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Abstract: Walnut shell-kernel separation after cracking is crucial for providing raw materials for further processing. However,
impurities and losses during separation limit complete separation. To address this, a two-stage tandem separation device was
designed and optimized. Computational fluid dynamics (CFD) was used to analyze the effects of four bent duct structures on
the flow field. Response surface methodology (RSM) and artificial neural networks (ANN) were employed to predict
separation performance under various conditions. Both models accurately predicted performance, with ANN showing superior
predictive ability. The optimal design was determined using non-dominated sorting genetic algorithm-II (NSGA-II) and
technique for order preference by similarity to an ideal solution (TOPSIS): the inclination of the first stage deflector plate (x,)
was 39°the inclination of the second stage deflector plate (x,) was 36°, the wind speed of the first stage fan (x;) was 21 m/s,
and the wind speed of the second stage fan (x;) was 13.5 m/s; impurity rate (y,) was 4.51%, and loss rate (y,) was 6.62%.
Compared with traditional single-stage devices, the optimized device reduced impurity rate by 73.98% to 77.55% and loss rate
by 9.44% to 53.96%, significantly improving separation efficiency and quality. This study provides theoretical guidance for
designing and optimizing shell-kernel separation devices.
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1 Introduction

Walnut (Juglans regia L.) is a famous dried fruit with an
internal kernel and external shell. The kernel has high edible and
medical value and can be made into snacks, drinks, oil, and other
products”. However, in China, only about 20% of walnuts are
processed due to outdated primary processing technologies (like
drying and shelling) and high labor costs”. Separating the shell
from the kernel is crucial but often leads to losses of up to 12%
during processing”. This harms product quality and causes
economic waste. Therefore, improving separation methods and
developing better equipment are important for both food safety and
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economic efficiency.

In the past, various separation methods have been proposed
according to different physical properties of shell and kernel. For
example, an intelligent visual identification technique® is normally
based on the varied color, texture, and morphological properties of
shell and kernel, which can achieve accurate target classification.
However, the properties of walnut shells and kernels have certain
similarities, which brings great difficulty to separation. Meanwhile,
this technique is not efficient. Electrostatic” and magnetic!®
separation methods are not only time-consuming and inefficient, but
also have the potential to contaminate the kernel. Besides, the
mixture of shell and kernel must be fully dried prior to the
separation process to avoid significantly reducing the separation
efficiency for the electrostatic method™, which results in increasing
unnecessary energy consumption. In summary, these separation
methods are complex and have obvious drawbacks, which largely
limit practical application. In recent years, the pneumatic separation
that is cost-effective, simple, and easy to maintain, has been widely
used in the separation of shell and kernel, especially for the
agricultural materials including rice, rapeseed, and nut.
Unfortunately, unexpected phenomena frequently occur during the
separation process (e.g., containing impurities and entrainment
loss), which limits the development and popularization of the
pneumatic separation device. It is well known that the separation
performance is strongly related to the physical characteristics of the
shell and kernel (e.g., particle size and moisture content),
configurations of separation devices (e.g., guide plate and length),
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and operational conditions (e.g., wind speed and deflector plate
angle). Hence, many researchers have proposed a series of effective
methods to improve separation performance in terms of the three
aspects mentioned above, particularly the latter two factors.

Previous research has explored various aspects of separation
devices. Li et al.”? used ANN and RSM to study the effects of baffle
opening and inlet angle on cleaning and loss rates in walnut shell-
kernel winnowing devices. Zhang!"” optimized a separation device
by considering walnut properties and apparatus structure. Drying
walnuts for 30 min minimized suspension velocity overlap and
maximized separation efficiency. CFD simulations further enhanced
the device, achieving a cleaning efficiency of 91.86% and a loss rate
of 4.42%. Safikhani"" developed and optimized a Karagoz cyclone
separator using NSGA-II . Lim et al."” investigated how wind speed
and water content affect separation performance in a jatropha fruit
separator, noting that vortex flow increases particle residence time.
Chen et al.' studied the relationship between airflow and loss in
brown rice separation. However, single-pipeline separation devices
struggle with multi-size and multi-component mixtures'*. Wang et
al." proposed that adding a second separation stage improves
density segregation, similar to cascade impactors used in
agricultural material separation'. Examples include tandem two-
stage separators for rice!”” and a two-stage winnower cyclone
system!"®. Zhang and Liu"” developed a two-stage tandem walnut
shell-kernel separator and optimized its operational parameters
using response surface methodology. The optimal parameter
combination was identified, achieving a foreign material content of
4.75% and a kernel loss rate of 8.41%. Despite these advances,
research on two-stage separation devices is limited due to their
complexity in design and operation, requiring consideration of
factors like airflow distribution and unit matching.

However, there is still a wide gap of knowledge about two-
stage walnut shell-kernel separation that must be filled to truly
understand the mechanism by which operating parameters affect
device performance. Meanwhile, it is difficult to regulate the device
and optimize its performance due to structural complexity. There is
a need to better understand how operating parameters affect the
performance of two-stage walnut shell-kernel separation devices.
Therefore, designing a new two-stage separation device and
optimizing its parameters is important. To achieve this, CFD
simulations were used to study the flow inside the separation duct.
RSM, ANN, and genetic algorithms were also applied to optimize
the device’s operating parameters (such as fan speeds and deflector
plate angles). This approach helped create models to predict
impurity and loss rates. Combining RSM, ANN, and NSGA-II
proved to be effective for optimizing the device’s performance.

