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Abstract: Walnut shell-kernel separation after cracking is crucial for providing raw materials for further processing. However,
impurities and losses during separation limit complete separation. To address this,  a two-stage tandem separation device was
designed and optimized. Computational fluid dynamics (CFD) was used to analyze the effects of four bent duct structures on
the  flow  field.  Response  surface  methodology  (RSM)  and  artificial  neural  networks  (ANN)  were  employed  to  predict
separation performance under various conditions. Both models accurately predicted performance, with ANN showing superior
predictive  ability.  The  optimal  design  was  determined  using  non-dominated  sorting  genetic  algorithm-II  (NSGA-II)  and
technique for order preference by similarity to an ideal solution (TOPSIS): the inclination of the first stage deflector plate (x1)
was 39°,the inclination of the second stage deflector plate (x2) was 36°, the wind speed of the first stage fan (x3) was 21 m/s,
and  the  wind  speed  of  the  second  stage  fan  (x4)  was  13.5  m/s;  impurity  rate  (y1)  was  4.51%,  and  loss  rate  (y2)  was  6.62%.
Compared with traditional single-stage devices, the optimized device reduced impurity rate by 73.98% to 77.55% and loss rate
by  9.44% to  53.96%,  significantly  improving  separation  efficiency  and  quality.  This  study  provides  theoretical  guidance  for
designing and optimizing shell-kernel separation devices.
Keywords: walnut, two-stage separation device, multi-objective optimization, response surface methodology, artificial neural
network
DOI: 10.25165/j.ijabe.20251805.9375

Citation: Liu H L, Mao B Q, Zhang H, Chen P Y, Tang Y R, Fan X W, et al. Parameters optimization of a walnut shell-kernel
separation  device  using  response  surface  methodology  and  ANN coupled  genetic  algorithm.  Int  J  Agric  &  Biol  Eng,  2025;
18(5): 306–316.

 1    Introduction
Walnut  (Juglans  regia  L.)  is  a  famous  dried  fruit  with  an

internal  kernel  and  external  shell.  The  kernel  has  high  edible  and
medical  value  and  can  be  made  into  snacks,  drinks,  oil,  and  other
products[1,2].  However,  in  China,  only  about  20%  of  walnuts  are
processed  due  to  outdated  primary  processing  technologies  (like
drying  and  shelling)  and  high  labor  costs[3].  Separating  the  shell
from  the  kernel  is  crucial  but  often  leads  to  losses  of  up  to  12%
during  processing[4].  This  harms  product  quality  and  causes
economic  waste.  Therefore,  improving  separation  methods  and
developing better equipment are important for both food safety and

economic efficiency.
In  the  past,  various  separation  methods  have  been  proposed

according  to  different  physical  properties  of  shell  and  kernel.  For
example, an intelligent visual identification technique[5,6] is normally
based on the varied color, texture, and morphological properties of
shell  and  kernel,  which  can  achieve  accurate  target  classification.
However,  the  properties  of  walnut  shells  and  kernels  have  certain
similarities, which brings great difficulty to separation. Meanwhile,
this  technique  is  not  efficient.  Electrostatic[7]  and  magnetic[8]

separation methods are not only time-consuming and inefficient, but
also  have  the  potential  to  contaminate  the  kernel.  Besides,  the
mixture  of  shell  and  kernel  must  be  fully  dried  prior  to  the
separation  process  to  avoid  significantly  reducing  the  separation
efficiency for the electrostatic method[4], which results in increasing
unnecessary  energy  consumption.  In  summary,  these  separation
methods  are  complex  and  have  obvious  drawbacks,  which  largely
limit practical application. In recent years, the pneumatic separation
that is cost-effective, simple, and easy to maintain, has been widely
used  in  the  separation  of  shell  and  kernel,  especially  for  the
agricultural  materials  including  rice,  rapeseed,  and  nut.
Unfortunately,  unexpected  phenomena  frequently  occur  during  the
separation  process  (e.g.,  containing  impurities  and  entrainment
loss),  which  limits  the  development  and  popularization  of  the
pneumatic  separation  device.  It  is  well  known  that  the  separation
performance is strongly related to the physical characteristics of the
shell  and  kernel  (e.g.,  particle  size  and  moisture  content),
configurations  of  separation  devices  (e.g.,  guide  plate  and  length),
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and  operational  conditions  (e.g.,  wind  speed  and  deflector  plate
angle). Hence, many researchers have proposed a series of effective
methods  to  improve  separation  performance  in  terms  of  the  three
aspects mentioned above, particularly the latter two factors.

Previous  research  has  explored  various  aspects  of  separation
devices. Li et al.[9] used ANN and RSM to study the effects of baffle
opening and inlet  angle on cleaning and loss  rates  in  walnut  shell-
kernel  winnowing  devices.  Zhang[10]  optimized  a  separation  device
by  considering  walnut  properties  and  apparatus  structure.  Drying
walnuts  for  30  min  minimized  suspension  velocity  overlap  and
maximized separation efficiency. CFD simulations further enhanced
the device, achieving a cleaning efficiency of 91.86% and a loss rate
of 4.42%. Safikhani[11] developed and optimized a Karagoz cyclone
separator using NSGA-Ⅱ. Lim et al.[12] investigated how wind speed
and water  content  affect  separation performance in  a  jatropha fruit
separator, noting that vortex flow increases particle residence time.
Chen  et  al.[13]  studied  the  relationship  between  airflow  and  loss  in
brown rice separation.  However,  single-pipeline separation devices
struggle with multi-size and multi-component mixtures[14].  Wang et
al.[15]  proposed  that  adding  a  second  separation  stage  improves
density  segregation,  similar  to  cascade  impactors  used  in
agricultural  material  separation[16].  Examples  include  tandem  two-
stage  separators  for  rice[17]  and  a  two-stage  winnower  cyclone
system[18].  Zhang  and  Liu[19]  developed  a  two-stage  tandem  walnut
shell-kernel  separator  and  optimized  its  operational  parameters
using  response  surface  methodology.  The  optimal  parameter
combination was identified, achieving a foreign material content of
4.75%  and  a  kernel  loss  rate  of  8.41%.  Despite  these  advances,
research  on  two-stage  separation  devices  is  limited  due  to  their
complexity  in  design  and  operation,  requiring  consideration  of
factors like airflow distribution and unit matching.

