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Abstract: Accurate  estimation  of  reference  crop  evapotranspiration  (ET0)  is  essential  for  water  resource  management  and
irrigation  scheduling.  A multitude  of  empirical  models  have  been employed to  estimate  ET0,  yielding satisfactory  outcomes.
However,  the  performance  of  each  model  is  contingent  upon  the  empirical  parameters  utilized.  This  study  examines  the
applicability of four empirical ET0 models, namely the Makkink (Mak), Irmark-Allen (IA), improved Baier-Robertson (MBR),
and  Brutsaert-Stricker  (BS)  models.  Meteorological  data  from  24  weather  stations  across  various  regions  in  China  were
procured and employed to assess the ET0 simulation results. The study employed the Differential Evolution (DE) optimization
algorithm, Grey Wolf Optimizer (GWO) algorithm, and a hybrid algorithm that combines DE and GWO algorithms (DE-GWO
algorithm)  to  optimize  the  parameters  of  the  four  empirical  models.  The  findings  revealed  that  the  optimization  algorithms
significantly  enhanced  the  regional  adaptability  of  the  four  models,  particularly  the  BS  model.  The  DE-GWO  algorithm
demonstrated  superior  optimization  performance  (RMSE=0.055-0.372,  R²=0.912-0.998,  MAE=0.037-0.311,  and  FS=0.864-
0.982)  compared  to  the  DE  (RMSE=0.101-2.015,  R²=0.529-0.997,  MAE=0.075-1.695,  and  FS=0.383-0.967)  and  GWO
(RMSE=0.158-0.915,  R²=0.694-0.987,  MAE=0.111-0.701,  and  FS=0.688-0.947)  algorithms.  The  DE-GWO-optimized  BS
model was the most accurate and improved, followed by the MBR model. The IA and Mak models also showed slightly better
performance  after  optimization  with  the  DE-GWO  algorithm.  The  DE-GWO-optimized  BS  model  performed  better  in  the
southern agricultural region than in other regions. It is recommended to utilize the DE-GWO to enhance the accurate prediction
of empirical ET0 models across the nine agricultural regions of China.
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1    Introduction
Water  scarcity  has  emerged  as  a  pressing  global  concern,

particularly for arid and semi-arid regions. Amidst the backdrop of
exponential population growth and escalating pollution, nations are
increasingly striving to  optimize water  resource management.  This
endeavor is being pursued through the implementation of innovative
strategies  and  technologies  aimed  at  enhancing  the  efficiency  and