2 Materials and methods

2.1 Materials

'Wen 185' was chosen as the experimental specimen in this
study, which is the typical walnut cultivar in the local market. Fresh-
harvested walnuts were collected on September 15, 2022, from the
Wensu Walnut Experimental Station (latitude: 41°27 '67 ' 'N,
longitude: 80°24'17''E, and altitude: 1056 m), Xinjiang, China.
Walnuts were cracked using a multi-point extrusion cracking device
under optimum operating parameters (cracking angle 0.47° and
roller speed 108 r/min), which shows a cracking rate of 97.24% and
a high-quality kernel rate of 92.3%". Moreover, secondary
cracking was implemented to crack unbroken walnuts. After that,
the dry base moisture contents of shell and kernel as well as
diaphragma juglandis fructus were measured using the standard hot

air oven method, and the values (average of three experiments) were
8.46%, 12.01%, and 28.32%, respectively. As shown in Figure 1,
walnut shell and kernel were manually classified into 1/8, 1/4, and
1/2 grades according to their size. Notice that 1/2 kernel and 1/4
kernel are defined as high-quality kernels in this study.
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Figure 1 Proportions of the components of the mixture

2.2 Development of walnut shell-kernel separation device

A two-stage tandem walnut shell-kernel separation device, as
shown in Figure 2a, including the frame, feed device, frequency
control box, first stage separation duct, second stage separation
duct, and cyclone separator, was designed and manufactured. The
discharging outlet of the first stage separation device is connected
with the feeding inlet of the second stage separation device, and
each comes complete with a centrifugal fan (DF-2.5-1 and III,
China). Each separation duct consists of an air inlet, a feeding inlet,
a collecting outlet, a discharging outlet, and a deflector plate. To
meet the requirements of different working conditions, a frequency
control box was used to adjust wind speed and the speed of the feed
roller. The function of the deflector plate was to prevent the
materials from undergoing centrifugal motion along the inner wall
of the bent duct and to make their motion more dispersed.

Cyclone separator

. First stage separation duct
Feed device 80 SeP
Frequency control box First stage deflector plate
Accelerated section duct Second stage separation duct
. . Second stage centrifugal fan
First stage centrifugal fan s &

Kernel collection box

.~ Bottom plate  Sprocket Redoraen

 Deflector plate
7~ Inclination of the

Sealing ring Shaft Safety pin deflector plate
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Hybrid materials

Figure 2 Schematic diagram of walnut shell-kernel separation
device and the deflector plate mechanism
The separation process uses a deflector plate and centrifugal
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action to sort particles by size (Figure 2b). The deflector plate is
essential, as it redirects airflow to counteract centrifugal forces,
ensuring uniform pressure distribution and enhancing system
stability and efficiency. Without it, airflow would be uncontrolled,
leading to increased centrifugal effects, uneven distribution,
component wear, and reduced performance. The angled deflector
plate prevents walnut shells and kernels from clustering along the
duct wall, improving particle distribution and separation efficiency.
At optimal wind speeds, kernels fall into a collection box due to
gravity, while lighter shells are carried away. The two-stage design
captures high-quality kernels in the first stage and separates crushed
kernels in the second, with residue and dust directed to a cyclone
separator. This yields three outputs: high-quality kernels, crushed
kernels, and walnut shells. The process can be adjusted for different
mixtures by modifying wind speed and deflector plate angles.
Detailed device dimensions are listed in Table 1.

Table 1 Parameters of the separation equipment

Parameters Size
GB-0Cr18Ni9 (China)
2600 x 2600 x 2600

Material
Overall size, length x width x height/mm

Hopper, length x height/mm 400 x 200
Separation duct, width x thickness/mm 600 x 226
Bend radius/mm 550
Cyclone separator inside diameter/mm 560
Overall weight/kg 350
Maximum capacity/kg-h' 720
Inclination of the deflector plate/(°) 20-60

DF-2.5-TIT (China)
DF-2.5-1I (China)

First stage centrifugal fan

Second stage centrifugal fan

2.3 Numerical simulation
2.3.1 Governing equation

The standard k-¢ model in ANSYS Fluent 19.2 was used to
simulate fluid flow in 90° bends. Validated in prior studies® -, it
uses continuity and momentum equations. For detailed equations,
refer to Dai et al.™
2.3.2  Simulation model and boundary conditions

A simplified three-dimensional model of the two-stage tandem
shell-kernel separation device was created in SolidWorks 2018 to
determine the bent duct radius (Figure 3a). Different colored lines
indicate various duct curvatures. The simulation employed the
SIMPLEC, PRESTO, and QUICK schemes for pressure-velocity
coupling and spatial discretization due to their convergence
advantages. A no-slip boundary condition and standard wall
function were applied, with a velocity inlet of 20 m/s and a pressure
outlet. The fluid was air (viscosity: 1.8x10° Pa-s, density:
1.2 kg/m®), and the flow was assumed incompressible. The
simulation used a convergence accuracy of 0.001, a time step of
0.01 s, and ran for 10 s.
2.3.3 Mesh division and mesh independence testing

Grid independence verification was conducted to balance
computational accuracy and efficiency. For models with a bending
outer radius of 550 mm, simulations with grids of 90 698, 105 846,
117 514, 122 225, and 140 205 cells were performed to assess the
impact of grid quantity on pressure drop and tangential velocity.
The grid count was adjusted by varying cell sizes, while
maintaining a maximum skewness below 0.6 and mesh quality
within a range of 0.3-1.0. As shown in Figure 4a, pressure drop was
calculated using the method by Le and Yoon™, and Figure 4b
illustrates tangential velocity trends at the » = 350 mm cross-section.
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Figure 3 Three-dimensional model of separation ducts

550 1
540

530

Pressure/Pa

520

510

500 1 1 1 1 1
9 10 11 12 13 14

Number of cells (x10%)
a. Pressure drop

—#— 90698 —o— 105846 —&— 117514
20.8 | —¥— 122225 —*— 140205

20.6
20.4

20.2

Velocity/m-s™

20.0

19.8

19.6 |

0 10 20 30 40 50 60 70 80 90
/(%)
b. Tangential velocity at 7=350 mm

Figure 4 Grid independence verification

When the grid count reached 122 225 cells, pressure drop and
tangential velocity stabilized with a relative error of less than 1%.
Therefore, the grid domain for the 550 mm radius was set to
122 225 cells (Figure 5). Similarly, grid domains for radii of
470 mm, 700 mm, and 1000 mm were established with 125 305,


https://www.ijabe.org

October, 2025 LiuHL, etal. Parameters optimization of a walnut shell-kernel separation device using RSM and ANN coupled NSGA- II

Vol. 18 No. 5 309

120 115, and 114 215 cells, respectively.

