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Abstract: To address the limitation of low harvesting efficiency in intelligent mechanized harvesting in standardized orchards,
a negative pressure adsorption apple harvesting robot has been designed and developed. The robot is based on a Cartesian
coordinate system and incorporates direct negative pressure adsorption picking combined with multi-stage buffering collection
methods. Additionally, the proposed model pipeline integrates YOLOv8 and Segment Anything Model for precise apple
picking point localization. Finally, field trials of the apple harvesting robot were conducted in a V-shaped layout apple orchard
at Experiment and Demonstration Orchard at Tianping Lake. The experimental results showed an apple recognition rate of
90.54%, an overall harvesting success rate of 83.65%, an average picking efficiency of 4.83 s per fruit, and a damage rate of
13.61%. It demonstrates the potential of the robot in improving the efficiency and reliability of automated apple harvesting. At
the same time, the results highlight the need to focus on enhancing the robustness of apple recognition algorithms under varying
lighting conditions, and reducing apple damage rates by shortening the transport pipeline and optimizing the structure of the
collection device. This study provides a promising solution for addressing global challenges in agricultural automation, offering
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insights into the future optimization of intelligent harvesting technologies.
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1 Introduction

Apples are one of the most popular fruits globally', and China
is a major producer with the highest output in the world™.
According to data from the National Bureau of Statistics of China in
2022, China’s apple cultivation area was 1.956 million hm?,
yielding a staggering 47.572 million tons. While the cultivation area
has decreased in recent years, production has shown a steady annual
increase. Orchard harvesting is a highly seasonal, labor-intensive,
and time-consuming process”. As modern agriculture moves
towards intelligence and precision, replacing manual labor with
intelligent robots for automated harvesting has become a major
trend. Achieving efficient and low-damage harvesting has always
been the primary goal of automated harvesting systems®. Apples
are predominantly grown in open fields and have a single annual
harvest season, making apple picking a seasonal labor-intensive
task. The shortage of rural labor has led to rising labor costs for
manual harvesting, making the demand for harvest automation
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increasingly urgent™.

In recent years, the research on automated apple harvesting
robots has received widespread attention from numerous scholars”*.
Within this research, the design of end effectors for picking and the
development of apple recognition algorithms have become two key
technologies in this field. The end effectors of apple-picking robots
mainly include pneumatic soft finger grippers, suction-based
grippers, and a combination of both. In the research on pneumatic
soft finger grippers, Pi et al.”’) proposed a pneumatically driven three-
finger gripper that controls gripping and releasing apples through
inflation and deflation. Chen et al.'”! proposed a three-finger soft
claw inspired by the fin ray effect and combined it with a constant
pressure feedback system to significantly enhance the safety of the
soft fruit gripper. Li et al.'" studied various picking modes of
flexible three-finger end effectors and determined the optimal angle
for the wrap-around pulling separation method. In the area of
suction-based grippers, Wang et al.'” designed a bionic, non-
damaging apple-picking mechanical hand consisting of four suction
cups, based on octopus predation mechanisms. The hand uses
negative pressure to adhere to the apple, then separates the fruit
stem using rotation and dragging, ultimately delivering the apple
into a collection pipeline below to complete the harvesting process.
In the development of grippers combining claws and suction, Zhang
et all® designed and developed a gripping mechanism that
integrates a hollow flexible tube with three claws and has a
swallowing function. This mechanism can precisely control the
gripping force through force feedback, effectively reducing the
damage rate to apples. Wang et al.'" designed a pneumatic gripper
consisting of four conical soft fingers and a suction cup, capable of
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twisting and pulling operations to effectively separate apples from
the tree. The common feature of these harvesting methods is that
after the end effector contacts and secures the apple, additional
operations such as rotation and dragging are typically required to
detach the apple from the tree. Moreover, the harvested apples must
be placed into a designated harvesting box or directly fall into a
bottom collection box through an unloading process. The entire
procedure involves both harvesting and collecting stages, which
increases the time required to pick each apple.

In the research on apple recognition algorithms, in addition to
using traditional machine learning methods for apple region
segmentation!”, the performance of instance segmentation and
object detection algorithms has significantly improved with the
development of deep learning technologies. In terms of instance
segmentation, Wang et al.'*! developed an improved version of the
Mask Region-based Convolutional Neural Network (Mask RCNN),
and Tang et al.'” proposed an improved SOLOvV2 high-precision
apple instance segmentation method. Both methods demonstrated
excellent apple target segmentation performance. In the field of
object detection, due to their outstanding performance, YOLO
series algorithms have been widely applied in fruit and vegetable
recognition. Yan et al.'¥ proposed a real-time apple harvesting
recognition method based on an improved YOLOv5m, Zhou et al.!"”!
proposed a panoramic apple recognition method based on an
improved YOLOv4 and threshold-based bounding box matching
merging algorithm, and Wang et al.?” developed a fast apple
recognition and tracking method based on an improved YOLOVS
algorithm. All these methods achieved high recognition rates and
efficiency. However, the rectangular bounding boxes generated by
object detection algorithms sometimes do not perfectly align with
the apple contours, leading to errors in locating the apple’s center
point, which affects
segmentation algorithms can more accurately extract apple
contours, they typically use polygon annotations that need to fit the

harvesting accuracy. While instance

target contour as closely as possible. Compared to the rectangular
bounding box annotations in object detection, this significantly
increases the labeling workload and is not conducive to expanding
the dataset for different apple varieties in the future. Based on
thorough research on apple harvesting robot end effectors and
object detection algorithms, this paper proposes using a harvesting-
integrated soft hose for direct adsorption as the end effector to
improve harvesting efficiency. Additionally, combining YOLOv8
and Segment Anything Model (SAM) for apple visual recognition
and segmentation aims to reduce the manual annotation time for
image segmentation datasets.