However,  there  is  still  a  wide  gap  of  knowledge  about  two-
stage  walnut  shell-kernel  separation  that  must  be  filled  to  truly
understand  the  mechanism  by  which  operating  parameters  affect
device performance. Meanwhile, it is difficult to regulate the device
and optimize its performance due to structural complexity. There is
a  need  to  better  understand  how  operating  parameters  affect  the
performance  of  two-stage  walnut  shell-kernel  separation  devices.
Therefore,  designing  a  new  two-stage  separation  device  and
optimizing  its  parameters  is  important.  To  achieve  this,  CFD
simulations were used to study the flow inside the separation duct.
RSM,  ANN,  and  genetic  algorithms  were  also  applied  to  optimize
the device’s operating parameters (such as fan speeds and deflector
plate  angles).  This  approach  helped  create  models  to  predict
impurity  and  loss  rates.  Combining  RSM,  ANN,  and  NSGA-Ⅱ
proved to be effective for optimizing the device’s performance.

 2    Materials and methods
 2.1    Materials

'Wen  185'  was  chosen  as  the  experimental  specimen  in  this
study, which is the typical walnut cultivar in the local market. Fresh-
harvested walnuts were collected on September 15, 2022, from the
Wensu  Walnut  Experimental  Station  (latitude:  41°27 ′67 ′ ′N,
longitude:  80°24 ′17 ′ ′E,  and  altitude:  1056  m),  Xinjiang,  China.
Walnuts were cracked using a multi-point extrusion cracking device
under  optimum  operating  parameters  (cracking  angle  0.47°  and
roller speed 108 r/min), which shows a cracking rate of 97.24% and
a  high-quality  kernel  rate  of  92.3%[20].  Moreover,  secondary
cracking  was  implemented  to  crack  unbroken  walnuts.  After  that,
the  dry  base  moisture  contents  of  shell  and  kernel  as  well  as
diaphragma juglandis fructus were measured using the standard hot

air oven method, and the values (average of three experiments) were
8.46%,  12.01%,  and  28.32%,  respectively.  As  shown  in  Figure  1,
walnut shell  and kernel were manually classified into 1/8, 1/4,  and
1/2  grades  according  to  their  size.  Notice  that  1/2  kernel  and  1/4
kernel are defined as high-quality kernels in this study.
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Figure 1    Proportions of the components of the mixture
 

 2.2    Development of walnut shell-kernel separation device
A  two-stage  tandem  walnut  shell-kernel  separation  device,  as

shown  in  Figure  2a,  including  the  frame,  feed  device,  frequency
control  box,  first  stage  separation  duct,  second  stage  separation
duct,  and  cyclone  separator,  was  designed  and  manufactured.  The
discharging  outlet  of  the  first  stage  separation  device  is  connected
with  the  feeding  inlet  of  the  second  stage  separation  device,  and
each  comes  complete  with  a  centrifugal  fan  (DF-2.5-Ⅱ and  Ⅲ,
China). Each separation duct consists of an air inlet, a feeding inlet,
a  collecting  outlet,  a  discharging  outlet,  and  a  deflector  plate.  To
meet the requirements of different working conditions, a frequency
control box was used to adjust wind speed and the speed of the feed
roller.  The  function  of  the  deflector  plate  was  to  prevent  the
materials  from undergoing  centrifugal  motion  along  the  inner  wall
of the bent duct and to make their motion more dispersed.
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Figure 2    Schematic diagram of walnut shell-kernel separation
device and the deflector plate mechanism

The  separation  process  uses  a  deflector  plate  and  centrifugal
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action  to  sort  particles  by  size  (Figure  2b).  The  deflector  plate  is
essential,  as  it  redirects  airflow  to  counteract  centrifugal  forces,
ensuring  uniform  pressure  distribution  and  enhancing  system
stability  and efficiency.  Without  it,  airflow would be uncontrolled,
leading  to  increased  centrifugal  effects,  uneven  distribution,
component  wear,  and  reduced  performance.  The  angled  deflector
plate  prevents  walnut  shells  and  kernels  from  clustering  along  the
duct wall, improving particle distribution and separation efficiency.
At  optimal  wind  speeds,  kernels  fall  into  a  collection  box  due  to
gravity, while lighter shells are carried away. The two-stage design
captures high-quality kernels in the first stage and separates crushed
kernels  in  the  second,  with  residue  and  dust  directed  to  a  cyclone
separator.  This  yields  three  outputs:  high-quality  kernels,  crushed
kernels, and walnut shells. The process can be adjusted for different
mixtures  by  modifying  wind  speed  and  deflector  plate  angles.
Detailed device dimensions are listed in Table 1.
  

Table 1    Parameters of the separation equipment
Parameters Size

Material GB-0Cr18Ni9 (China)
Overall size, length × width × height/mm 2600 × 2600 × 2600
Hopper, length × height/mm 400 × 200
Separation duct, width × thickness/mm 600 × 226
Bend radius/mm 550
Cyclone separator inside diameter/mm 560
Overall weight/kg 350
Maximum capacity/kg·h–1 720
Inclination of the deflector plate/(°) 20-60

First stage centrifugal fan DF-2.5-Ⅲ (China)

Second stage centrifugal fan DF-2.5-Ⅱ (China)
 

 2.3    Numerical simulation
 2.3.1    Governing equation

The  standard  k-ε  model  in  ANSYS  Fluent  19.2  was  used  to
simulate  fluid  flow  in  90°  bends.  Validated  in  prior  studies[21,22],  it
uses  continuity  and  momentum  equations.  For  detailed  equations,
refer to Dai et al.[22]

 2.3.2    Simulation model and boundary conditions
A simplified three-dimensional model of the two-stage tandem

shell-kernel  separation  device  was  created  in  SolidWorks  2018  to
determine  the  bent  duct  radius  (Figure  3a).  Different  colored  lines
indicate  various  duct  curvatures.  The  simulation  employed  the
SIMPLEC,  PRESTO,  and  QUICK  schemes  for  pressure-velocity
coupling  and  spatial  discretization  due  to  their  convergence
advantages.  A  no-slip  boundary  condition  and  standard  wall
function were applied, with a velocity inlet of 20 m/s and a pressure
outlet.  The  fluid  was  air  (viscosity:  1.8×10–5  Pa·s,  density:
1.2  kg/m3),  and  the  flow  was  assumed  incompressible.  The
simulation  used  a  convergence  accuracy  of  0.001,  a  time  step  of
0.01 s, and ran for 10 s.
 2.3.3    Mesh division and mesh independence testing

Grid  independence  verification  was  conducted  to  balance
computational  accuracy and efficiency.  For models with a bending
outer radius of 550 mm, simulations with grids of 90 698, 105 846,
117 514, 122 225, and 140 205 cells  were performed to assess the
impact  of  grid  quantity  on  pressure  drop  and  tangential  velocity.
The  grid  count  was  adjusted  by  varying  cell  sizes,  while
maintaining  a  maximum  skewness  below  0.6  and  mesh  quality
within a range of 0.3-1.0. As shown in Figure 4a, pressure drop was
calculated  using  the  method  by  Le  and  Yoon[23],  and  Figure  4b
illustrates tangential velocity trends at the r = 350 mm cross-section.