0
0.40 0.46 0.52 0.58 0.64 0.70 0.76 0.82 0.88 0.94 1.00

Figure 5 Mesh structure of bent duct

2.4 Predictive modeling and optimization methods
2.4.1 RSM modeling

Response surface method (RSM) is an empirical modeling
system based on linear models that could be utilized for developing,
improving, and optimizing complex processes®. It has the
advantage of providing statistically acceptable findings with fewer
tests”. RSM model fits complex unknown functional relationships
in a small region with a simple primary or quadratic polynomial
model, which is an effective means of solving parametric
optimization problems. On the basis of preliminary tests and single
factor tests, input parameters and their respective ranges of values
were determined (i.e., 34 <x; <42, 30 <x, <38, 18 <x; <22, and
12 < x4 < 16). The central composite design (CCD) method was
applied to develop the design space and obtain sampling points.
Each design variable has five different levels (including three points
within the limits specified for each factor and two points outside
those limits)*?, including the inclination of the first stage deflector
plate (x;: 34°, 36°, 38°, 40°, 42°), the inclination of the second stage
deflector plate (x,: 30°, 32°, 34°, 36°, 38°), the wind speed of the
first stage fan (x;: 18, 19, 20, 21, 22 m/s),and the wind speed of the
second stage fan (x4 12, 13, 14, 15, 16 m/s). The objective
functions were impurity rate (y;) and loss rate (,). The number of
required tests (V) was defined as N = ny + 2K + 2*, in which K and
ny are the number of design variables and the number of central
points, respectively®”.
2.4.2  ANN modeling

RSM is simple but cannot capture all features of complex
nonlinear responses®. ANN, however, is more sophisticated and
powerful for modeling nonlinear interactions between variables,
making it popular for optimizing agricultural equipment
parameters”. But ANN needs lots of data to avoid overfitting, so
data collection takes longer than for RSM™!, Fortunately, RSM data
can be sufficient for effective ANN models if it has good statistical
distribution””. In this study, ANN models for impurity rate and loss
rate were built using limited RSM data (30 samples). K-fold cross-
validation was used to make the most of the data by dividing it into
subsets for training, validation, and testing. This method helps
prevent overfitting and underfitting, providing reliable performance
estimates. Here, five-fold cross-validation was applied, dividing the
30 samples into five groups of six. Each group was used once for
testing, once for validation, and the remaining for training, repeated
five times and averaged to assess model performance. The ANN
model used a three-layer feed-forward backpropagation network
with Levenberg-Marquardt training, tangent sigmoid activation for

hidden layers, and linear activation for output. Design variables (xi,
X,, X3, X;) Were inputs, and objective functions (y;, y,) were outputs.
The optimal number of neurons in the single hidden layer was
determined by trial-and-error to minimize mean square error.

2.4.3 Optimization method

The significance of the optimization procedure is obtaining the
optimal values of the operating parameters that minimize impurity
rate and minimum loss rate. To obtain globally optimal results,
NSGA-II algorithm was used. NSGA -1l performs optimization
using non-dominated sorting and elite policies with congestion
distance optimizer operators. Compared with the weighting method,
NSGA-II has the advantage of uniform distribution of the Pareto
solution set, which is suitable for multi-objective solution of non-
convex problems. In addition, it avoids time-consuming problems,
and all the optimal solutions can be obtained by solving Pareto only
once. In this process, the adaptation function is the RSM or ANN
prediction model, with a population size of 100 individuals, and 10 000
iterations, and a crossover and mutation percentage of 90% and
10%, respectively™.

The NSGA-II process consists of the following steps: First, it
initializes the population and assesses the fitness of individuals.
Then, a non-dominated sorting is performed to categorize the
individuals into different classes, and the crowding degree of each
individual is calculated. Next, new populations are generated using
selection, crossover, and mutation operations. Finally, combining
the parent and offspring populations, non-dominated sorting and
crowding comparisons are performed to select the next generation
of populations. The optimization process is wrapped up with the
condition of repetitions.

When solving objective functions, constraints are needed to
limit them. The design variable constraints restrict the range of
values of each design variable. The value ranges are as follows:

Min{y, (x;,x,, X3, X4)}
Min {y, (x;, X3, X3, X4)}
34° < x, <42°
30° <x, <38°
18 m/s < x; <22 m/s

12m/s<x, <16 m/s

(1

where, y, is the impurity rate, %; y, is the loss rate, %; Min {y, (x|,
Xy, X3, X4)} is the objective function for minimizing the impurity rate;
Min {y, (x|, x5, X3 x4)} is the objective function for minimizing the
loss rate; x; is the inclination of the first stage deflector plate, (°);
and x, is the inclination of the second stage deflector plate, (°); x; is
the wind speed of the first stage fan, m/s; x, is the wind speed of the
second stage fan, m/s.
2.5 Evaluation index

The objective functions, including impurity rate (y;) and loss
rate (y,), were calculated using the methods of Zhang et al.”” and
Wang et al.B"

v = % % 100% ©)
y, = % x 100% 3)
kt

where, m; is mass of impurities in collection box of kernels, kg; m,
is mass of kernels in collection box of kernels, kg; m, is mass of
kernels in collection box of shells, kg; m, is total mass of collection
box of kernels, kg.
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3 Results and analysis