This study aims to design and develop a Cartesian coordinate
apple harvesting robot system based on negative pressure
adsorption principles. The goal is to reduce the single-fruit
harvesting time while ensuring a certain level of harvesting success
rate, thereby effectively improving harvesting efficiency. First, this
paper provides a detailed introduction to the overall system
architecture of the apple harvesting robot, covering its mechanical
structure, control system, and visual detection algorithm workflow.
Then, field harvesting tests are conducted in a structured apple
orchard, with a comprehensive explanation of relevant evaluation
indicators. Finally, by analyzing the statistical harvesting results and
comparing the key performance indicators of this system with those
of other apple harvesting robots developed in recent years, the
advantages and limitations of the proposed system are thoroughly
examined, and future optimization directions are clearly identified.

2 System overall design

2.1 Orchard environment and robot workspace

Standardized apple orchards in China typically adopt “V-
shaped”, “Y-shaped”, or “wall-shaped” structures with dwarf close-
planting cultivation methods. These orchards are characterized by
compact tree structures, open canopy space, and good ventilation
and light penetration, which effectively enhance fruit quality and
yield. Compared to traditional orchards, although standardized
orchards require higher initial investment, their lower tree height
and reduced fruit obstruction by branches and leaves make them
more suitable for robotic harvesting, aligning with the needs of
agricultural automation development?!. As a result, this cultivation
model has been strongly promoted by the Chinese government,
along with corresponding policy support. The apple harvesting
robot developed in this study is specifically designed for
standardized apple orchards. The experimental site is located at the
Tianping Lake Experimental Demonstration Base of the Shandong
Fruit and Vegetable Research Institute, where the V-shaped tree
planting method is adopted, as shown in Figure 1.

Figure 1 Planting structure and accessible harvest space of V-

shaped apple orchard

The fruit trees boast a row spacing of approximately 3 m, a
plant spacing of 1.5 m, and an average plant height of around 3.5 m™.
The orchard primarily cultivates the Fuji apple variety, currently
during its peak fruiting season, displaying predominantly red fruits.
Noteworthy is the main stem’s inclination at a 60-degree angle from
left to right concerning the ground, stabilized by iron wires
stretched horizontally across supporting steel pipes placed at
intervals. Approximately 90% of the apples cluster beneath the
main stem in a relatively dense arrangement, with the majority
naturally hanging downwards due to gravity, concentrated below
the canopy of branches and leaves. The experimental prototype’s
harvesting range is delimited by the Cartesian coordinate system
track’s length constraints, limiting access to the harvest space
between 0.5-1.9 m in height and 0.8 m in depth, as delineated by the
yellow area in Figure 1.

2.2 Robot overall structure

The apple harvesting robot uses a harvesting method based on
the principle of negative pressure adsorption™!. During the negative
pressure harvesting operation, the end effector is connected to a
vacuum high-pressure centrifugal fan via a pipeline. The fan
extracts air from the negative pressure gas path to the external
environment, generating a negative pressure source at the port of the
end effector, which in turn generates an adsorption force to achieve
the negative pressure picking function. As the end effector
approaches the fruit, this negative pressure sucks the fruit into the
flow channel. Compared to gripper methods, the method of direct
negative pressure adsorption offers two main advantages: (1) It does
not require precise image positioning or picking point positioning;
as long as the end effector is close to a certain position around the
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target fruit, negative pressure can suck the fruit into the channel.
(2) It allows for continuous harvesting without the need for
additional operations through end effector to place apples into the
collection box, thereby reducing harvesting time for individual
fruits and enhancing overall efficiency.

The 3D model and physical image of the apple harvesting robot
are exhibited in Figure 2. This robot is mainly composed of a
Cartesian mechanical structure, a pneumatic picking device, a
buffer collection device, a vision system, a control system, and a
mobile transport platform. Cartesian mechanical structure is used to
transport the negative pressure adsorption end effector to the
designated picking point position. The vision system, pneumatic
picking device, and buffering collection device are respectively
used for apple detection and positioning, picking, and collection.
The control system coordinates the operation of various functional
modules, including the fan and the robotic arm’s movements. The
mobile transport platform is used to install all components of the
robot, which is towed by the tractor head to move on the inter-
orchard road for continuous harvesting operations.

1. Mobile transport platform; 2. Cartesian robotic arm; 3. Negative pressure
adsorption head; 4. Depth camera; 5. Hose; 6. Adsorption box; 7. Outlet pipe;
8. Rim; 9. High-pressure centrifugal fan; 10. Collection box; 11. Voltage
regulator; 12. Computer; 13. Control cabinet; 14. Gasoline generator
Figure 2 3D model (left) and physical image (right) of the apple
harvesting robot

2.2.1 Cartesian mechanical structure

In V-shaped apple orchards, apple positions can be described
using a Cartesian coordinate system. The Cartesian robot system
provides a rectangular workspace tailored to the fruit tree’s shape.
Cartesian coordinate robotic arms have the characteristics of simple
structure, high dynamic performance, high motion accuracy, simple
inverse kinematics scheme, and low cost®*!, Compared to
articulated robots, Cartesian coordinate systems generate fewer
steps during harvesting and reduce operational downtime, enhancing
harvesting efficiency”. The Cartesian coordinate mechanical struc-
ture is composed of four standard linear modules forming an
orthogonal gantry-style Cartesian coordinate structure (as shown in
Component 2 of Figure 2). The Z-axis is driven by two synch-
ronized linear modules, forming a high-load gantry structure with
the X-axis modules. The Z-axis motor drives the Z-axis modules,
which in turn move the X-axis module on the slider. The Y-axis
module is mounted orthogonally to the X-axis. The X-axis motor
moves the X-axis module, driving the slider and the Y-axis module.
The Y-axis motor moves the Y-axis module. A negative pressure
suction end effector is attached to the Y-axis, and the robotic arm
moves the effector along the X-, Y-, and Z-axes to harvest apples.
2.2.2 End effector

The apple harvesting robot uses direct adsorption to harvest
apples. Under the condition of constant fan power, the airflow
output remains unchanged, and the intake airflow at the straight
pipe inlet also remains constant. Based on the relationship between
airflow rate, pipe inlet area, and airflow velocity, the intake velocity

at the end effector’s pipe inlet can be determined.