When  the  grid  count  reached  122  225  cells,  pressure  drop  and
tangential  velocity  stabilized  with  a  relative  error  of  less  than  1%.
Therefore,  the  grid  domain  for  the  550  mm  radius  was  set  to
122  225  cells  (Figure  5).  Similarly,  grid  domains  for  radii  of
470  mm,  700  mm,  and  1000  mm  were  established  with  125  305,
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120 115, and 114 215 cells, respectively.
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Figure 5    Mesh structure of bent duct
 

 2.4    Predictive modeling and optimization methods
 2.4.1    RSM modeling

Response  surface  method  (RSM)  is  an  empirical  modeling
system based on linear models that could be utilized for developing,
improving,  and  optimizing  complex  processes[24].  It  has  the
advantage  of  providing  statistically  acceptable  findings  with  fewer
tests[25].  RSM model fits complex unknown functional relationships
in  a  small  region  with  a  simple  primary  or  quadratic  polynomial
model,  which  is  an  effective  means  of  solving  parametric
optimization problems. On the basis of preliminary tests and single
factor  tests,  input  parameters  and  their  respective  ranges  of  values
were determined (i.e., 34 ≤ x1 ≤ 42, 30 ≤ x2 ≤ 38, 18 ≤ x3 ≤ 22, and
12  ≤  x4  ≤  16).  The  central  composite  design  (CCD)  method  was
applied  to  develop  the  design  space  and  obtain  sampling  points.
Each design variable has five different levels (including three points
within  the  limits  specified  for  each  factor  and  two  points  outside
those limits)[26],  including the inclination of the first  stage deflector
plate (x1: 34°, 36°, 38°, 40°, 42°), the inclination of the second stage
deflector  plate  (x2:  30°,  32°,  34°,  36°,  38°),  the  wind  speed  of  the
first stage fan (x3: 18, 19, 20, 21, 22 m/s),and the wind speed of the
second  stage  fan  (x4:  12,  13,  14,  15,  16  m/s).  The  objective
functions were impurity rate (y1)  and loss rate (y2).  The number of
required tests (N) was defined as N = n0 + 2K + 2K, in which K and
n0  are  the  number  of  design  variables  and  the  number  of  central
points, respectively[27].
 2.4.2    ANN modeling

RSM  is  simple  but  cannot  capture  all  features  of  complex
nonlinear  responses[28].  ANN,  however,  is  more  sophisticated  and
powerful  for  modeling  nonlinear  interactions  between  variables,
making  it  popular  for  optimizing  agricultural  equipment
parameters[9].  But  ANN  needs  lots  of  data  to  avoid  overfitting,  so
data collection takes longer than for RSM[28]. Fortunately, RSM data
can be sufficient for effective ANN models if it has good statistical
distribution[27]. In this study, ANN models for impurity rate and loss
rate were built using limited RSM data (30 samples). K-fold cross-
validation was used to make the most of the data by dividing it into
subsets  for  training,  validation,  and  testing.  This  method  helps
prevent overfitting and underfitting, providing reliable performance
estimates. Here, five-fold cross-validation was applied, dividing the
30  samples  into  five  groups  of  six.  Each  group  was  used  once  for
testing, once for validation, and the remaining for training, repeated
five  times  and  averaged  to  assess  model  performance.  The  ANN
model  used  a  three-layer  feed-forward  backpropagation  network
with  Levenberg-Marquardt  training,  tangent  sigmoid  activation  for

hidden layers, and linear activation for output. Design variables (x1,
x2, x3, x4) were inputs, and objective functions (y1, y2) were outputs.
The  optimal  number  of  neurons  in  the  single  hidden  layer  was
determined by trial-and-error to minimize mean square error.
 2.4.3    Optimization method

The significance of the optimization procedure is obtaining the
optimal  values  of  the  operating  parameters  that  minimize  impurity
rate  and  minimum  loss  rate.  To  obtain  globally  optimal  results,
NSGA-Ⅱ algorithm  was  used.  NSGA -Ⅱ performs  optimization
using  non-dominated  sorting  and  elite  policies  with  congestion
distance optimizer operators. Compared with the weighting method,
NSGA-Ⅱ has  the  advantage  of  uniform  distribution  of  the  Pareto
solution  set,  which  is  suitable  for  multi-objective  solution  of  non-
convex  problems.  In  addition,  it  avoids  time-consuming  problems,
and all the optimal solutions can be obtained by solving Pareto only
once.  In  this  process,  the  adaptation  function  is  the  RSM or  ANN
prediction model, with a population size of 100 individuals, and 10 000
iterations,  and  a  crossover  and  mutation  percentage  of  90%  and
10%, respectively[29].

The NSGA-Ⅱ process consists of the following steps: First,  it
initializes  the  population  and  assesses  the  fitness  of  individuals.
Then,  a  non-dominated  sorting  is  performed  to  categorize  the
individuals  into  different  classes,  and the  crowding degree  of  each
individual is calculated. Next, new populations are generated using
selection,  crossover,  and  mutation  operations.  Finally,  combining
the  parent  and  offspring  populations,  non-dominated  sorting  and
crowding  comparisons  are  performed  to  select  the  next  generation
of  populations.  The  optimization  process  is  wrapped  up  with  the
condition of repetitions.

When  solving  objective  functions,  constraints  are  needed  to
limit  them.  The  design  variable  constraints  restrict  the  range  of
values of each design variable. The value ranges are as follows:

Min {y1 (x1, x2, x3, x4)}
Min {y2 (x1, x2, x3, x4)}

s.t.