3.1 Simulation analysis
3.1.1 Validation of numerical model

To verify the simulation results, they were compared with
experimental data from a hot-wire anemometer. The probe had a
5 pum tungsten filament, with response and acquisition frequencies
of 25 kHz and 100 kHz, respectively. The duct was cleaned with
cotton cloth and alcohol to reduce dust. Tangential velocities were
measured at different positions in the curved duct (» = 300 mm and
r =350 mm, Figure 3b). The simulation results were compared with
the average of three experiments using the anemometer (AR866A,
Smart Sensor). Following Yang et al.®”, the probe was positioned
using stepper motors to measure the flow field at any point. Finite
positioners ensured consistent measurement point distribution.
Figure 6 shows the tangential velocities, with errors within 5%. The
good agreement validates the model, despite disturbances from the
probe and factors like turbulent diffusion and boundary conditions.

215 ¢ —m— =300 mm, Simulation
—e— =300 mm, Experiment
10 —A— =350 mm, Simulation

—¥— =350 mm, Experiment

Velocity/m-s™

19.0 . . . . . . . . ,
0 10 20 30 40 50 60 70 80 90

0/(°)
Figure 6 Tangential velocities at » = 300 and 350 mm
in the bent duct

3.1.2 Distribution of the pressure field

To analyze the internal flow field in the separation device, a
polar coordinate system (origin at point O) was established to
observe the flow field distribution (Figure 3b). Here, 6 is the polar
angle, and r is the polar diameter. The side near O is the inside of

Plane 3

¥

Plane 1

Plane 3 Plane 2 Plane 1
+ : B = |

e — ——

Plane 2
T

a. R=470 mm b. R=550 mm

the bent duct, while the side away from O is the outside. Three axial
sections were taken at § = 0°, 45°, and 90° to form planes 1, 2, and
3. The pressure drop is crucial for the separating device as it
indicates energy loss®’. Figure 7 shows the steady-state pressure
distribution in circumferential and axial sections under various
operating conditions. The small axial pressure gradient variation
suggests that the duct design reduces its impact on the flow field,
minimizing particle back-mixing®™. Due to centrifugal force, flow
accelerates near the outer region of the bent duct, while the inner
region has lower pressure. As the radius increases, the pressure
gradient decreases in planes 1 and 2, indicating higher pressure loss,
while it increases in plane 3. Wall pressure on planes 1 and 2
decreases with increasing radius, as does the upper wall pressure on
plane 3. This is because a smaller radius reduces centrifugal
resistance, lowering the pressure gradient but increasing upper wall
pressuret*”.

The static pressure decreases when the air flow enters the
separating device and passes through the bent duct, resulting in a
large pressure gradient. This is mainly due to the rotational
acceleration of the air flow in the separating device, which converts
a portion of the static pressure into kinetic energy while overcoming
the resistance. A more significant pressure difference exists between
the inside and outside of the bent duct. Among them, the pressure
reaches a maximum value when passing through the outer bend,
whereas the pressure reaches a minimum value when the fluid flows
through the inner bend, and a negative pressure is also generated on
the inner side of the bend. A similar phenomenon was reported by
Liu et al.® This is because fluid flow direction changes in the
bending section due to the constraint of the outer wall surface. In
the centrifugal force, fluid has a tendency to get out of the
mainstream, which makes the inner side of the pressure smaller and
the outer side of the pressure value larger®™. The higher the degree
of bending and the sharper the change in the direction of fluid
movement, the greater the local resistance loss is. Similarly, Jiang et
al.’” conducted a numerical study on the flow and heat transfer
characteristics of a 90° bend extruded pipe and came to the same
conclusion. The radius of the bent duct is within the range of 550-
700 mm, except that when » = 250 mm, the airflow pressure
changes significantly, and the rest of the airflow pressure
fluctuations are small and relatively stable.

Plane 3 Plane 2 Plane 1 Plane 3 Plane 2 Plane 1

e ——_——— e——

550
J

d. R=1000 mm

Pressure/Pa

—100—-50 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

Figure 7 Distribution of the pressure at different cross-sections in the axial and circumferential directions

The analysis of the pressure flow field shows that as the radius
of the bent duct increases, the pressure gradient decreases while the
airflow pressure loss increases. This is mainly due to the abrupt
change in flow direction at the bend, which causes localized losses.
When the duct radius is 550 mm, the pressure gradient is below
100 Pa, and the pressure loss is minimal, indicating a more uniform
distribution of the pressure flow field.

3.1.3 Distribution of the velocity of the flow field

To understand how the radius of the bent duct affects the flow
field in the separation device, the steady-state velocity distribution
at circumferential and axial positions was analyzed under various
working conditions (Figure 8). The velocity near the wall
approaches zero without generating local disturbances. The airflow
velocity gradient increases in planes 1 and 2 as the duct radius
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increases, but decreases in plane 3. This is because higher velocity
is needed to overcome centrifugal force in plane 3. Du et al.”™ found
that airflow velocity shows horizontal stratification, causing

Plane 3

Plane2  Plane 1

Plane 3

Plane 2 Plane 1

a. R=470 mm b. R=550 mm

different materials to follow different trajectories. Plane 1 has the
most uniform and stable flow field, indicating that the duct radius
significantly affects airflow distribution.