0=5-v (1)
where, Q is the airflow rate of the centrifugal fan during operation.
The centrifugal fan used in this harvesting robot has an airflow rate
ranging from 2280 to 2504 m’/h. S is the inlet area of the suction
pipe, which is calculated based on the pipe diameter of 0.13 m,
resulting in an inlet area of 0.0133 m’. Therefore, the theoretical
intake velocity v is determined to be in the range of 47.6-52.3 m/s.
This velocity is significantly higher than the airflow velocity in a
natural environment, allowing the effect of atmospheric airflow to
be neglected.

Furthermore, according to the Bernoulli equation formula:

P+pgh+1/2pv* =C 2)

where, P is the airflow pressure, Pa; p is the air density
(1.225 kg/m?); g is the gravitational acceleration (9.8 m/s?); A is the
height of the airflow, m; and C is a constant. From this, it can be
inferred that under the assumption that the height of the end effector
port remains unchanged during apple harvesting, as the inflow
velocity increases, the pressure in the airflow region decreases. This
phenomenon provides a theoretical basis for the increase in the
adsorption force.

According to the adsorption force equation, it can be concluded
that:

F:S'(PO—PI):N(D/Z)Z(PO—PI) (3)

where, F is the picking adsorption force, N; P, is the standard
atmospheric pressure, Pa; P, is the pipeline inlet pressure, Pa; and
D is the pipe diameter, m. Therefore, the theoretical range of
adsorption force is from 18.5 to 22.3 N.

Experiments conducted by horizontally pulling apples from the
branches in the orchard showed that 95% of the apples required a
minimum horizontal pulling force of less than 35 N to be harvested.
However, in actual operation, the flow of gas within the pipeline is
affected by frictional resistance, and the frictional losses reduce the
airflow, thereby decreasing the adsorption force. For this apple
harvesting robot, factors such as the length of the pipeline, surface
roughness, and bends increase the frictional losses, thus reducing
the actual adsorption force generated by the fan. Therefore, the
required adsorption force for apple harvesting is clearly greater than
the theoretical adsorption force of the negative pressure adsorption
system. To address this, a solution is proposed: installing a silicone
sleeve with an inner hole at the harvesting end of the end effector.
The silicone sleeve not only enhances the adsorption force by
reducing the inlet diameter but also serves as a cushioning layer to
effectively reduce the direct impact between the apple and the
pipe inlet.

During the harvesting operation, the blades of the centrifugal
fan rotate and draw air outwards. In this process, the end effector
gradually approaches the apple, the inlet area continually decreases,
and the airflow velocity increases while maintaining a constant
airflow rate. This leads to an increasing pressure difference on both
sides of the apple, thus enhancing the picking suction as the
pressure difference grows. When the suction reaches a certain level,
the connection between the fruit stem and the branch breaks, and
the apple is then sucked into the pipeline. However, in actual
harvesting, due to potential positioning errors of the end effector,
the surface of the apple may not fully fit the hole of the silicone
sleeve. Positioning errors can affect the airflow velocity and its
distribution, thereby influencing the magnitude and direction of the
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suction force, ultimately impacting the effectiveness of the apple
harvesting process.

To select the appropriate silicone sleeve with a suitable inner
diameter, harvesting tests were conducted using silicone sleeves
with inner diameters of 6 cm, 7 cm, 8 cm, and 9 cm. The results
showed that the silicone sleeves with inner diameters of 8 cm and
9 cm experienced insufficient suction during the harvesting process.
This was primarily due to positioning errors that caused the actual
suction force to exceed the maximum suction force that the
centrifugal fan could provide under full load. On the other hand, the
silicone sleeve with an inner diameter of 6 cm caused apples, with
an approximate diameter of 10 cm, to become stuck at the suction
port and fail to enter the flow path smoothly. This was due to
compression deformation when the silicone sleeve made contact
with the apple surface, reaching its strain limit, causing the apple to
become stuck in the inner hole of the silicone sleeve and preventing
it from being successfully sucked in. Ultimately, the end effector of
the apple harvesting robot used a silicone sleeve with an inner
diameter of 7 cm, which demonstrated the best suction and
harvesting performance during the tests. It effectively met the
harvesting requirements for apples with diameters ranging from 6
cmto 12 cm.

2.2.3 Pneumatic picking and buffering collection device

The apple harvesting robot uses direct adsorption to harvest
apples. As shown in Figure 3, the important components of the
apple pneumatic picking and buffering collection device are
displayed. During apple harvesting, the apple, which can be
approximated as a nearly spherical object, has its center of mass
directly used as a positioning point for the negative pressure
adsorption”’.

-——- Apple movement path
Leaf movement path
—— Rotation

T eaf fragments

? Apple
Outlet | Adsorption box = >
Pipe\ & > ] <
— T Hose M
Adsor/ption
Leaf head

Wheel with card slot

Rim with cushioned plates

Vacuum
generator

Collection box

Figure 3 Schematic diagram of apple pneumatic picking and
buffering collection device

The hose is made of polyurethane air duct material, known for
its excellent elasticity, plasticity, and flexibility. It also has good
extensibility, allowing it to adapt to the contraction caused by the
movement of the robotic arm during the harvesting process. During
the negative pressure adsorption harvesting operation, the leaves
may be sucked into the hose along with the apples, and the
separation of apples and leaves is completed in the adsorption box.
The top of the adsorption box functions as the air outlet, the side as
the air inlet, and the bottom as the apple outlet. Apples fall into the
buffer collection device at the bend of the flow channel in this
chamber due to centrifugal force, while leaves, being lighter, are
drawn into the fan through the upper suction port, where they are
chopped up before being discharged from the outlet pipe. The high-
pressure centrifugal fan, installed in the vacuum generator device,

serves as the negative pressure power source of the entire pneumatic
harvesting device, and by adjusting its power, the magnitude of the
negative pressure suction can be controlled, ensuring minimal
energy consumption while meeting the requirements for apple
harvesting.