34◦ ≤ x1 ≤ 42◦

30◦ ≤ x2 ≤ 38◦

18 m/s ≤ x3 ≤ 22 m/s

12 m/s ≤ x4 ≤ 16 m/s

(1)

where, y1 is the impurity rate, %; y2 is the loss rate, %; Min {y1 (x1,
x2, x3, x4)} is the objective function for minimizing the impurity rate;
Min {y2 (x1, x2, x3, x4)} is the objective function for minimizing the
loss  rate; x1  is  the  inclination  of  the  first  stage  deflector  plate,  (°);
and x2 is the inclination of the second stage deflector plate, (°); x3 is
the wind speed of the first stage fan, m/s; x4 is the wind speed of the
second stage fan, m/s.
 2.5    Evaluation index

The  objective  functions,  including  impurity  rate  (y1)  and  loss
rate  (y2),  were  calculated  using  the  methods  of  Zhang  et  al.[30]  and
Wang et al.[31]

y1 =
mi

mt

×100% (2)

y2 =
mk

mkt

×100% (3)

where, mi is mass of impurities in collection box of kernels, kg; mt

is  mass  of  kernels  in  collection  box  of  kernels,  kg; mk  is  mass  of
kernels in collection box of shells, kg; mkt is total mass of collection
box of kernels, kg.
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 3    Results and analysis
 3.1    Simulation analysis
 3.1.1    Validation of numerical model

To  verify  the  simulation  results,  they  were  compared  with
experimental  data  from  a  hot-wire  anemometer.  The  probe  had  a
5 µm tungsten  filament,  with  response  and  acquisition  frequencies
of  25  kHz  and  100  kHz,  respectively.  The  duct  was  cleaned  with
cotton cloth and alcohol  to  reduce dust.  Tangential  velocities  were
measured at different positions in the curved duct (r = 300 mm and
r = 350 mm, Figure 3b). The simulation results were compared with
the  average  of  three  experiments  using  the  anemometer  (AR866A,
Smart  Sensor).  Following  Yang  et  al.[32],  the  probe  was  positioned
using stepper motors to measure the flow field at  any point.  Finite
positioners  ensured  consistent  measurement  point  distribution.
Figure 6 shows the tangential velocities, with errors within 5%. The
good agreement validates the model,  despite disturbances from the
probe and factors like turbulent diffusion and boundary conditions.
 
 

90

21.5

21.0

20.5

20.0

19.5

19.0
0 10 20 30 40 50 60 70 80

θ/(°)

V
el

o
ci

ty
/m

·s
−1

r=300 mm, Simulation

r=300 mm, Experiment

r=350 mm, Simulation

r=350 mm, Experiment

Figure 6    Tangential velocities at r = 300 and 350 mm
in the bent duct

 
 3.1.2    Distribution of the pressure field

To  analyze  the  internal  flow  field  in  the  separation  device,  a
polar  coordinate  system  (origin  at  point  O)  was  established  to
observe the flow field distribution (Figure 3b). Here, θ  is the polar
angle,  and r  is  the polar diameter.  The side near O  is  the inside of

the bent duct, while the side away from O is the outside. Three axial
sections were taken at θ = 0°, 45°, and 90° to form planes 1, 2, and
3.  The  pressure  drop  is  crucial  for  the  separating  device  as  it
indicates  energy  loss[33].  Figure  7  shows  the  steady-state  pressure
distribution  in  circumferential  and  axial  sections  under  various
operating  conditions.  The  small  axial  pressure  gradient  variation
suggests  that  the  duct  design  reduces  its  impact  on  the  flow  field,
minimizing  particle  back-mixing[34].  Due  to  centrifugal  force,  flow
accelerates  near  the  outer  region  of  the  bent  duct,  while  the  inner
region  has  lower  pressure.  As  the  radius  increases,  the  pressure
gradient decreases in planes 1 and 2, indicating higher pressure loss,
while  it  increases  in  plane  3.  Wall  pressure  on  planes  1  and  2
decreases with increasing radius, as does the upper wall pressure on
plane  3.  This  is  because  a  smaller  radius  reduces  centrifugal
resistance, lowering the pressure gradient but increasing upper wall
pressure[35].

The  static  pressure  decreases  when  the  air  flow  enters  the
separating  device  and  passes  through  the  bent  duct,  resulting  in  a
large  pressure  gradient.  This  is  mainly  due  to  the  rotational
acceleration of the air flow in the separating device, which converts
a portion of the static pressure into kinetic energy while overcoming
the resistance. A more significant pressure difference exists between
the  inside  and outside  of  the  bent  duct.  Among them,  the  pressure
reaches  a  maximum  value  when  passing  through  the  outer  bend,
whereas the pressure reaches a minimum value when the fluid flows
through the inner bend, and a negative pressure is also generated on
the inner side of the bend. A similar phenomenon was reported by
Liu  et  al.[21]  This  is  because  fluid  flow  direction  changes  in  the
bending  section  due  to  the  constraint  of  the  outer  wall  surface.  In
the  centrifugal  force,  fluid  has  a  tendency  to  get  out  of  the
mainstream, which makes the inner side of the pressure smaller and
the outer side of the pressure value larger[36]. The higher the degree
of  bending  and  the  sharper  the  change  in  the  direction  of  fluid
movement, the greater the local resistance loss is. Similarly, Jiang et
al.[37]  conducted  a  numerical  study  on  the  flow  and  heat  transfer
characteristics  of  a  90°  bend  extruded  pipe  and  came  to  the  same
conclusion. The radius of the bent duct is within the range of 550-
700  mm,  except  that  when  r  =  250  mm,  the  airflow  pressure
changes  significantly,  and  the  rest  of  the  airflow  pressure
fluctuations are small and relatively stable.
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Figure 7    Distribution of the pressure at different cross-sections in the axial and circumferential directions
 

The analysis of the pressure flow field shows that as the radius
of the bent duct increases, the pressure gradient decreases while the
airflow  pressure  loss  increases.  This  is  mainly  due  to  the  abrupt
change in flow direction at the bend, which causes localized losses.
When  the  duct  radius  is  550  mm,  the  pressure  gradient  is  below
100 Pa, and the pressure loss is minimal, indicating a more uniform
distribution of the pressure flow field.

 3.1.3    Distribution of the velocity of the flow field
To understand how the radius of the bent duct affects the flow

field  in  the  separation  device,  the  steady-state  velocity  distribution
at  circumferential  and  axial  positions  was  analyzed  under  various
working  conditions  (Figure  8).  The  velocity  near  the  wall
approaches zero without generating local disturbances. The airflow
velocity  gradient  increases  in  planes  1  and  2  as  the  duct  radius
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increases, but decreases in plane 3. This is because higher velocity
is needed to overcome centrifugal force in plane 3. Du et al.[38] found
that  airflow  velocity  shows  horizontal  stratification,  causing

different  materials  to  follow  different  trajectories.  Plane  1  has  the
most  uniform and  stable  flow field,  indicating  that  the  duct  radius
significantly affects airflow distribution.
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Figure 8    Distribution of the velocity of circumferential and axial sections under different working conditions
 

Figure  8 shows the  velocity  distribution  in  the  circumferential
section  at  different  locations  and  conditions.  As  the  radius  of  the
bent duct increases, the airflow velocity decreases slightly, and the
velocity  gradient  first  decreases  and  then  increases.  The  flow
direction remains relatively stable overall. According to Liu et al.[21],
the  velocity  distribution  is  opposite  to  the  pressure  distribution:
velocity is lowest in the outer bent duct and highest in the inner bent
duct. This is because the fluid is compressed by the lower pressure
on  the  outer  side,  increasing  its  velocity.  At  the  upper  and  lower
centers  of  the  bent  duct  (r  =  300  mm  and  r  =  350  mm),  velocity
fluctuations  are  smooth.  The  airflow  velocity  is  relatively  stable
with  some  fluctuations  when  the  radius  is  470-550  mm.  The
velocity  of  the  250  mm  curve  changes  violently  at  the  470  mm
radius due to fluid viscosity, while the velocity of the 400 mm curve
changes significantly at radii of 700-1000 mm.

