bottom as the apple outlet. Apples fall into the
buffer  collection  device  at  the  bend  of  the  flow  channel  in  this
chamber  due  to  centrifugal  force,  while  leaves,  being  lighter,  are
drawn  into  the  fan  through  the  upper  suction  port,  where  they  are
chopped up before being discharged from the outlet pipe. The high-
pressure  centrifugal  fan,  installed  in  the  vacuum generator  device,

serves as the negative pressure power source of the entire pneumatic
harvesting device, and by adjusting its power, the magnitude of the
negative  pressure  suction  can  be  controlled,  ensuring  minimal
energy  consumption  while  meeting  the  requirements  for  apple
harvesting.

The buffer collection device consists of a wheel with card slots,
a  rim with  cushioned plates,  and a  collection box.  The wheel  with
card  slots  is  positioned  below  the  adsorption  box  and  is  motor-
controlled  to  rotate  continuously.  Cushioning  cotton  is  placed  in
every slot. After passing through the adsorption box, apples fall into
the slots on the wheel due to centrifugal force. As the wheel rotates,
when the slot containing an apple reaches the fruit outlet, the apple
falls  onto  the  rim with  cushioned plates  due to  gravity.  The rim is
lined  with  buffer  cotton  to  prevent  the  apples  from  colliding.  The
flexible  cushioned  plates  rotate  along  with  the  motor-driven  rim,
allowing  the  apples  to  roll  into  the  collection  box.  The  collection
box is also lined with cushioning cotton to prevent the apples from
colliding  with  the  box  frame.  The  wheel  is  designed  as  a  rotating
mechanism to prevent adjacent apples from colliding, while the rim
is designed to rotate to ensure that the apples roll randomly into the
collection box, preventing uneven accumulation inside the box. 

2.2.4    Other components
The  remaining  components  are  shown  in  Figure  2.  The  host

computer  is  a  portable  laptop,  which  issues  picking  commands
through  a  visualized  operation  interface  and  is  also  used  for
program debugging.  The  vision  system consists  of  a  depth  camera
and  a  laptop,  responsible  for  capturing  image  information  and
running vision algorithms, respectively. The entire apple harvesting
robot  system  is  powered  by  a  gasoline  generator,  which  converts
gasoline into electrical energy to supply power to the high-pressure
centrifugal fan, the motor group of the Delta coordinate robotic arm,
and  the  host  computer,  among  other  electrical  devices.  All
components  of  the  aforementioned  apple  harvesting  robot  system
are  rationally  arranged  and  installed  on  a  carrier  platform.
Currently,  the  robot  does  not  yet  have  autonomous  driving
capabilities and is towed by a manually driven tractor head to move
through the apple orchard. However, future iterations of the system
will  explore  the  integration  of  autonomous  navigation  to  further
enhance  operational  efficiency.  The  following  sections  of  this
chapter  will  provide  a  detailed  introduction  to  the  control  system
and vision algorithm. 

2.2.5    Workflow of apple harvesting robot
As  shown  in  Figure  4,  the  workflow  of  the  negative  pressure

adsorption  apple  harvesting  robot  includes:  (1)  The  depth  camera
captures apple tree images,  and the computer uses object  detection
algorithms  to  detect  and  position  the  apples  in  real  time.  (2)  The
detected  apple  coordinates,  relative  to  the  depth  camera,  are
converted to the robot’s global coordinate system, identifying which
apples  are  accessible  to  the  harvesting  end  effector.  (3)  Path
planning  for  apple  picking  is  completed  based  on  the  spatial
positions  of  apples  within  the  accessible  harvest  area.  (4)  The
negative  pressure  adsorption  picking  head  moves  to  the  target
positions  in  sequence,  guided  by  the  robot’s  XYZ motion,  to  pick
each  apple  according  to  the  task  order.  If  an  apple  is  not
successfully  harvested,  secondary  task  planning  and  repeated
attempts  are  made.  After  two  failed  attempts,  the  apple  is
abandoned,  and  the  robot  continues  with  the  remaining  tasks.
(5)  Apples  are  sucked  into  the  adsorption  box via  the  hose,  where
fruit  and  leaf  separation  occurs.  Apples  then  fall  into  the  fruit
transfer wheel and roll into the collection box, while the leaves are
directed to the crushing chamber and discharged via the outlet pipe.
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Figure 4    Workflow of negative pressure adsorption apple picking robot
 