Plane 3

Plane2  Plane 1

Plane 3

Plane 2  Plane 1

¢. R=700 mm d. R=1000 mm

Velocity/m-s™!

o 3 5 8 10 13 15

18 20 23 25 28 30 33 35 38

Figure 8 Distribution of the velocity of circumferential and axial sections under different working conditions

Figure 8 shows the velocity distribution in the circumferential
section at different locations and conditions. As the radius of the
bent duct increases, the airflow velocity decreases slightly, and the
velocity gradient first decreases and then increases. The flow
direction remains relatively stable overall. According to Liu et al.?")
the velocity distribution is opposite to the pressure distribution:
velocity is lowest in the outer bent duct and highest in the inner bent
duct. This is because the fluid is compressed by the lower pressure
on the outer side, increasing its velocity. At the upper and lower
centers of the bent duct (» = 300 mm and » = 350 mm), velocity
fluctuations are smooth. The airflow velocity is relatively stable
with some fluctuations when the radius is 470-550 mm. The
velocity of the 250 mm curve changes violently at the 470 mm
radius due to fluid viscosity, while the velocity of the 400 mm curve
changes significantly at radii of 700-1000 mm.

The analysis results of the velocity flow field are as follows:
with the increase in the radius of the bent duct, the velocity flow
field becomes less stable, the velocity fluctuation in the wall area of
the flow field changes more drastically, and the velocity loss
gradually becomes larger, which increases the velocity of the
airflow in the tube and thus makes the particles have greater
rotational momentum. When the radius of the duct is 550 mm, the
overall wind velocity gradient of the flow field is less than 2 m/s,
and the velocity flow field is more uniform.

In summary, the pressure field and velocity field in the
separation duct are evenly distributed when the duct radius is
550 mm, so the radius of the bent duct is designed to be 550 mm.
3.2 Analysis of RSM

The experimental scheme and the results (average of three
experiments) are summarized in Table 2. The precision of the
quadratic models is checked by analysis of variance, and the results
are cataloged in Table 3. For the impurity rate model, the value of
R* is 0.9716; the loss of fit (p = 0.1256 > 0.05) is not significant,
while the model is extremely significant (p < 0.01), which indicates
an impurity rate model could be used to analyze and predict the
impurity content. For the loss rate model, the value of R* is 0.9711;
the loss of fit (p = 0.1038 > 0.05) is not significant, while the model
is extremely significant (p < 0.01), indicating the absence of other
major design variables affecting the response value. The final
equation in terms of coded factors:

v, =4.98 -0.13x, +0.081x, — 0.85x; — 0.52x, + 0.068x, x,+
0.066x,x; —0.37x,x, + 0.064x, x5 + 0.35x,x, + 0.22x; x,+
0.12x] +0.28x3 +0.073x; + 0.21x @)

v, =8.24-0.52x, +0.47x, + 0.9x; + 0.88x, + 0.18x, x, + 0.042x, x5+
0.65x,x, — 0.3x,%; — 0.068x,x, — 0.39x;x, + 0.27x7 +0.49x+
0.05x +0.1x; (5)

Within the bounds of the analyzed design variables, the model
generated above accurately predicted impurity rate and loss rate.
For RSM regression model, the maximum relative errors of the
training results for the impurity rate and loss rate models were
6.42% and 5.34%, respectively. Most of the residuals are close to
zero, with the highest residual values of 0.26 and 0.58 for the
impurity rate and loss rate models, respectively, and the lowest
residual values of —0.38 and —0.37, respectively, indicating that the
models constructed have high accuracy.

The effects of design variables x;, x,, x3, and x, on response
values y; and y, were analyzed and visualized in 3D diagrams
(Figure 9). More curved lines in the 3D plots indicate greater
influence of the design variables. Contour plots with elliptical
shapes and large curvatures suggest significant interactions between
variables. The color gradient from blue to red represents increasing
extract mass, with faster color changes indicating steeper slopes and
stronger impacts on the results.

3.3 Analysis of ANN

The optimal topologies for the impurity and loss rate models
were determined by trial-and-error method to be 4-10-1. For the
impurity rate, R* = 0.9883, MSE = 0.012 76, and RMSE = 0.1130;
for the loss rate, R* = 0.9854, MSE = 0.033 77, and RMSE =
0.1838. For the ANN model, the maximum relative errors of the
training results for the impurity and loss rate models were 4.64%
and 3.79%, respectively. Most of the residuals are close to zero,
with the highest residual values of 0.27 and 0.35 for the impurity
rate and loss rate models, respectively, and the lowest residual
values of —0.21 and —0.39, respectively, indicating that the models
constructed have high accuracy.