The buffer collection device consists of a wheel with card slots,
a rim with cushioned plates, and a collection box. The wheel with
card slots is positioned below the adsorption box and is motor-
controlled to rotate continuously. Cushioning cotton is placed in
every slot. After passing through the adsorption box, apples fall into
the slots on the wheel due to centrifugal force. As the wheel rotates,
when the slot containing an apple reaches the fruit outlet, the apple
falls onto the rim with cushioned plates due to gravity. The rim is
lined with buffer cotton to prevent the apples from colliding. The
flexible cushioned plates rotate along with the motor-driven rim,
allowing the apples to roll into the collection box. The collection
box is also lined with cushioning cotton to prevent the apples from
colliding with the box frame. The wheel is designed as a rotating
mechanism to prevent adjacent apples from colliding, while the rim
is designed to rotate to ensure that the apples roll randomly into the
collection box, preventing uneven accumulation inside the box.
2.2.4  Other components

The remaining components are shown in Figure 2. The host
computer is a portable laptop, which issues picking commands
through a visualized operation interface and is also used for
program debugging. The vision system consists of a depth camera
and a laptop, responsible for capturing image information and
running vision algorithms, respectively. The entire apple harvesting
robot system is powered by a gasoline generator, which converts
gasoline into electrical energy to supply power to the high-pressure
centrifugal fan, the motor group of the Delta coordinate robotic arm,
and the host computer, among other electrical devices. All
components of the aforementioned apple harvesting robot system
are rationally arranged and installed on a carrier platform.
Currently, the robot does not yet have autonomous driving
capabilities and is towed by a manually driven tractor head to move
through the apple orchard. However, future iterations of the system
will explore the integration of autonomous navigation to further
enhance operational efficiency. The following sections of this
chapter will provide a detailed introduction to the control system
and vision algorithm.
2.2.5 Workflow of apple harvesting robot

As shown in Figure 4, the workflow of the negative pressure
adsorption apple harvesting robot includes: (1) The depth camera
captures apple tree images, and the computer uses object detection
algorithms to detect and position the apples in real time. (2) The
detected apple coordinates, relative to the depth camera, are
converted to the robot’s global coordinate system, identifying which
apples are accessible to the harvesting end effector. (3) Path
planning for apple picking is completed based on the spatial
positions of apples within the accessible harvest area. (4) The
negative pressure adsorption picking head moves to the target
positions in sequence, guided by the robot’s XYZ motion, to pick
each apple according to the task order. If an apple is not
successfully harvested, secondary task planning and repeated
attempts are made. After two failed attempts, the apple is
abandoned, and the robot continues with the remaining tasks.
(5) Apples are sucked into the adsorption box via the hose, where
fruit and leaf separation occurs. Apples then fall into the fruit
transfer wheel and roll into the collection box, while the leaves are
directed to the crushing chamber and discharged via the outlet pipe.
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Figure 4 Workflow of negative pressure adsorption apple picking robot

2.3 Design of robot control system

The negative pressure adsorption apple picking robot designed
in this paper utilizes a distributed control system. The computer is
connected to the depth camera through a USB bus, and data
exchange with the robot’s motion controller is conducted through a
CAN bus. The control system structure is illustrated in Figure 5.
This paper employs a self-developed 3-axis robot motion controller
that integrates Microchip’s dsPIC33EV256GM106 digital signal
controller and Shenzhen CMOSIC’s TC6014 4-axis motion control
chip to form a dual-core structure. The dsPIC digital controller
primarily handles tasks such as CAN communication, I/O input and
output, and control of the vacuum high-pressure centrifugal fan’s
frequency converter. The 3-axis interpolation motion of the robot is
mainly managed by the TC6014. Real-time acquisition of apple
image information relies on the Intel RealSense Depth Camera
D435i, which is powered via USB. The physical image of the robot
motion controller is shown in Figure 6.

Visual program interface

— - Computer |

')
CAN bus | USB

y

£
Operator !
[0

Robot motion controller

(dsPIC33EV+TC6014) Position l
10 Pulse feedback !
1 - 1 Depth camera
T || I - - D435i
| converter | | Motor | | Motor | | Motor | m
******* I"*"“ | driver | | driver | | driver |
B e
Vacuum || [T T T o]

. 1| |l Xaxis | | Yaxis | | Zaxis
high-pressure || |- 4L L
centrifugal |

fan

Figure 5 Schematic diagram of apple harvesting robot
control system

During the apple harvesting process, apple image information
captured by the depth camera is transmitted to the computer via a
USB bus. The software on the upper computer uses image
recognition algorithms to determine the spatial position of the target
apple. It then performs coordinate transformation and inverse
kinematics calculations to obtain the XYZ coordinates of the

negative pressure adsorption picking head corresponding to the
target apple’s position. This coordinate information is transmitted to
the robot’s motion controller through the CAN bus. The motion
controller manages the 3-axis movement of the picking robot, and
real-time position information is fed back to the upper computer via
the CAN bus to determine the precise movement of the picking
head towards the target apple. The apple is then picked using the
negative pressure adsorption system. Throughout the entire
harvesting process, the negative pressure adsorption high-pressure
centrifugal fan remains operational until the apple picking is
completed.