 

2.3    Design of robot control system
The negative pressure adsorption apple picking robot designed

in this  paper  utilizes  a  distributed control  system.  The computer  is
connected  to  the  depth  camera  through  a  USB  bus,  and  data
exchange with the robot’s motion controller is conducted through a
CAN  bus.  The  control  system  structure  is  illustrated  in  Figure  5.
This paper employs a self-developed 3-axis robot motion controller
that  integrates  Microchip’s  dsPIC33EV256GM106  digital  signal
controller and Shenzhen CMOSIC’s TC6014 4-axis motion control
chip  to  form  a  dual-core  structure.  The  dsPIC  digital  controller
primarily handles tasks such as CAN communication, I/O input and
output,  and  control  of  the  vacuum  high-pressure  centrifugal  fan’s
frequency converter. The 3-axis interpolation motion of the robot is
mainly  managed  by  the  TC6014.  Real-time  acquisition  of  apple
image  information  relies  on  the  Intel  RealSense  Depth  Camera
D435i, which is powered via USB. The physical image of the robot
motion controller is shown in Figure 6.
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Figure 5    Schematic diagram of apple harvesting robot
control system

 

During  the  apple  harvesting  process,  apple  image  information
captured  by  the  depth  camera  is  transmitted  to  the  computer  via  a
USB  bus.  The  software  on  the  upper  computer  uses  image
recognition algorithms to determine the spatial position of the target
apple.  It  then  performs  coordinate  transformation  and  inverse
kinematics  calculations  to  obtain  the  XYZ  coordinates  of  the

negative  pressure  adsorption  picking  head  corresponding  to  the
target apple’s position. This coordinate information is transmitted to
the  robot’s  motion  controller  through  the  CAN  bus.  The  motion
controller  manages  the  3-axis  movement  of  the  picking  robot,  and
real-time position information is fed back to the upper computer via
the  CAN  bus  to  determine  the  precise  movement  of  the  picking
head  towards  the  target  apple.  The  apple  is  then  picked  using  the
negative  pressure  adsorption  system.  Throughout  the  entire
harvesting  process,  the  negative  pressure  adsorption  high-pressure
centrifugal  fan  remains  operational  until  the  apple  picking  is
completed.
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Figure 6    Physical picture of robot motion controller
  

2.4    Visual algorithm
The  apple  harvesting  robot’s  visual  algorithm  combines

YOLOv8  and  SAM  for  apple  target  segmentation.  YOLOv8  is  a
high-performance  object  detection  algorithm  widely  used  in
agriculture,  while  SAM,  known  for  its  excellent  segmentation
performance,  ease  of  deployment,  and  training-free  nature,  has
gained  attention  in  image  segmentation[28].  By  using  YOLOv8’s
detection  boxes  as  prompts  for  SAM,  precise  apple  segmentation
within these boxes is achieved. This fusion eliminates the need for
complex  contour  annotations,  reducing  annotation  costs  and
improving  efficiency,  especially  when  expanding  datasets  for
different lighting and apple varieties.