3.4 Comparison of RSM and ANN

The fitness of ANN and RSM models was investigated through
the values of R*, MSE, and RMSEP. Among these, the higher the
value of R? the closer it is to 1, indicating a greater degree of
correlation between the measured and predicted values. The larger
values of MSE and RMSE imply a higher likelihood of error in
prediction. The results show that R* of the RSM model for the
impurity rate (0.9716) is significantly lower than that of the ANN
model (0.9883). The RSM model also has a higher MSE (0.026 60)
and RMSE (0.1631) than the ANN model (MSE = 0.012 76,
RMSE = 0.1130). The R* of the RSM model for the loss rate
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Table2 RSM measured and predicted responses
Test No. x/(°) X/(°) x3/m-s™! xym-s - n/% - y/%
Experimental RSM ANN Experimental RSM ANN
1 36 (-1) 32(-1) 19 (-1) 13 (-1) 7.40 7.49 7.48 7.39 7.55 7.45
2 40 (1) 32(-1) 19 (-1) 13 (-1) 7.61 7.70 7.54 4.69 4.78 4.68
3 36 (-1) 36 (1) 19 (-1) 13 (-1) 6.91 6.70 6.74 9.14 8.89 9.36
4 40 (1) 36 (1) 19 (-1) 13 (-1) 7.40 7.18 7.51 6.40 6.74 6.16
5 36 (-1) 32(-1) 21 (1) 13 (-1) 4.96 5.08 491 10.32 10.54 10.29
6 40 (1) 32(-1) 21 (1) 13 (-1) 5.75 5.55 5.68 7.88 8.03 7.96
7 36 (-1) 36 (1) 21 (1) 13 (-1) 471 4.55 4.87 10.51 10.76 10.48
8 40 (1) 36 (1) 21 (1) 13 (-1) 5.08 5.29 5.19 9.24 8.86 8.89
9 36 (-1) 32(-1) 19 (-1) 17 (1) 6.18 6.05 6.23 8.55 8.92 8.85
10 40 (1) 32(-1) 19 (-1) 17 (1) 4.72 4.78 4.69 8.95 8.68 8.96
11 36 (-1) 36 (1) 19 (-1) 17 (1) 6.62 6.65 6.61 10.08 9.91 10.03
12 40 (1) 36 (1) 19 (-1) 17 (1) 5.70 5.66 5.72 10.86 10.28 11.25
13 36 (-1) 32(-1) 21 (1) 17 (1) 4.47 4.52 4.53 10.82 10.45 10.53
14 40 (1) 32(-1) 21 (1) 17 (1) 3.23 3.52 3.38 10.23 10.46 10.25
15 36 (-1) 36 (1) 21 (1) 17 (1) 5.40 5.39 5.40 10.41 10.31 10.34
16 40 (1) 36 (1) 21 (1) 17 (1) 491 4.65 5.12 11.12 10.94 11.06
17 34 (-2) 34 (0) 20 (0) 14 (0) 5.64 5.74 5.71 10.44 10.37 10.38
18 42 (2) 34 (0) 20 (0) 14 (0) 5.21 5.21 5.21 8.12 8.23 8.18
19 38(0) 30(=2) 20 (0) 14 (0) 6.18 5.95 6.01 9.58 9.27 9.36
20 38(0) 38(2) 20 (0) 14 (0) 5.92 6.30 5.65 10.75 11.09 10.97
21 38(0) 34 (0) 18 (-2) 14 (0) 6.85 6.97 6.95 6.63 6.59 6.64
22 38(0) 34 (0) 22 (2) 14 (0) 3.59 3.56 3.58 10.17 10.24 10.19
23 38(0) 34 (0) 20 (0) 12 (-2) 6.73 6.86 6.81 7.20 6.89 7.15
24 38(0) 34 (0) 20 (0) 16 (2) 4.82 4.78 4.86 10.00 10.34 9.68
25 38(0) 34 (0) 20 (0) 14 (0) 5.05 4.94 4.98 7.96 8.14 8.23
26 38(0) 34 (0) 20 (0) 14 (0) 4.76 4.94 4.95 8.34 8.14 8.23
27 38(0) 34 (0) 20 (0) 14 (0) 481 4.94 4.95 8.48 8.14 8.23
28 38(0) 34 (0) 20 (0) 14 (0) 5.07 4.94 4.95 7.94 8.14 8.23
29 38(0) 34 (0) 20 (0) 14 (0) 5.07 4.94 4.95 8.37 8.14 8.23
30 38(0) 34 (0) 20 (0) 14 (0) 5.11 4.94 4.95 8.32 8.14 8.23
Table 3 Analysis of variance applying RSM model
= Impurity rate (y,) Loss rate (v,)
Origin Squares df Mean square F-value p-value Squares df Mean square F-value p-value
Model 32.78 14 2.34 44.79 <0.0001 ** 68.69 14 491 38.07 <0.0001 **
Xy 0.42 1 0.42 8.01 0.0127 * 6.50 1 6.50 50.44 <0.0001 **
X, 0.16 1 0.16 3.03 0.1022 5.29 1 5.29 41.06 <0.0001 **
X3 17.49 1 17.49 334.58 <0.0001 ** 19.35 1 19.35 150.14 <0.0001 **
X4 6.48 1 6.48 123.92 <0.0001 ** 18.46 1 18.46 143.26 <0.0001 **
X1 0.074 1 0.074 1.42 0.2519 0.49 1 0.49 3.83 0.0692
X1X3 0.069 1 0.069 1.32 0.2689 0.028 1 0.028 0.22 0.6475
X1X4 2.18 1 2.18 41.75 <0.0001 ** 6.83 1 6.83 52.96 <0.0001 **
XpX3 0.066 1 0.066 1.27 0.2778 1.48 1 1.48 11.50 0.0040 **
XoXy 1.95 1 1.95 37.35 <0.0001 ** 0.074 1 0.074 0.58 0.4596
X34 0.79 1 0.79 15.06 0.0015 ** 2.39 1 2.39 18.58 0.0006 **
() 0.43 1 0.43 8.13 0.0121 * 1.99 1 1.99 15.48 0.0013 **
() 2.16 1 2.16 41.34 <0.0001 ** 6.61 1 6.61 51.30 <0.0001 **
(x5 0.15 1 0.15 2.81 0.1142 0.068 1 0.068 0.53 0.4797
(3x4) 1.23 1 1.23 23.57 0.0002 ** 0.27 1 0.27 2.11 0.1665
Residual 0.78 15 0.052 1.93 15 0.13
Lack of fit 0.67 10 0.067 2.90 0.1256 1.67 10 0.17 3.23 0.1038
Pure error 0.12 5 0.023 0.26 5 0.052
Cor total 33.57 29 70.62 29
R 0.9716 0.9711
MSE 0.026 60 0.068 57
RMSE 0.1631 0.2619

Note: “**” means extremely significant (p < 0.01); “*”” means significant (p < 0.05).


https://www.ijabe.org

October, 2025 LiuHL,etal. Parameters optimization of a walnut shell-kernel separation device using RSM and ANN coupled NSGA- I

Vol. 18 No.5 313

W%

9.240
8.740
8.240
7.740
7.240
6.740
6.240
5.740
5.240
4.740
4.240

Figure 9 Interaction of operating parameters on impurity rate (y,) and loss rate (y,)

(0.9711) is significantly lower than that of the ANN (0.9854). The
RSM model also has a higher MSE (0.068 57) and RMSE (0.2619)
than the ANN model (MSE = 0.033 77, RMSE = 0.1838). The
above analysis suggests a higher R* value of the ANN model
compared with the RSM model, which demonstrates the superiority
of the ANN model in terms of predictive and estimation
capabilities. The lower MSE and RMSE values indicate that the
ANN model possesses better prediction and generalization
characteristics to the experimental data. The ANN model has a high
prediction accuracy, which is attributed to its broad adaptability to
the nonlinear behavior of the system, while the RSM model is
limited by second-order polynomial regression.