Motor driver

Robotic
motion
Frequency controller
converter of
high voltage ™

centrifugal fan

— s Three-phase

Reactor —= transformer

Figure 6 Physical picture of robot motion controller

2.4 Visual algorithm

The apple harvesting robot’s visual algorithm combines
YOLOv8 and SAM for apple target segmentation. YOLOVS is a
high-performance object detection algorithm widely used in
agriculture, while SAM, known for its excellent segmentation
performance, ease of deployment, and training-free nature, has
gained attention in image segmentation®. By using YOLOVS’s
detection boxes as prompts for SAM, precise apple segmentation
within these boxes is achieved. This fusion eliminates the need for
complex contour annotations, reducing annotation costs and
improving efficiency, especially when expanding datasets for
different lighting and apple varieties.

On October 25, 2023, at the V-shaped apple tree plantation in
Tai’an, Shandong, a cart equipped with RealSense D435i and an
onboard computer captured 204 images of mature apples. After
reviewing these images, 120 were labeled using Make Sense
software, resulting in 3518 apples labeled. The training set had 100
images with 2781 labels, and the validation set had 20 images with
737 labels. Data augmentation techniques, including flipping, noise
addition, and brightness adjustment, were used to address
challenges like lighting and leaf obstruction.
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The robot used YOLOv8n for apple detection, with a deep
learning framework built on Windows 11, Python 3.8.18, Cudall.7,
and Pytorch 1.13.1. The primary hardware was a Dell G16 laptop
with an Intel® Core™ i7-12700H CPU, NVIDIA GeForce RTX 3070
Ti GPU, and 32GB RAM. The model was trained with a batch size
of 16 for 300 epochs using the Stochastic Gradient Descent
algorithm. The best result achieved a precision of 0.893, recall of
0.849, and an average precision (AP@50) of 0.914.

To demonstrate the visual algorithm process, the original image
(Figure 7a) is first processed with YOLOv8n to detect apples
(Figure 7b). Detection boxes are fed into SAM for segmentation,
producing apple masks (Figure 7c). The apple contours are
extracted using OpenCV’s “cv2.findContours” (Figure 7d), and the
minimum circumcircle for each apple contour and its corresponding
center are determined using “cv2.minEnclosingCircle” (Figures 7e
and 7f). Red dots in Figure 7f show the localization points of all
detected apples.

a. Original image; b. Object detection based on YOLOVS8n; c¢. Mask segmentation
based on SAM; d. Mask contour extraction; e. Minimum circumcircle fitting of
contour; f. Apple positioning points in the image

Figure 7 Visual algorithm flow chart

3 Harvesting experiment

3.1 Orchard field experiment

From November 2-4, 2023, multiple rounds of on-site
application tests of the negative pressure adsorption apple
harvesting Cartesian coordinate robot were conducted at the
Experiment and Demonstration Orchard at Tianping Lake
(117°01'12"E, 36°13'01"'N), as shown in Figure 8.

Figure 8 Harvesting robot on-site application test

In a standard V-shaped apple orchard, 10 apple trees were
selected as test subjects, with a total of 404 apples counted within
the accessible harvesting space. The specific data are shown in
Table 1. A depth camera was mounted on a 1.5-meter-high profile
to ensure a good field of view. The harvesting robot, towed by a
manually driven tractor, moved between rows of trees and harvested

apples on the right side of each tree. After the tests, the results were
analyzed, with the vehicle’s trajectory kept parallel to the rows to
maximize the number of apples within the accessible range.

Table 1 Apple harvest data statistics
Type 1 2 3 4 5 6 7 8 9 10  Total
Ng 42 36 48 35 31 43 40 45 33 51 404
Ny 38 33 43 32 29 39 36 40 30 45 365
Ny 35 29 39 28 28 36 32 38 28 44 337
N, 48 41 53 40 36 45 44 47 39 49 442
Ny 29 27 35 25 25 32 31 30 23 32 289
T(s) 154 143 192 155 104 168 176 182 143 210 1627

According to the flowchart shown in Figure 9, the number of
apples corresponding to the relevant harvesting evaluation
indicators for each test tree is obtained in sequence. Before the
harvest test, the number of apples within the accessible harvesting
space N, of ten fruit trees and the number of apples successfully
detected by the vision system within the accessible harvesting space
N, were manually counted. After completing the harvesting test, the
number of apples successfully harvested from each of the ten apple
trees N, into the collection box were manually counted. Real-time
video recording was used to measure the time 7' taken for the robot
to harvest apples within the accessible harvesting space of each fruit
tree (excluding the time required for manually moving the apple
harvesting robot between different harvesting points), and to record
the total number of harvesting operations times N, performed on a
single fruit tree. Finally, the apples harvested by the robot are
grouped according to the label of each tree and placed in a well-
ventilated area at room temperature for 24 hours. After that,
experienced apple quality inspectors from the orchard assess the
apples on-site, based on the standards for first-grade Fuji apples,
specifically regarding punctures, bruises, and abrasions. The
specific regulations are as follows: the apple skin should be free of
punctures, the total area of bruises or abrasions should not exceed
1 cm?, and the largest individual bruise or abrasion should not
exceed 0.5 cm’. Apples that do not meet the first-grade Fuji apple
quality requirements for punctures, bruises, or abrasions are defined
as damaged apples. The number of damaged apples N, under each
tree label is then counted and recorded. The detailed results of the
field harvesting experiment are presented in Table 1.