On October 25,  2023,  at  the V-shaped apple tree plantation in
Tai’an,  Shandong,  a  cart  equipped  with  RealSense  D435i  and  an
onboard  computer  captured  204  images  of  mature  apples.  After
reviewing  these  images,  120  were  labeled  using  Make  Sense
software, resulting in 3518 apples labeled. The training set had 100
images with 2781 labels, and the validation set had 20 images with
737 labels. Data augmentation techniques, including flipping, noise
addition,  and  brightness  adjustment,  were  used  to  address
challenges like lighting and leaf obstruction.
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The  robot  used  YOLOv8n  for  apple  detection,  with  a  deep
learning framework built on Windows 11, Python 3.8.18, Cuda11.7,
and  Pytorch  1.13.1.  The  primary  hardware  was  a  Dell  G16  laptop
with an Intel® CoreTM i7-12700H CPU, NVIDIA GeForce RTX 3070
Ti GPU, and 32GB RAM. The model was trained with a batch size
of  16  for  300  epochs  using  the  Stochastic  Gradient  Descent
algorithm.  The  best  result  achieved  a  precision  of  0.893,  recall  of
0.849, and an average precision (AP@50) of 0.914.

To demonstrate the visual algorithm process, the original image
(Figure  7a)  is  first  processed  with  YOLOv8n  to  detect  apples
(Figure  7b).  Detection  boxes  are  fed  into  SAM  for  segmentation,
producing  apple  masks  (Figure  7c).  The  apple  contours  are
extracted using OpenCV’s “cv2.findContours” (Figure 7d), and the
minimum circumcircle for each apple contour and its corresponding
center  are  determined  using  “cv2.minEnclosingCircle”  (Figures  7e
and  7f).  Red  dots  in  Figure  7f  show  the  localization  points  of  all
detected apples.
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a. Original image; b. Object detection based on YOLOv8n; c. Mask segmentation
based on SAM; d.  Mask contour  extraction;  e.  Minimum circumcircle  fitting  of
contour; f. Apple positioning points in the image

Figure 7    Visual algorithm flow chart
  

3    Harvesting experiment
 

3.1    Orchard field experiment
From  November  2-4,  2023,  multiple  rounds  of  on-site

application  tests  of  the  negative  pressure  adsorption  apple
harvesting  Cartesian  coordinate  robot  were  conducted  at  the
Experiment  and  Demonstration  Orchard  at  Tianping  Lake
(117°01′12′′E, 36°13′01′′N), as shown in Figure 8.
  

Figure 8    Harvesting robot on-site application test
 

In  a  standard  V-shaped  apple  orchard,  10  apple  trees  were
selected  as  test  subjects,  with  a  total  of  404 apples  counted within
the  accessible  harvesting  space.  The  specific  data  are  shown  in
Table 1.  A depth camera was mounted on a 1.5-meter-high profile
to  ensure  a  good  field  of  view.  The  harvesting  robot,  towed  by  a
manually driven tractor, moved between rows of trees and harvested

apples on the right side of each tree. After the tests, the results were
analyzed,  with  the  vehicle’s  trajectory  kept  parallel  to  the  rows  to
maximize the number of apples within the accessible range.
  

Table 1    Apple harvest data statistics
Type 1 2 3 4 5 6 7 8 9 10 Total
Na 42 36 48 35 31 43 40 45 33 51 404
Nd 38 33 43 32 29 39 36 40 30 45 365
Nh 35 29 39 28 28 36 32 38 28 44 337
Nr 48 41 53 40 36 45 44 47 39 49 442
Nu 29 27 35 25 25 32 31 30 23 32 289

T (s) 154 143 192 155 104 168 176 182 143 210 1627
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According  to  the  flowchart  shown  in Figure  9,  the  number  of
apples  corresponding  to  the  relevant  harvesting  evaluation
indicators  for  each  test  tree  is  obtained  in  sequence.  Before  the
harvest  test,  the  number  of  apples  within  the  accessible  harvesting
space    of  ten  fruit  trees  and  the  number  of  apples  successfully
detected by the vision system within the accessible harvesting space