The  analysis  results  of  the  velocity  flow  field  are  as  follows:
with  the  increase  in  the  radius  of  the  bent  duct,  the  velocity  flow
field becomes less stable, the velocity fluctuation in the wall area of
the  flow  field  changes  more  drastically,  and  the  velocity  loss
gradually  becomes  larger,  which  increases  the  velocity  of  the
airflow  in  the  tube  and  thus  makes  the  particles  have  greater
rotational  momentum. When the radius of the duct  is  550 mm, the
overall  wind  velocity  gradient  of  the  flow field  is  less  than  2  m/s,
and the velocity flow field is more uniform.

In  summary,  the  pressure  field  and  velocity  field  in  the
separation  duct  are  evenly  distributed  when  the  duct  radius  is
550 mm, so the radius of the bent duct is designed to be 550 mm.
 3.2    Analysis of RSM

The  experimental  scheme  and  the  results  (average  of  three
experiments)  are  summarized  in  Table  2.  The  precision  of  the
quadratic models is checked by analysis of variance, and the results
are cataloged in Table 3.  For the impurity rate model,  the value of
R2  is  0.9716;  the  loss  of  fit  (p =  0.1256  >  0.05)  is  not  significant,
while the model is extremely significant (p < 0.01), which indicates
an  impurity  rate  model  could  be  used  to  analyze  and  predict  the
impurity content. For the loss rate model, the value of R2 is 0.9711;
the loss of fit (p = 0.1038 > 0.05) is not significant, while the model
is  extremely significant  (p <  0.01),  indicating the  absence of  other
major  design  variables  affecting  the  response  value.  The  final
equation in terms of coded factors:

y1 =4.98−0.13x1 +0.081x2 −0.85x3 −0.52x4 +0.068x1 x2+

0.066x1 x3 −0.37x1 x4 +0.064x2 x3 +0.35x2 x4 +0.22x3 x4+

0.12x2
1 +0.28x2

2 +0.073x2
3 +0.21x2

4 (4)

y2 =8.24−0.52x1 +0.47x2 +0.9x3 +0.88x4 +0.18x1 x2 +0.042x1 x3+

0.65x1 x4 −0.3x2 x3 −0.068x2 x4 −0.39x3 x4 +0.27x2
1 +0.49x2

2+

0.05x2
3 +0.1x2

4 (5)

Within the bounds of the analyzed design variables, the model
generated  above  accurately  predicted  impurity  rate  and  loss  rate.
For  RSM  regression  model,  the  maximum  relative  errors  of  the
training  results  for  the  impurity  rate  and  loss  rate  models  were
6.42% and  5.34%,  respectively.  Most  of  the  residuals  are  close  to
zero,  with  the  highest  residual  values  of  0.26  and  0.58  for  the
impurity  rate  and  loss  rate  models,  respectively,  and  the  lowest
residual values of –0.38 and –0.37, respectively, indicating that the
models constructed have high accuracy.

The  effects  of  design  variables  x1,  x2,  x3,  and  x4  on  response
values  y1  and  y2  were  analyzed  and  visualized  in  3D  diagrams
(Figure  9).  More  curved  lines  in  the  3D  plots  indicate  greater
influence  of  the  design  variables.  Contour  plots  with  elliptical
shapes and large curvatures suggest significant interactions between
variables. The color gradient from blue to red represents increasing
extract mass, with faster color changes indicating steeper slopes and
stronger impacts on the results.
 3.3    Analysis of ANN

The  optimal  topologies  for  the  impurity  and  loss  rate  models
were  determined  by  trial-and-error  method  to  be  4-10-1.  For  the
impurity rate, R2 = 0.9883, MSE = 0.012 76, and RMSE = 0.1130;
for  the  loss  rate,  R2  =  0.9854,  MSE  =  0.033 77,  and  RMSE  =
0.1838.  For  the  ANN  model,  the  maximum  relative  errors  of  the
training  results  for  the  impurity  and  loss  rate  models  were  4.64%
and  3.79%,  respectively.  Most  of  the  residuals  are  close  to  zero,
with  the  highest  residual  values  of  0.27  and  0.35  for  the  impurity
rate  and  loss  rate  models,  respectively,  and  the  lowest  residual
values  of –0.21 and –0.39,  respectively,  indicating that  the  models
constructed have high accuracy.
 3.4    Comparison of RSM and ANN

The fitness of ANN and RSM models was investigated through
the values of R2,  MSE, and RMSE[39].  Among these,  the higher  the
value  of  R2,  the  closer  it  is  to  1,  indicating  a  greater  degree  of
correlation  between the  measured  and predicted  values.  The  larger
values  of  MSE  and  RMSE  imply  a  higher  likelihood  of  error  in
prediction.  The  results  show  that  R2  of  the  RSM  model  for  the
impurity  rate  (0.9716)  is  significantly  lower  than  that  of  the  ANN
model (0.9883). The RSM model also has a higher MSE (0.026 60)
and  RMSE  (0.1631)  than  the  ANN  model  (MSE  =  0.012 76,
RMSE  =  0.1130).  The  R2  of  the  RSM  model  for  the  loss  rate
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Table 2    RSM measured and predicted responses