3.2 Evaluation indicators for harvesting experiments

According to the flowchart shown in Figure 9, the evaluation
indicators for the harvesting experiments of the negative pressure
adsorption Cartesian robot system for apple harvesting are
calculated, as detailed below. The apple recognition rate N,/N, is
the ratio of the number of apples detected by the vision system
within the accessible harvest space to the actual number of apples in
that space. It is used to assess the detection performance of the
harvesting robot’s vision system. The overall harvest success rate of
apples N, /N, refers to the ratio of the number of apples successfully
harvested to the actual number of apples within accessible harvest
space. It measures the overall effectiveness of the harvesting robot
system. The success rate of apple harvesting N,/N, refers to the
ratio of the number of apples successfully harvested to the number
of apples detected by the vision system within accessible harvest
space. It evaluates the performance of the mechanical and control
system of the harvesting robot’s end effector. The apple damage
rate (N,—N,)/N, is the ratio of the difference between the number
of successfully harvested apples and the number of apples without
surface damage inside the collection box to the number of
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successfully harvested apples. It evaluates the possibility of damage
to apples caused by the harvesting process and corresponding
harvesting devices. The redundancy harvesting rate (N, —N,)/N, of
apples is the ratio of the difference between the total number of
harvesting operations times and the number of apples detected by
the vision system within the harvestable range to the number of
apples detected by the vision system within the harvestable range. It
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Figure 9 Data acquisition and processing flowchart for harvesting evaluation indicators

In addition to the five evaluation indicators mentioned above,

the average harvesting time per apple 7 is calculated by dividing the
total time 7 consumed by the actual total number of harvested

apples N,. This indicator is used to assess the harvesting efficiency
of robots. These six evaluation indicators for the negative pressure
adsorption Cartesian coordinate apple harvesting robot provide a
comprehensive assessment of the robot’s performance and offer
clearer directions for subsequent performance improvements.

4 Experimental results and analysis

claw-based gripping harvesting and vacuum-based
harvesting. The vacuum-based method is further divided into

is used to evaluate the accuracy of harvesting operations. The
corresponding evaluation indicators were calculated based on the
results of each apple tree harvest experiment, and the results were
plotted in the line chart on the right side of Figure 9. The horizontal
axis represents the fruit tree numbers from 1 to 10, the vertical axis
represents the ratio of each evaluation indicator, and the dashed line
indicates the average value of each indicator.

In the apple harvesting robots developed over the past three
years, three key indicators—overall harvesting rate, single fruit
harvesting time, and fruit damage rate—were statistically analyzed,
as listed in Table 2. The harvesting methods are categorized into

suction
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separated harvesting and integrated harvesting. In the separated
vacuum-based harvesting, Hu et al.”’and Zhang et al.®™” used a
vacuum device to generate negative pressure to attach the apple to
the nozzle (with the nozzle diameter smaller than the apple’s
diameter). The apple was then picked from the tree by rotating
(rotation) and pulling (pulling), and finally placed into a collection
bin. The integrated harvesting method proposed in this paper uses
negative pressure generated by a centrifugal fan to directly suck the
apple into the pipeline, where it passes through a multi-stage
buffering device before entering the collection bin. Compared to
other harvesting methods, this vacuum suction-based integrated
harvesting method allows the robot to immediately proceed to the
next harvesting task after picking one apple, without occupying
additional robot working time during the collection process, thus
significantly improving harvesting efficiency. Therefore, the single
fruit harvesting time for this method was shorter, averaging 4.83 s.

Table 2 Comparison of harvesting performance of different
apple harvesting robots

Overall ~ Harvesting Damage
Research team Harvesting method harvest time &
. rate
success rate (s/per fruit)
Buet al. 202281 Grasp and release 82.93% 15.53 ~0%
Huetal 2022  vacuumsuctionand 550, 4.00 ~0%
rotation-pull
Zhang et al. 20236 Vac““mdigl‘";“"“ and g9 40% 6.00  ~6.00%
Huang et al. 2024 Grip and rotation 76.97% 7.29 0.43%
Our team, 2024 ~ DITECtCEALVE pressure g3 6500 453 13619

suction

Additionally, the apple harvesting robot demonstrated a high
overall harvesting success rate of 83.65%. This success is attributed
to the high tolerance for positioning errors in this harvesting
method, as well as its ability to effectively harvest apples even
when slightly obstructed by branches or leaves. The actual average
recognition accuracy for apples was 90.54%, significantly lower
than the generally required 95%. In the future, apple recognition
accuracy should be improved by expanding the dataset to cover
various lighting conditions and optimizing the algorithm structure to
enhance recognition accuracy under occlusion conditions. The
average fruit harvesting success rate was 92.36%. Approximately
5% of apples could not be harvested due to branch occlusion, as
branches obstructed the harvesting head from approaching the
apple’s surface, resulting in insufficient suction force and leading to
harvesting failure (as shown in Figure 10a). Additionally, apples
that were too large in diameter (as shown in Figure 10b) could not
pass through the harvesting head, while apples that were too small
in diameter (as shown in Figure 10c) could not effectively cover the
holes at the end of the buffering layer, leading to insufficient
suction force and preventing harvesting.

Regarding the apple damage rate, this robot’s harvesting
method had the highest damage rate at 13.61%. In other methods,
the apple was well-buffered during contact with the end eftector or
collection device, resulting in a lower damage rate. The primary
cause of damage was collision with the transport pipeline wall,
which was approximately 2 meters long with two bends. Future
improvements could involve reducing the number of bends and
shortening the pipeline to decrease damage. Additionally, when two
adjacent apples were harvested simultaneously (as shown in
Figure 10d), the risk of collision increased in the pipeline and
grading device. Future work should focus on optimizing the
buffering collection device for continuous harvesting.

a. Too many branches and leaves obstructed the suction head, preventing harvest;
b. Negative pressure suction pulled in two adjacent apples, increasing collision
risk; c. Apples smaller than 5 cm could not block the silicone sleeve hole, leading
to insufficient suction force; d. Apples larger than 12 cm got stuck at the suction
opening.
Figure 10 Some problems encountered in the
harvesting experiment

In addition to the above indicators, the redundant picking rate
of the apple harvesting robot was 21.69%. Redundant picking
primarily occurs when apples are severely obstructed by branches or
when the apple’s size is too large or too small, causing two failed
picking attempts. Apart from the aforementioned failures, another
situation arose where a small amount of branches and leaves
obstruct the target apple. In such cases, the negative pressure
suction head first absorbed the branches and leaves to clear the
obstruction, and the apple was successfully harvested in the
second attempt.