 were manually counted. After completing the harvesting test, the
number of apples successfully harvested from each of the ten apple
trees    into  the  collection box were  manually  counted.  Real-time
video recording was used to measure the time   taken for the robot
to harvest apples within the accessible harvesting space of each fruit
tree  (excluding  the  time  required  for  manually  moving  the  apple
harvesting robot between different harvesting points), and to record
the total number of harvesting operations times   performed on a
single  fruit  tree.  Finally,  the  apples  harvested  by  the  robot  are
grouped  according  to  the  label  of  each  tree  and  placed  in  a  well-
ventilated  area  at  room  temperature  for  24  hours.  After  that,
experienced  apple  quality  inspectors  from  the  orchard  assess  the
apples  on-site,  based  on  the  standards  for  first-grade  Fuji  apples,
specifically  regarding  punctures,  bruises,  and  abrasions.  The
specific regulations are as follows: the apple skin should be free of
punctures,  the  total  area  of  bruises  or  abrasions  should  not  exceed
1  cm2,  and  the  largest  individual  bruise  or  abrasion  should  not
exceed  0.5  cm2.  Apples  that  do  not  meet  the  first-grade  Fuji  apple
quality requirements for punctures, bruises, or abrasions are defined
as damaged apples. The number of damaged apples   under each
tree  label  is  then counted and recorded.  The detailed results  of  the
field harvesting experiment are presented in Table 1. 

3.2    Evaluation indicators for harvesting experiments

Nd/Na

Nh/Na

Nh/Nd

(Nh −Nu)/Nh

According  to  the  flowchart  shown  in Figure  9,  the  evaluation
indicators  for  the  harvesting  experiments  of  the  negative  pressure
adsorption  Cartesian  robot  system  for  apple  harvesting  are
calculated,  as  detailed  below.  The  apple  recognition  rate    is
the  ratio  of  the  number  of  apples  detected  by  the  vision  system
within the accessible harvest space to the actual number of apples in
that  space.  It  is  used  to  assess  the  detection  performance  of  the
harvesting robot’s vision system. The overall harvest success rate of
apples   refers to the ratio of the number of apples successfully
harvested  to  the  actual  number  of  apples  within  accessible  harvest
space.  It  measures the overall  effectiveness of the harvesting robot
system.  The  success  rate  of  apple  harvesting    refers  to  the
ratio of the number of apples successfully harvested to the number
of  apples  detected  by  the  vision  system  within  accessible  harvest
space.  It  evaluates  the  performance  of  the  mechanical  and  control
system  of  the  harvesting  robot’s  end  effector.  The  apple  damage
rate    is the ratio of the difference between the number
of  successfully  harvested apples  and the number  of  apples  without
surface  damage  inside  the  collection  box  to  the  number  of
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(Nr −Nd)/Nd

successfully harvested apples. It evaluates the possibility of damage
to  apples  caused  by  the  harvesting  process  and  corresponding
harvesting devices. The redundancy harvesting rate   of
apples  is  the  ratio  of  the  difference  between  the  total  number  of
harvesting  operations  times  and  the  number  of  apples  detected  by
the  vision  system  within  the  harvestable  range  to  the  number  of
apples detected by the vision system within the harvestable range. It

is  used  to  evaluate  the  accuracy  of  harvesting  operations.  The
corresponding  evaluation  indicators  were  calculated  based  on  the
results  of  each  apple  tree  harvest  experiment,  and  the  results  were
plotted in the line chart on the right side of Figure 9. The horizontal
axis represents the fruit tree numbers from 1 to 10, the vertical axis
represents the ratio of each evaluation indicator, and the dashed line
indicates the average value of each indicator.
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Figure 9    Data acquisition and processing flowchart for harvesting evaluation indicators
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In  addition  to  the  five  evaluation  indicators  mentioned  above,
the average harvesting time per apple   is calculated by dividing the
total  time    consumed  by  the  actual  total  number  of  harvested
apples  . This indicator is used to assess the harvesting efficiency
of robots.  These six evaluation indicators for the negative pressure
adsorption  Cartesian  coordinate  apple  harvesting  robot  provide  a
comprehensive  assessment  of  the  robot’s  performance  and  offer
clearer directions for subsequent performance improvements. 