Test No. x1/(°) x2/(°) x3/m·s–1 x4/m·s–1
y1/% y2/%

Experimental RSM ANN Experimental RSM ANN
1 36 (–1) 32 (–1) 19 (–1) 13 (–1) 7.40 7.49 7.48 7.39 7.55 7.45
2 40 (1) 32 (–1) 19 (–1) 13 (–1) 7.61 7.70 7.54 4.69 4.78 4.68
3 36 (–1) 36 (1) 19 (–1) 13 (–1) 6.91 6.70 6.74 9.14 8.89 9.36
4 40 (1) 36 (1) 19 (–1) 13 (–1) 7.40 7.18 7.51 6.40 6.74 6.16
5 36 (–1) 32 (–1) 21 (1) 13 (–1) 4.96 5.08 4.91 10.32 10.54 10.29
6 40 (1) 32 (–1) 21 (1) 13 (–1) 5.75 5.55 5.68 7.88 8.03 7.96
7 36 (–1) 36 (1) 21 (1) 13 (–1) 4.77 4.55 4.87 10.51 10.76 10.48
8 40 (1) 36 (1) 21 (1) 13 (–1) 5.08 5.29 5.19 9.24 8.86 8.89
9 36 (–1) 32 (–1) 19 (–1) 17 (1) 6.18 6.05 6.23 8.55 8.92 8.85
10 40 (1) 32 (–1) 19 (–1) 17 (1) 4.72 4.78 4.69 8.95 8.68 8.96
11 36 (–1) 36 (1) 19 (–1) 17 (1) 6.62 6.65 6.61 10.08 9.91 10.03
12 40 (1) 36 (1) 19 (–1) 17 (1) 5.70 5.66 5.72 10.86 10.28 11.25
13 36 (–1) 32 (–1) 21 (1) 17 (1) 4.47 4.52 4.53 10.82 10.45 10.53
14 40 (1) 32 (–1) 21 (1) 17 (1) 3.23 3.52 3.38 10.23 10.46 10.25
15 36 (–1) 36 (1) 21 (1) 17 (1) 5.40 5.39 5.40 10.41 10.31 10.34
16 40 (1) 36 (1) 21 (1) 17 (1) 4.91 4.65 5.12 11.12 10.94 11.06
17 34 (–2) 34 (0) 20 (0) 14 (0) 5.64 5.74 5.71 10.44 10.37 10.38
18 42 (2) 34 (0) 20 (0) 14 (0) 5.21 5.21 5.21 8.12 8.23 8.18
19 38 (0) 30 (–2) 20 (0) 14 (0) 6.18 5.95 6.01 9.58 9.27 9.36
20 38 (0) 38 (2) 20 (0) 14 (0) 5.92 6.30 5.65 10.75 11.09 10.97
21 38 (0) 34 (0) 18 (–2) 14 (0) 6.85 6.97 6.95 6.63 6.59 6.64
22 38 (0) 34 (0) 22 (2) 14 (0) 3.59 3.56 3.58 10.17 10.24 10.19
23 38 (0) 34 (0) 20 (0) 12 (–2) 6.73 6.86 6.81 7.20 6.89 7.15
24 38 (0) 34 (0) 20 (0) 16 (2) 4.82 4.78 4.86 10.00 10.34 9.68
25 38 (0) 34 (0) 20 (0) 14 (0) 5.05 4.94 4.98 7.96 8.14 8.23
26 38 (0) 34 (0) 20 (0) 14 (0) 4.76 4.94 4.95 8.34 8.14 8.23
27 38 (0) 34 (0) 20 (0) 14 (0) 4.81 4.94 4.95 8.48 8.14 8.23
28 38 (0) 34 (0) 20 (0) 14 (0) 5.07 4.94 4.95 7.94 8.14 8.23
29 38 (0) 34 (0) 20 (0) 14 (0) 5.07 4.94 4.95 8.37 8.14 8.23
30 38 (0) 34 (0) 20 (0) 14 (0) 5.11 4.94 4.95 8.32 8.14 8.23

 

Table 3    Analysis of variance applying RSM model

Origin
Impurity rate (y1) Loss rate (y2)

Squares df Mean square F-value p-value Squares df Mean square F-value p-value
Model 32.78 14 2.34 44.79 < 0.0001 ** 68.69 14 4.91 38.07 < 0.0001 **

x1 0.42 1 0.42 8.01 0.0127 * 6.50 1 6.50 50.44 < 0.0001 **
x2 0.16 1 0.16 3.03 0.1022 5.29 1 5.29 41.06 < 0.0001 **
x3 17.49 1 17.49 334.58 < 0.0001 ** 19.35 1 19.35 150.14 < 0.0001 **
x4 6.48 1 6.48 123.92 < 0.0001 ** 18.46 1 18.46 143.26 < 0.0001 **

x1x2 0.074 1 0.074 1.42 0.2519 0.49 1 0.49 3.83 0.0692
x1x3 0.069 1 0.069 1.32 0.2689 0.028 1 0.028 0.22 0.6475
x1x4 2.18 1 2.18 41.75 < 0.0001 ** 6.83 1 6.83 52.96 < 0.0001 **
x2x3 0.066 1 0.066 1.27 0.2778 1.48 1 1.48 11.50 0.0040 **
x2x4 1.95 1 1.95 37.35 < 0.0001 ** 0.074 1 0.074 0.58 0.4596
x3x4 0.79 1 0.79 15.06 0.0015 ** 2.39 1 2.39 18.58 0.0006 **
(x1)2 0.43 1 0.43 8.13 0.0121 * 1.99 1 1.99 15.48 0.0013 **
(x2)2 2.16 1 2.16 41.34 < 0.0001 ** 6.61 1 6.61 51.30 < 0.0001 **
(x3)2 0.15 1 0.15 2.81 0.1142 0.068 1 0.068 0.53 0.4797
(x4)2 1.23 1 1.23 23.57 0.0002 ** 0.27 1 0.27 2.11 0.1665

Residual 0.78 15 0.052 1.93 15 0.13
Lack of fit 0.67 10 0.067 2.90 0.1256 1.67 10 0.17 3.23 0.1038
Pure error 0.12 5 0.023 0.26 5 0.052
Cor total 33.57 29 70.62 29

R2 0.9716 0.9711
MSE 0.026 60 0.068 57
RMSE 0.1631 0.2619

Note: “**” means extremely significant (p < 0.01); “*” means significant (p < 0.05).
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(0.9711) is  significantly lower than that of the ANN (0.9854).  The
RSM model also has a higher MSE (0.068 57) and RMSE (0.2619)
than  the  ANN  model  (MSE  =  0.033 77,  RMSE  =  0.1838).  The
above  analysis  suggests  a  higher  R2  value  of  the  ANN  model
compared with the RSM model, which demonstrates the superiority
of  the  ANN  model  in  terms  of  predictive  and  estimation
capabilities.  The  lower  MSE  and  RMSE  values  indicate  that  the
ANN  model  possesses  better  prediction  and  generalization
characteristics to the experimental data. The ANN model has a high
prediction accuracy,  which is  attributed to its  broad adaptability  to
the  nonlinear  behavior  of  the  system,  while  the  RSM  model  is
limited by second-order polynomial regression.