To avoid repeated failed harvesting attempts, the likelihood of
success should be assessed using visual algorithms, considering
factors like obstruction level and apple diameter. Abandoning
unharvestable apples can reduce redundant attempts and improve
efficiency. Additionally, misidentifying branches and leaves as
apples increases invalid picks, mainly due to dataset issues.
Excessive samples of obstructed apples may cause feature
confusion and model overfitting. Future annotation should better
address heavily obstructed apples. In the current trial, the suction
head retracts along the Y-axis after each pick to avoid branch
collisions but lacks consideration of branch distribution. Optimizing
the harvesting path based on apple positions and branch distribution
could further reduce harvesting time, making it a key focus for
future efficiency improvements.

5 Conclusions

In response to the automated harvesting needs of standardized
apple orchards in China, a negative pressure adsorption Cartesian
coordinate apple harvesting robot system suitable for structured
planting modes was designed. On-site tests conducted in apple
orchards with a V-shaped planting pattern showed that the object
detection and image segmentation algorithms based on Yolov8 and
Segment Anything Model achieved an apple recognition rate of
90.54% within the accessible harvesting space. Compared to claw-
type apple harvesting robots and the separate picking and collecting
vacuum adsorption apple harvesting robots, this integrated picking
and collecting negative pressure adsorption apple harvesting robot
achieved a higher overall harvesting success rate (83.65%) and
faster individual apple harvesting speed (4.83 s, including
harvesting failures but excluding robot movement time between
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trees), but had a higher damage rate of 13.61%. In the future, the
damage rate will be reduced by shortening the apple transport
pipeline and optimizing the collection method. Additionally, the
object detection method will be improved under severe branch and
leaf occlusion and complex lighting conditions to enhance apple
recognition. Furthermore, considering the effects of branch
occlusion and apple diameter, the apple harvesting path will be
further optimized to improve overall harvesting efficiency.

Acknowledgement

This study was financially supported by China’s Central
Guiding Local Technology Development Special Fund Project
(Grant No. ZYYD2025CG21), the Zhejiang Science and
Technology Plan Project-National Key Research and Development
Program of China (Grant No. 2019C03075), “Leading Goose”
Research and Development Program Subproject of Zhejiang (Grant
No. 2022C02021), and Xinjiang Boshiran Intelligent Agricultural
Machinery Co., Ltd. (Grant No. KYY-HX-20210639).

[References]

[1] ChenglJL,Guo W C, Zhang Z Y, Zeng S C, Wang Z W. Optical properties
of ‘Gala’(Malus pumila) apple pulp and their relationship with internal
quality. Infrared Physics & Technology, 2022; 123: 104210. DOI:
10.1016/j.infrared.2022.104210

[2] Zhao X, Cao G H, Zhang P F, Ma Z H, Zhao L J, Chen J N. Dynamic
analysis and lightweight design of 3-DOF apple picking manipulator.
Transactions of the CSAM, 2023; 54(7): 88-98. (in Chinese) DOI: 10.
6041/j. issn. 1000-1298.2023.07.009

[3] ChenQ, Yin CK, Guo Z L, Wang J P, Zhou H P, Jiang X S. Current status
and future development of the key technologies for apple picking robots.
Transactions of the CSAE, 2023; 39(4): 1-15. (in Chinese) DOI:
10.11975/j.issn.1002-6819.202209041

[4] Fei Z H, Vougioukas S G. A robotic orchard platform increases harvest
throughput by controlling worker vertical positioning and platform speed.
Computers and Electronics in Agriculture, 2024; 218: 108735. DOI:
10.1016/j.compag.2024.108735

[5] LiuCL, Gong L, Yuan J, Li Y M. Current status and development trends
of agricultural robots. Transactions of the CSAM, 2022; 53(07): 1-22, 55.
(in Chinese) DOI: 10.6041/j. issn. 1000-1298.2022.07.001

[6] ZhaoY X, Wan X F, Duo H X. Review of rigid fruit and vegetable picking
robots. Int J Agric & Biol Eng, 2023; 16(5): 1-11. DOIL
10.25165/j.ijabe.20231605.8120

[71 Jia W K, Zhang Y, Lian J, Zheng Y J, Zhao D, Li C J. Apple harvesting
robot under information technology: A review. International Journal of
Advanced Robotic Systems, 2020; 17(3). DOLI:
10.1177/1729881420925310

[8] Barbosa Junior M R, Santos R G, Sales L A, Oliveira L P. Advancements
in Agricultural Ground Robotsfor Specialty Crops: An Overview of
Innovations, Challenges, and Prospects. Plants, 2024; 13(23): 3372. DOI:
10.3390/plants13233372

[91 PiJ, Liu J, Zhou K H, Qian M Y. An octopus-inspired bionic flexible
gripper for apple grasping. Agriculture, 2021; 11(10): 1014. DOLI:
10.3390/agriculture11101014

[10] Chen K W, Li T, Yan T J, Xie F, Feng Q C, Zhu Q Z, Zhao C J. A soft
gripper design for apple harvesting with force feedback and fruit slip
detection. Agriculture, 2022; 12(11): 1802. DOI:
10.3390/agriculture12111802

[11] Ji W, He G Z, Xu B, Zhang H W, Yu X W. A new picking pattern of a
flexible three-fingered end-effector for apple harvesting robot. Agriculture,
2024; 14(1): 102. DOI: 10.3390/agriculture14010102

[12] Wang M R, Yan B, Zhang S H, Fan P, Zeng P Z, Shi S Q, Yang F Z.
Development of a novel biomimetic mechanical hand based on physical
characteristics of apples. Agriculture, 2022; 12(11): 1871. DOL:
10.3390/agriculture12111871

[13] Zhang Z, Zhou J, Yi B Y, Zhang B H, Wang K. A flexible swallowing
gripper for harvesting apples and its grasping force sensing model.
Computers and Electronics in Agriculture, 2023; 204: 107489. DOI:

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[B31]

[32]