The fitness of ANN and RSM models are further evaluated by
comparing predicted and experimental values (Figure 10). It can be
seen that the experimental and predicted data of each experimental
run have high consistency and correlation. The ANN model has
higher accuracy than the RSM model because the curve of the ANN
is closer to the experimental data than the RSM. In summary, the
ANN model has higher prediction accuracy than the RSM model.
As it turns out, the data collected by RSM is sufficient for
constructing effective ANN models when the data has a good
statistical distribution in the input domain.

3.5 Multi-objective optimization
3.5.1 Analysis of optimization solutions

In multi-objective optimization, the optimal solution for each
generation is obtained using NSGA- I optimization and compared
with the previous generations. Pareto optimal fronts (a vector set
composed of objective function values) are shown in Figure 11.
Note that in Pareto optimal solution sets with 100 individuals, all
points obtained are optimal, which means the points are not superior
to each other. In other words, if one objective function becomes
better, the other objective function will inevitably become worse*.
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Figure 10 Comparison of predictions with experimental values

To aid the designer in selecting the appropriate operating parameter
of a walnut shell-kernel separation device for different situations,
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the correlation between the impurity rate (y,) and loss rate (y,) is
fitted in the form of an empirical function as follows:

Y, =26.03x ¢35 +2.95 (6)

As seen from the above plots, all objective functions change
continually with the various design variables. To balance the
economy and quality of the production and processing, after
determining the positive ideal solution and the negative ideal
solution of all individuals by technique for order preference by
similarity to an ideal solution (TOPSIS). The optimal solution is
quantitatively selected with x, at 38.78° x, at 36.10°, x; at
20.93 m/s, and x, at 13.50 m/s, at which time impurity rate is 4.37%
and loss rate is 6.39%.

Pareto optimal solution
10 | — ExpDecl fit, R=0.9995
9 L
S gl
= Optimal solution
g 41
5
.3 or yzzzseﬂ 2“1’2.76
5 L
4 L
3 1 1 1 1 1 1
3 4 5 6 7 8
Impurity rate, y,/%
Figure 11 Distribution of Pareto optimal solution sets

3.5.2 Verification of optimal solution

The ANN model deviated from the actual result to a certain
extent, which may cause the optimization scheme obtained by the
NSGA-II to be inaccurate. To verify the feasibility and accuracy of
the optimization results, a simple experiment was conducted. The
test material and conditions were the same as those used in Section
2.1, and considering the feasibility of validation test in reality, the
operating parameters of the separation device were adjusted to x;, =
39°, x, = 36° x; = 21 m/s, and x, = 13.5 m/s, respectively. A
comparison of prediction results and experimental results is shown
in Table 4. The final measured values (average of three
experiments) of the impurity rate and loss rate were 4.51% and
6.62%, respectively, which are close to the predicted values within
the acceptable limits of the error percentage (3.20% and 3.60%).
The combination of RSM, ANN, and NSGA-II can help guide the
designer in choosing walnut shell-kernel separation device
parameters based on the optimization results to achieve an effective,
high-quality, and economical separation.

Table 4 Comparison of optimized prediction results and
experimental results

No. x1/(°) x/(°) x3/m-s xy/m-s W% /%
Predict 38.78 36.10 20.93 13.50 437 6.39
Experiment 39 36 21 135 451 6.62
Error/% 0.57 0.27 0.33 0 3.20 3.60

The final optimization results showed an optimal wind speed of
21 m/s (equivalent to a force of eight gales, China Meteorological
Administration), which is sufficient to destroy tree branches. The
wind speed of the separation is related to the particle size, frontal
area, and density of the walnut shell and kernel. Due to the small
particle size and frontal area of walnut shells and kernels, a larger
wind speed is required under the same airflow conditions. This

phenomenon is consistent with the results in Li et al.”’, Chen et
al.® and Chai et al.*y, where similar wind speed (16-30 m/s)
requirements were observed for shell kernel separation experiments.
Furthermore, another possible cause of excessive wind speed may
be related to the structural effect of the separation equipment on the
airflow’s kinetic properties. This design may allow the airflow to
accelerate as it passes through the separation chamber, resulting in
higher wind speeds. This phenomenon is consistent with Lu et al.*”,
which verifies the effect of the structure of the 90° elbow on the
flow field distribution through numerical simulations and
experiments. Therefore, the wind speed requirement in this study is
mechanistically consistent with the findings of the above literature,
providing a theoretical basis and practical guidance for optimizing
the separation process.

4 Discussion

In terms of the walnut shell-kernel separation, various methods
have been explored, but each one with limitations. Intelligent visual
identification is highly accurate but faces challenges due to the
similarity between shells and kernels and the need for specialized
knowledge. Pneumatic separation, however, offers higher
efficiency, lower costs, and easier operation. Among pneumatic
separators, two-stage systems have shown superior accuracy and
efficiency compared to single-stage or multi-stage systems. The two-
stage tandem walnut shell-kernel separation device designed in this
study significantly enhanced separation efficiency and accuracy by
using deflector plates and a tandem configuration. The deflector
plates prevented centrifugal motion along the inner wall of the bend
pipe, dispersing material movement and improving separation
performance. The tandem configuration added an additional
separation stage, simplifying the process and achieving purer
separation.