The fitness of ANN and RSM models are further evaluated by
comparing predicted and experimental values (Figure 10). It can be
seen that the experimental and predicted data of each experimental
run  have  high  consistency  and  correlation.  The  ANN  model  has
higher accuracy than the RSM model because the curve of the ANN
is  closer  to  the  experimental  data  than  the  RSM.  In  summary,  the
ANN model  has  higher  prediction  accuracy  than  the  RSM model.
As  it  turns  out,  the  data  collected  by  RSM  is  sufficient  for
constructing  effective  ANN  models  when  the  data  has  a  good
statistical distribution in the input domain.
 3.5    Multi-objective optimization
 3.5.1    Analysis of optimization solutions

In  multi-objective  optimization,  the  optimal  solution  for  each
generation is  obtained using NSGA-Ⅱ optimization and compared
with  the  previous  generations.  Pareto  optimal  fronts  (a  vector  set
composed  of  objective  function  values)  are  shown  in  Figure  11.
Note  that  in  Pareto  optimal  solution  sets  with  100  individuals,  all
points obtained are optimal, which means the points are not superior
to  each  other.  In  other  words,  if  one  objective  function  becomes
better, the other objective function will inevitably become worse[31].

To aid the designer in selecting the appropriate operating parameter
of  a  walnut  shell-kernel  separation  device  for  different  situations,
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the  correlation  between  the  impurity  rate  (y1)  and  loss  rate  (y2)  is
fitted in the form of an empirical function as follows:

y2 = 26.03× e−
y1

2.29 +2.95 (6)

As  seen  from  the  above  plots,  all  objective  functions  change
continually  with  the  various  design  variables.  To  balance  the
economy  and  quality  of  the  production  and  processing,  after
determining  the  positive  ideal  solution  and  the  negative  ideal
solution  of  all  individuals  by  technique  for  order  preference  by
similarity  to  an  ideal  solution  (TOPSIS).  The  optimal  solution  is
quantitatively  selected  with  x1  at  38.78°,  x2  at  36.10°,  x3  at
20.93 m/s, and x4 at 13.50 m/s, at which time impurity rate is 4.37%
and loss rate is 6.39%.
  

11

10

9

8

8

7

7

6

6

5

5

4

4
3

3

L
o
ss

 r
at

e,
 y

2
/%

Impurity rate, y1/%

Pareto optimal solution

ExpDecl fit, R2=0.9995

Optimal solution

y2=25e−y1
/2.28+2.76

Figure 11    Distribution of Pareto optimal solution sets
 

 3.5.2    Verification of optimal solution
The  ANN  model  deviated  from  the  actual  result  to  a  certain

extent,  which  may  cause  the  optimization  scheme  obtained  by  the
NSGA-Ⅱ to be inaccurate. To verify the feasibility and accuracy of
the  optimization  results,  a  simple  experiment  was  conducted.  The
test material and conditions were the same as those used in Section
2.1,  and considering  the  feasibility  of  validation  test  in  reality,  the
operating parameters of the separation device were adjusted to x1 =
39°,  x2  =  36°,  x3  =  21  m/s,  and  x4  =  13.5  m/s,  respectively.  A
comparison of prediction results and experimental results is  shown
in  Table  4.  The  final  measured  values  (average  of  three
experiments)  of  the  impurity  rate  and  loss  rate  were  4.51%  and
6.62%, respectively, which are close to the predicted values within
the  acceptable  limits  of  the  error  percentage  (3.20%  and  3.60%).
The combination of RSM, ANN, and NSGA-Ⅱ can help guide the
designer  in  choosing  walnut  shell-kernel  separation  device
parameters based on the optimization results to achieve an effective,
high-quality, and economical separation.
  

Table 4    Comparison of optimized prediction results and
experimental results

No. x1/(°) x2/(°) x3/m·s–1 x4/m·s–1 y1/% y2/%
Predict 38.78 36.10 20.93 13.50 4.37 6.39

Experiment 39 36 21 13.5 4.51 6.62
Error/% 0.57 0.27 0.33 0 3.20 3.60

 

The final optimization results showed an optimal wind speed of
21 m/s  (equivalent  to  a  force  of  eight  gales,  China  Meteorological
Administration),  which  is  sufficient  to  destroy  tree  branches.  The
wind  speed  of  the  separation  is  related  to  the  particle  size,  frontal
area,  and  density  of  the  walnut  shell  and  kernel.  Due  to  the  small
particle  size  and frontal  area  of  walnut  shells  and kernels,  a  larger
wind  speed  is  required  under  the  same  airflow  conditions.  This

phenomenon  is  consistent  with  the  results  in  Li  et  al.[9],  Chen  et
al.[40],  and  Chai  et  al.[41],  where  similar  wind  speed  (16-30  m/s)
requirements were observed for shell kernel separation experiments.
Furthermore,  another  possible  cause  of  excessive  wind  speed  may
be related to the structural effect of the separation equipment on the
airflow’s  kinetic  properties.  This  design  may  allow  the  airflow  to
accelerate as it  passes through the separation chamber,  resulting in
higher wind speeds. This phenomenon is consistent with Lu et al.[42],
which  verifies  the  effect  of  the  structure  of  the  90°  elbow  on  the
flow  field  distribution  through  numerical  simulations  and
experiments. Therefore, the wind speed requirement in this study is
mechanistically consistent with the findings of the above literature,
providing  a  theoretical  basis  and  practical  guidance  for  optimizing
the separation process.

 4    Discussion
In terms of the walnut shell-kernel separation, various methods

have been explored, but each one with limitations. Intelligent visual
identification  is  highly  accurate  but  faces  challenges  due  to  the
similarity  between  shells  and  kernels  and  the  need  for  specialized
knowledge.  Pneumatic  separation,  however,  offers  higher
efficiency,  lower  costs,  and  easier  operation.  Among  pneumatic
separators,  two-stage  systems  have  shown  superior  accuracy  and
efficiency compared to single-stage or multi-stage systems. The two-
stage tandem walnut shell-kernel separation device designed in this
study significantly enhanced separation efficiency and accuracy by
using  deflector  plates  and  a  tandem  configuration.  The  deflector
plates prevented centrifugal motion along the inner wall of the bend
pipe,  dispersing  material  movement  and  improving  separation
performance.  The  tandem  configuration  added  an  additional
separation  stage,  simplifying  the  process  and  achieving  purer
separation.