4    Experimental results and analysis

In  the  apple  harvesting  robots  developed  over  the  past  three
years,  three  key  indicators—overall  harvesting  rate,  single  fruit
harvesting time, and fruit damage rate—were statistically analyzed,
as  listed  in  Table  2.  The  harvesting  methods  are  categorized  into
claw-based  gripping  harvesting  and  vacuum-based  suction
harvesting.  The  vacuum-based  method  is  further  divided  into
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separated  harvesting  and  integrated  harvesting.  In  the  separated
vacuum-based  harvesting,  Hu  et  al.[29]and  Zhang  et  al.[30]  used  a
vacuum device to generate negative pressure to attach the apple to
the  nozzle  (with  the  nozzle  diameter  smaller  than  the  apple’s
diameter).  The  apple  was  then  picked  from  the  tree  by  rotating
(rotation) and pulling (pulling), and finally placed into a collection
bin.  The  integrated  harvesting  method  proposed  in  this  paper  uses
negative pressure generated by a centrifugal fan to directly suck the
apple  into  the  pipeline,  where  it  passes  through  a  multi-stage
buffering  device  before  entering  the  collection  bin.  Compared  to
other  harvesting  methods,  this  vacuum  suction-based  integrated
harvesting  method  allows  the  robot  to  immediately  proceed  to  the
next  harvesting  task  after  picking  one  apple,  without  occupying
additional  robot  working  time  during  the  collection  process,  thus
significantly improving harvesting efficiency. Therefore,  the single
fruit harvesting time for this method was shorter, averaging 4.83 s.
  

Table 2    Comparison of harvesting performance of different
apple harvesting robots

Research team Harvesting method
Overall
harvest

success rate

Harvesting
time

(s/per fruit)

Damage
rate

Bu et al. 2022[31] Grasp and release 82.93% 15.53 ~0%

Hu et al. 2022[29] Vacuum suction and
rotation-pull 47.37% 4.00 ~0%

Zhang et al. 2023[30] Vacuum suction and
drop 82.40% 6.00 ~6.00%

Huang et al. 2024[32] Grip and rotation 76.97% 7.29 0.43%

Our team, 2024 Direct negative pressure
suction 83.65% 4.83 13.61%

 

Additionally,  the  apple  harvesting  robot  demonstrated  a  high
overall harvesting success rate of 83.65%. This success is attributed
to  the  high  tolerance  for  positioning  errors  in  this  harvesting
method,  as  well  as  its  ability  to  effectively  harvest  apples  even
when slightly obstructed by branches or leaves. The actual average
recognition  accuracy  for  apples  was  90.54%,  significantly  lower
than  the  generally  required  95%.  In  the  future,  apple  recognition
accuracy  should  be  improved  by  expanding  the  dataset  to  cover
various lighting conditions and optimizing the algorithm structure to
enhance  recognition  accuracy  under  occlusion  conditions.  The
average  fruit  harvesting  success  rate  was  92.36%.  Approximately
5%  of  apples  could  not  be  harvested  due  to  branch  occlusion,  as
branches  obstructed  the  harvesting  head  from  approaching  the
apple’s surface, resulting in insufficient suction force and leading to
harvesting  failure  (as  shown  in  Figure  10a).  Additionally,  apples
that were too large in diameter (as shown in Figure 10b) could not
pass through the harvesting head, while apples that  were too small
in diameter (as shown in Figure 10c) could not effectively cover the
holes  at  the  end  of  the  buffering  layer,  leading  to  insufficient
suction force and preventing harvesting.