Compared with the single-stage technologies of Niu et al.“!
(the device previously developed by our team) and Li et al.”’ (the
device previously developed by our team), the present design
achieved a significant reduction in impurity rate by 73.98% and
77.55%, respectively, under identical conditions, with a
corresponding decrease in loss rate of 9.44% and 53.96%.
Compared with multi-stage separation devices, our design
demonstrated comparable impurity rates and loss rates to the walnut
shell and kernel separator” (IR = 4.75% and LR = 8.41%) and the
airflow separation system” (IR = 5.57% and LR = 6.85%), but with
a substantial enhancement in processing capacity of more than
200%. Also, our design processed 720 kg/h, which is 33.33% higher
than the 540 kg/h of the walnut shell and kernel separator!” and
negative pressure winnowing device®”. In summary, the optimized
two-stage tandem separation device that features specially designed
deflector plates and a tandem configuration, offers significant
advantages in walnut shell-kernel separation by enhancing
separation performance and improving the separation of high-
quality kernels, broken kernels, and shells.

Previous studies on multi-duct separators focused on
optimizing individual units, but two-stage separators are complex
systems influenced by multiple factors with nonlinear relationships.
RSM can address linear relationships but is limited in handling
nonlinear ones, while ANN can capture complex relationships but
requires large datasets to avoid overfitting. This study combines
RSM and ANN to reduce data and computation costs, using RSM
data for ANN training. Additionally, NSGA-1I is employed for
global optimization, overcoming RSM’s local optima limitations.
This combined approach enhances prediction accuracy and
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separation performance. However, incomplete separation remains
an issue, highlighting the need for further improvements in the two-
stage tandem separator design.

(1) Walnut kernel damage and separation efficiency

In this study, the primary objective is to enhance the separation
device’s performance by maximizing efficiency while minimizing
impurity and loss rates. Potential kernel damage or energy penalties
associated with high air velocities (e.g., 21 m/s) are not addressed
herein. Future work should quantify how physical properties
(variety, moisture, shell-kernel gap, particle size), operating
parameters (air velocity, gap, angle), and equipment design (contact-
surface material) collectively influence kernel damage to establish a
universal prediction model.

(2) Energy consumption and separation efficiency

Although the current optimization model does not explicitly
include energy consumption constraints, enhanced separation
efficiency achieved through optimized parameters shortens
residence time and thereby reduces energy demand. Nevertheless,
actual energy consumption is modulated by regional electricity
tariffs, cumulative operating hours, and throughput, all of which
must be assessed in specific operating environments. Future studies
should therefore incorporate energy consumption as an explicit
constraint within the optimization framework to deliver an
integrated solution that simultaneously maximizes separation
efficiency and minimizes energy consumption.

(3) Particle-fluid interactions

This study optimizes separation equipment parameters using
RSM, ANN, and NSGA-II to improve efficiency by reducing
impurity and loss rates. CFD and a continuous phase model are used
to efficiently optimize structural parameters like bend radii, saving
experimental costs and time. Future work is needed to explore
particle trajectories and interactions to address the complex particle-
fluid dynamics and further enhance separation efficiency.

Table S Comparison of different types of walnut shell kernel
air separation separators

. . . Separation

Typology Equipment name Units  Capacity performance
Fuzzy clustering 1 100 walnuts RR =83%
algorithm'*!

Intelligent  YOLOX deep learning ;5753 jhotos RR = 96.3%

visual algorithm
identification Near-infrared : _

technique  spectroscopy’ 1 1200 units RR=97.78%
An enhanced YOLOVBn v cied RR =93.56%
algorithm'!
Separation device of IR =17.33%,
walnut shell and kernel“ I 5 kg (constant) LR=7.31%
Walnut shell-kernel I 3 ke (constant) IR =20.09%,
winnowing device! & LR =14.38%
Pﬁ:ﬁir::ti;rt;isg’zrion 1 3 kg (constant) IR =8.14%,
pneumatc sep g LR =4.42%
device!"”

Pneumatic  Airflow separation IR =5.57%,

separation  System“’ 4 21360kgh 1 p 650

ol Nevemsrs 5 gy R
Winnowing machine!*! 4 150-240 kg/h £[;30560§;/f _?410{;%
P
This design 2 720kgh 31::46?612012

Note: “RR” is recognition rate, “IR” is impurity rate, and “LR” is loss rate.

5 Conclusions

To solve the walnut shell-kernel separation problem, the

present work describes an engineering solution, i.e., the design and
optimization of a two-stage tandem walnut shell-kernel separation
device. The analysis results of spatial flow field distribution in a
separation duct show that when the radius of the duct is 550 mm,
the pressure and the velocity flow field are more uniform. The RSM
and ANN have been used to optimize operating parameters for a
walnut shell-kernel separation device and compare their predictive
performance. The results show that the combination of RSM and
ANN is an effective means to enhance the optimization
performance. This integrated approach significantly reduces the
number of simulations and improves the modeling predictive
accuracy. The data collected by RSM provides a solid foundation
for constructing highly accurate ANN models. Also, the ANN
model is more accurate and reliable (higher R?, lower MSE and
RMSE), which is because it fits the experimental data’s nonlinear
features better. Finally, the ANN model was optimized using NSGA-
II, and the optimal values of the objective function impurity rate
and loss rate are 4.51% and 6.62%, respectively. Compared with
traditional single-stage devices, the optimized device reduced
impurity rate by 73.98% to 77.55% and loss rate by 9.44% to
53.96%, significantly improving separation efficiency and quality.
The combination of RSM, ANN, and NSGA- Il was confirmed to
be a beneficial tool for optimizing machine performance.
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