Compared  with  the  single-stage  technologies  of  Niu  et  al.[46]

(the  device  previously  developed  by  our  team)  and  Li  et  al.[9]  (the
device  previously  developed  by  our  team),  the  present  design
achieved  a  significant  reduction  in  impurity  rate  by  73.98%  and
77.55%,  respectively,  under  identical  conditions,  with  a
corresponding  decrease  in  loss  rate  of  9.44%  and  53.96%.
Compared  with  multi-stage  separation  devices,  our  design
demonstrated comparable impurity rates and loss rates to the walnut
shell and kernel separator[19] (IR = 4.75% and LR = 8.41%) and the
airflow separation system[47] (IR = 5.57% and LR = 6.85%), but with
a  substantial  enhancement  in  processing  capacity  of  more  than
200%. Also, our design processed 720 kg/h, which is 33.33% higher
than  the  540  kg/h  of  the  walnut  shell  and  kernel  separator[19]  and
negative  pressure  winnowing device[40].  In  summary,  the  optimized
two-stage tandem separation device that features specially designed
deflector  plates  and  a  tandem  configuration,  offers  significant
advantages  in  walnut  shell-kernel  separation  by  enhancing
separation  performance  and  improving  the  separation  of  high-
quality kernels, broken kernels, and shells.

Previous  studies  on  multi-duct  separators  focused  on
optimizing  individual  units,  but  two-stage  separators  are  complex
systems influenced by multiple factors with nonlinear relationships.
RSM  can  address  linear  relationships  but  is  limited  in  handling
nonlinear  ones,  while  ANN can  capture  complex  relationships  but
requires  large  datasets  to  avoid  overfitting.  This  study  combines
RSM and  ANN to  reduce  data  and  computation  costs,  using  RSM
data  for  ANN  training.  Additionally,  NSGA-Ⅱ is  employed  for
global  optimization,  overcoming  RSM’s  local  optima  limitations.
This  combined  approach  enhances  prediction  accuracy  and
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separation  performance.  However,  incomplete  separation  remains
an issue, highlighting the need for further improvements in the two-
stage tandem separator design.

(1) Walnut kernel damage and separation efficiency
In this study, the primary objective is to enhance the separation

device’s  performance  by  maximizing  efficiency  while  minimizing
impurity and loss rates. Potential kernel damage or energy penalties
associated  with  high  air  velocities  (e.g.,  21  m/s)  are  not  addressed
herein.  Future  work  should  quantify  how  physical  properties
(variety,  moisture,  shell-kernel  gap,  particle  size),  operating
parameters (air velocity, gap, angle), and equipment design (contact-
surface material) collectively influence kernel damage to establish a
universal prediction model.

(2) Energy consumption and separation efficiency
Although  the  current  optimization  model  does  not  explicitly

include  energy  consumption  constraints,  enhanced  separation
efficiency  achieved  through  optimized  parameters  shortens
residence  time  and  thereby  reduces  energy  demand.  Nevertheless,
actual  energy  consumption  is  modulated  by  regional  electricity
tariffs,  cumulative  operating  hours,  and  throughput,  all  of  which
must be assessed in specific operating environments. Future studies
should  therefore  incorporate  energy  consumption  as  an  explicit
constraint  within  the  optimization  framework  to  deliver  an
integrated  solution  that  simultaneously  maximizes  separation
efficiency and minimizes energy consumption.

(3) Particle-fluid interactions
This  study  optimizes  separation  equipment  parameters  using

RSM,  ANN,  and  NSGA-Ⅱ to  improve  efficiency  by  reducing
impurity and loss rates. CFD and a continuous phase model are used
to efficiently optimize structural  parameters like bend radii,  saving
experimental  costs  and  time.  Future  work  is  needed  to  explore
particle trajectories and interactions to address the complex particle-
fluid dynamics and further enhance separation efficiency.
  

Table 5    Comparison of different types of walnut shell kernel
air separation separators

Typology Equipment name Units Capacity Separation
performance

Intelligent
visual

identification
technique

Fuzzy clustering
algorithm[43] 1 100 walnuts RR = 83%

YOLOX deep learning
algorithm[44] 1 2753 photos RR = 96.3%

Near-infrared
spectroscopy[4] 1 1200 units RR = 97.78%

An enhanced YOLOv8n
algorithm[45] 1 not stated RR = 93.56%

Pneumatic
separation
method

Separation device of
walnut shell and kernel[46] 1 5 kg (constant) IR = 17.33%,LR = 7.31%
Walnut shell-kernel
winnowing device[9] 1 3 kg (constant) IR = 20.09%,LR = 14.38%
Positive pressure
pneumatic separation
device[10]

1 3 kg (constant) IR = 8.14%,LR = 4.42%

Airflow separation
system[47] 4 21-360 kg/h IR = 5.57%,

LR = 6.85%
Negative pressure
winnowing device[40] 3 540 kg/h IR 4%-8%,

LR 0.41-1.22%

Winnowing machine[48] 4 150-240 kg/h IR 3.5%-6.54%,
LR 0.68%-1.19%

Walnut shell and kernel
separator[19] 2 540 kg/h IR = 4.75%,

LR = 8.41%

This design 2 720 kg/h IR = 4.51%,
LR = 6.62%

Note: “RR” is recognition rate, “IR” is impurity rate, and “LR” is loss rate.

 

 5    Conclusions
To  solve  the  walnut  shell-kernel  separation  problem,  the

present work describes an engineering solution, i.e., the design and
optimization  of  a  two-stage  tandem  walnut  shell-kernel  separation
device.  The  analysis  results  of  spatial  flow  field  distribution  in  a
separation  duct  show that  when  the  radius  of  the  duct  is  550  mm,
the pressure and the velocity flow field are more uniform. The RSM
and  ANN  have  been  used  to  optimize  operating  parameters  for  a
walnut  shell-kernel  separation  device  and  compare  their  predictive
performance.  The  results  show  that  the  combination  of  RSM  and
ANN  is  an  effective  means  to  enhance  the  optimization
performance.  This  integrated  approach  significantly  reduces  the
number  of  simulations  and  improves  the  modeling  predictive
accuracy.  The  data  collected  by  RSM provides  a  solid  foundation
for  constructing  highly  accurate  ANN  models.  Also,  the  ANN
model  is  more  accurate  and  reliable  (higher  R2,  lower  MSE  and
RMSE),  which  is  because  it  fits  the  experimental  data’s  nonlinear
features better. Finally, the ANN model was optimized using NSGA-
Ⅱ,  and  the  optimal  values  of  the  objective  function  impurity  rate
and  loss  rate  are  4.51%  and  6.62%,  respectively.  Compared  with
traditional  single-stage  devices,  the  optimized  device  reduced
impurity  rate  by  73.98%  to  77.55%  and  loss  rate  by  9.44%  to
53.96%,  significantly  improving  separation  efficiency  and  quality.
The  combination  of  RSM,  ANN,  and  NSGA-Ⅱ was  confirmed  to
be a beneficial tool for optimizing machine performance.
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