Regarding  the  apple  damage  rate,  this  robot’s  harvesting
method  had  the  highest  damage  rate  at  13.61%.  In  other  methods,
the apple was well-buffered during contact with the end effector or
collection  device,  resulting  in  a  lower  damage  rate.  The  primary
cause  of  damage  was  collision  with  the  transport  pipeline  wall,
which  was  approximately  2  meters  long  with  two  bends.  Future
improvements  could  involve  reducing  the  number  of  bends  and
shortening the pipeline to decrease damage. Additionally, when two
adjacent  apples  were  harvested  simultaneously  (as  shown  in
Figure  10d),  the  risk  of  collision  increased  in  the  pipeline  and
grading  device.  Future  work  should  focus  on  optimizing  the
buffering collection device for continuous harvesting.

 

a b

c d

a. Too many branches and leaves obstructed the suction head, preventing harvest;
b.  Negative  pressure  suction  pulled  in  two  adjacent  apples,  increasing  collision
risk; c. Apples smaller than 5 cm could not block the silicone sleeve hole, leading
to insufficient suction force; d. Apples larger than 12 cm got stuck at the suction
opening.

Figure 10    Some problems encountered in the
harvesting experiment

 

In  addition  to  the  above  indicators,  the  redundant  picking rate
of  the  apple  harvesting  robot  was  21.69%.  Redundant  picking
primarily occurs when apples are severely obstructed by branches or
when the  apple’s  size  is  too  large  or  too  small,  causing  two failed
picking  attempts.  Apart  from  the  aforementioned  failures,  another
situation  arose  where  a  small  amount  of  branches  and  leaves
obstruct  the  target  apple.  In  such  cases,  the  negative  pressure
suction  head  first  absorbed  the  branches  and  leaves  to  clear  the
obstruction,  and  the  apple  was  successfully  harvested  in  the
second attempt.

To avoid repeated failed harvesting attempts,  the likelihood of
success  should  be  assessed  using  visual  algorithms,  considering
factors  like  obstruction  level  and  apple  diameter.  Abandoning
unharvestable  apples  can  reduce  redundant  attempts  and  improve
efficiency.  Additionally,  misidentifying  branches  and  leaves  as
apples  increases  invalid  picks,  mainly  due  to  dataset  issues.
Excessive  samples  of  obstructed  apples  may  cause  feature
confusion  and  model  overfitting.  Future  annotation  should  better
address  heavily  obstructed  apples.  In  the  current  trial,  the  suction
head  retracts  along  the  Y-axis  after  each  pick  to  avoid  branch
collisions but lacks consideration of branch distribution. Optimizing
the harvesting path based on apple positions and branch distribution
could  further  reduce  harvesting  time,  making  it  a  key  focus  for
future efficiency improvements. 

5    Conclusions
In response to  the automated harvesting needs of  standardized

apple  orchards  in  China,  a  negative  pressure  adsorption  Cartesian
coordinate  apple  harvesting  robot  system  suitable  for  structured
planting  modes  was  designed.  On-site  tests  conducted  in  apple
orchards  with  a  V-shaped  planting  pattern  showed  that  the  object
detection and image segmentation algorithms based on Yolov8 and
Segment  Anything  Model  achieved  an  apple  recognition  rate  of
90.54% within the accessible harvesting space. Compared to claw-
type apple harvesting robots and the separate picking and collecting
vacuum adsorption  apple  harvesting  robots,  this  integrated  picking
and  collecting  negative  pressure  adsorption  apple  harvesting  robot
achieved  a  higher  overall  harvesting  success  rate  (83.65%)  and
faster  individual  apple  harvesting  speed  (4.83  s,  including
harvesting  failures  but  excluding  robot  movement  time  between
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trees),  but  had  a  higher  damage  rate  of  13.61%.  In  the  future,  the
damage  rate  will  be  reduced  by  shortening  the  apple  transport
pipeline  and  optimizing  the  collection  method.  Additionally,  the
object detection method will be improved under severe branch and
leaf  occlusion  and  complex  lighting  conditions  to  enhance  apple
recognition.  Furthermore,  considering  the  effects  of  branch
occlusion  and  apple  diameter,  the  apple  harvesting  path  will  be
further optimized to improve overall harvesting efficiency. 
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