10.1016/j.compag.2022.107489

Wang X, Kang HW, Zhou HY, Au W, Wang M Y, Chen C. Development
and evaluation of a robust soft robotic gripper for apple harvesting.
Computers and Electronics in Agriculture, 2023; 204: 107552. DOI:
10.1016/j.compag.2022.107552

Fan P, Lang G D, Guo P J, Liu Z J, Yang F Z, Yan B, Lei X Y. Multi-
feature patch-based segmentation technique in the gray-centered RGB
color space for improved apple target recognition. Agriculture, 2021;
11(3): 273. DOI: 10.3390/agriculture11030273

Wang D, He D. Fusion of Mask RCNN and attention mechanism for
instance segmentation of apples under complex background. Computers
and Electronics in  Agriculture, 2022; 196: 106864. DOI:
10.1016/j.compag.2022.106864

Tang S X, Xia Z L, GuJ N, Wang W B, Huang Z D, Zhang W H. High-
precision apple recognition and localization method based on RGB-D and
improved SOLOV2 instance segmentation. Frontiers in Sustainable Food
Systems, 2024; 8: 1403872. DOI: 10.1016/j.compag.2023.107952

Yan B, Fan P, Wang M R, Shi S Q, Lei X Y, Yang F Z. Real-time Apple
Picking Pattern Recognition for Picking Robot Based on Improved
YOLOv5m. Transactions of the CSAM, 2022; 53(09): 28-38, 59. (in
Chinese) DOI: 10.6041/j. issn. 1000-1298.2022.09.003

Zhou G H, M S, Liang F F. Recognition of the apple in panoramic images
based on improved YOLOv4 model. Transactions of the CSAE, 2022;
38(21):  159-168. (in  Chinese) DOI:  10.11975/j.issn.1002-
6819.2022.21.019

Wang J X, SuY H, YaoJ H, Liu M, DuY R, Wu X, Huang L, Zhao M H.
Apple rapid recognition and processing method based on an improved
version of YOLOVS. Ecological Informatics, 2023; 77: 102196. DOI:
10.1016/j.ecoinf.2023.102196

Yan B, Li X M. RGB-D camera and fractal-geometry-based maximum
diameter estimation method of apples for robot intelligent selective graded
harvesting.  Fractal and Fractional, 2024; 8(11): 649. DOI:
10.3390/fractalfract8110649

Yang S, Wang H R, Wang G P, Wang J Z, Gu A G, Xue X M, Chen R.
Effects of Seaweed-Extract-Based Organic Fertilizers on the Levels of
Mineral Elements, Sugar—Acid Components and Hormones in Fuji Apples.
Agronomy, 2023; 13(4): 969. DOI: 10.3390/agronomy13040969

Yang S Z, Ji J C, Cai H X, Chen H. Modeling and force analysis of a
harvesting robot for button mushrooms. IEEE Access, 2022; 10:
78519-78526. DOI: 10.1109/ACCESS.2022.3191802

Bottin M, Cipriani G, Tommasino D, Doria A. Analysis and control of
vibrations of a Cartesian cutting machine using an equivalent robotic
model. Machines, 2021; 9(8): 162. DOI: 10.3390/machines9080162
D’Imperio S, Berruti T M, Gastaldi C, Soccio P. Tunable Vibration
Absorber Design for a High-Precision Cartesian Robot. Robotics, 2022;
11(5): 103. DOIL: 10.3390/robotics11050103

Au C K, Barnett J, Lim S H, Duke M. Workspace analysis of Cartesian
robot system for kiwifruit harvesting. Industrial Robot: the international
journal of robotics research and application, 2020; 47(4): 503-510. DOI:
10.1108/IR-12-2019-0255

Feng Q C, Zhao C J, Li T, Chen L P, Guo X, Xie F, Xiong Z C, Chen K W,
Liu C, Yan T J. Design and test of a four-arm apple harvesting robot.
Transactions of the CSAE, 2023; 39(13): 25-33. (in Chinese) DOI:
10.11975/j.issn.1002-6819.202305114

Kirillov A, Mintun E, Ravi N, Mao H Z, Rolland C, Gustafson L, Xiao T
T, Whitehead S, C. Berg A, Lo W Y, Dollar P, Girshick R. Segment
anything. Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2023; 4015-4026. DOI: 10.48550/arXiv.2304.02643

Hu G R, Chen C, Chen J, Sun L J, Sugirbay A, Chen Y, Jin H L, Zhang S,
Bu L X. Simplified 4-DOF manipulator for rapid robotic apple harvesting.
Computers and Electronics in Agriculture, 2022; 199: 107177. DOI:
10.1016/j.compag.2022.107177

Zhang K X, Lammers K, Chu P Y, Li Z J, Lu R F. An automated apple
harvesting robot—From system design to field evaluation. Journal of Field
Robotics, 2024; 41(7): 2384-2400. DOI: 10.1002/r0b.22268

Bu L X, Chen C K, Hu G R, Sugirbay A, Sun H X, Chen J. Design and
evaluation of a robotic apple harvester using optimized picking patterns.
Computers and Electronics in Agriculture, 2022; 198: 107092. DOI:
10.1016/j.compag.2022.107092

Huang W L, Miao Z H, Wu T, Guo Z W, Han W K, Li T. Design of and
experiment with a dual-arm apple harvesting robot system. Horticulturae,
2024; 10(12): 1268. DOI: 10.3390/horticulturac10121268



	1 Introduction
	2 System overall design
	2.1 Orchard environment and robot workspace
	2.2 Robot overall structure
	2.2.1 Cartesian mechanical structure
	2.2.2 End effector
	2.2.3 Pneumatic picking and buffering collection device
	2.2.4 Other components
	2.2.5 Workflow of apple harvesting robot

	2.3 Design of robot control system
	2.4 Visual algorithm

	3 Harvesting experiment
	3.1 Orchard field experiment
	3.2 Evaluation indicators for harvesting experiments

	4 Experimental results and analysis
	5 Conclusions
	Acknowledgement
	References