sustainability  of  water  use[1].  According  to  the  survey,  population
growth by 2050 will consume about double the current demand for
food,  and  to  meet  food  security  in  the  coming  decades,  a  major
reform  of  agricultural  water  management  is  needed[2].  Therefore,
effective  water  management  irrigation  and  water  resources
allocation are the best ways to improve the rational use of regional
water  resources.  ET  is  an  essential  parameter  in  the  hydrological
cycle.  An  accurate  ET  estimation  is  the  basis  for  efficient
agricultural  water  use,  which  is  crucial  for  water  resource
management  and  agricultural  water-saving  irrigation[3].  ET  can  be
directly  measured  using  field  instruments;  however,  this  is
expensive and difficult. Mathematical models for estimating the ET
have  been  proposed  by  several  researchers,  including  Priestley-
Taylor,  Blaney-Criddle,  Turc,  and Hargreaves[4-6].  Such models  can
facilitate  ET  measurement.  The  FAO-56  Penman-Monteith  (FAO-
56  PM)  model  is  the  most  accurate  for  estimating  ET[7,8].  The  ET
estimated by the FAO-56 PM model can be used as a benchmark for
validating  the  other  models[9-11].  However,  the  FAO-56  PM  model
requires  a  considerable  number  of  parameters  for  ET  estimation,
including sunshine  hours,  air  temperature,  radiation,  humidity,  and
other meteorological data. In practical settings, meteorological data
are often missing, which affects the efficiency of ET estimations[12].
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Hence, it is imperative to develop a simpler approach to accurately
calculate  ET.  The  Mak  model  is  precise  to  a  point  where  it  can
almost  represent  the  universally  accepted  Penman-Monteith  model
when the ET process is applied[13-15]. Gunston and Batchelor reported
that the Priestley-Taylor model is a suitable alternative to the FAO-
56 PM model in tropical climates with high humidity[16]. More than
60  models  have  been  proposed  for  estimating  the  ET,  including
empirical  models  based  on  temperature,  radiation,  humidity,  water
pressure,  and  hybrid  models[17-20].  Multiple  empirical  models  have
been  integrated  to  validate  their  reliability.  Tabari  et  al.  compared
various ET models under humid conditions in the northern parts of
Iran and found that the radiation-based models were the best among
the  models  studied,  followed  by  the  temperature-based  and  pan
evaporation-based  models[21].  Zhao  et  al.  used  FAO-56  PM  as  the
benchmark  model  and  evaluated  different  ET  models  (including
HG) in a semi-arid region of China and concluded that the HG was
the best  ET model  in  the  studied region[22].  Majidi  et  al.  tested and
ranked  the  applicability  of  various  models  by  applying  the  Bowen
ratio energy balance method and found that the Mak model (which
is  based  on  radiation  and  temperature  data)  had  good  applicability
for  evaporation  estimation[23].  Feng  et  al.  investigated  the
applicability of  three ET empirical  models in southwest  China and
observed  that  the  Priestley-Taylor  model  was  more  accurate  than
the Mak and Ritchie models[24]. The results of the empirical models
depend  on  the  empirical  parameters,  and  regions  differ  in  their
characteristics.  Moreover,  it  is  difficult  to  obtain  precise  ET
estimates  on  different  spatial  scales.  To  address  these  challenges,
optimization  algorithms  have  been  extensively  used  to  optimize
model  parameters  and  improve  the  prediction  accuracy[25,26].  Wu  et
al.  evaluated  12  daily-scale  ET  models  (four  temperature  models,
five radiation models, and three hybrid models) by using the whale
optimization algorithm in the four climate zones in China, revealing
that the hybrid empirical model was the most accurate[27]. Yang et al.
used the least squares method to optimize the Rohwer, Romanenko,
Turc, Hargreaves, and Penman models and reported that the models
performed  better  after  calibration  with  the  least  squares  method[20].
Zhang et al. estimated ET in Northwest China using the Mak model,
for  which  the  parameters  were  optimized  using  the  least  squares
method,  and noted that  the  model  increased when optimized using
the least  squares method[28].  The Firefly Algorithm (FA) has strong
robustness and reliability. It  can be used to predict ET in the West
African  deserts.  Inspired  by  nature,  FA has  significantly  improved
the  performance  of  the  classical  Adaptive  Neuro-Fuzzy  Inference
System  (ANFIS)  model  optimization  in  practical  applications[29,30].
However,  no  single  optimization  algorithm  has  good  optimization
effects  for  all  constrained  optimization  problems  because  each
evolutionary  algorithm  has  its  own  advantages  in  solving
constrained  optimization  problems.  Therefore,  hybrid  optimization
algorithms  are  useful  in  situations  in  which  single  optimization
algorithms  are  ineffective.  Mohammadi  and  Mehdizadeh  coupled
Support  Vector  Regression  (SVR)  and  the  Whale  Optimization
Algorithm (WOA) to build a  new ET model.  The results  indicated
that the performance of the hybrid model was better than that of the
pure  SVR  model[26].  Long  et  al.  used  a  hybrid  Grey  Wolf
Optimization  algorithm  to  solve  high-dimensional  complex
functions,  and  noted  that  this  algorithm  exhibited  significantly
higher  accuracy  and  a  more  favorable  convergence  speed  than
Particle  Swarm  Optimization  (PSO)  and  universal  gravitational
search  algorithms.  Accordingly,  hybrid  algorithms exhibit  superior
performance and precision compared with single algorithms.

Consequently, this research has chosen four evapotranspiration

(ET)  models,  namely,  the  Makkink  (Mak),  Irmark-Allen  (IA),
improved  Baier-Robertson  (MBR),  and  Brutsaert-Stricker  (BS)
models,  and  optimized  them using  the  Differential  Evolution-Grey
Wolf  Optimizer  (DE-GWO),  Grey  Wolf  Optimizer  (GWO),  and
Differential  Evolution  (DE)  algorithms.  In  order  to  assess  the
adaptability of these ET models across various agricultural  regions
and  to  validate  the  enhancement  in  performance  achieved  by  the
different  optimization algorithms on empirical  formulas,  this  study
collected  data  from  24  locations  across  nine  distinct  agricultural
regions  in  China.  The  objectives  of  this  study  are  threefold:  1)  to
propose a hybrid optimization algorithm for the optimization of ET
estimation models,  2)  to  compare  the  optimization accuracy of  the
hybrid algorithm with that of the individual constituent algorithms,
and  3)  to  evaluate  the  adaptability  of  each  model  in  the  nine
agricultural regions based on their respective accuracies. 

2    Materials and methods
 

2.1    Study area
Based  on  China’s  Comprehensive  Agricultural  Regional

Planning,  the  country  is  divided  into  10  first-level  agricultural
regions and 38 second-level regions. The 10th region is the marine
aquatic region; the first nine regions are comprehensive agricultural
regions  and  are  generally  referred  to  as  the  nine  major
comprehensive agricultural areas, which are outlined as follows: the
Northern  Arid  and  Semiarid  Region  (NASR),  the  Northeast  China
Plain  (NCP)  area,  the  Yunnan-Guizhou  Plateau  (YGP)  area,  the
South China (SC) area, the Sichuan Basin and surrounding (SBSR)
area,  the  middle  and  lower  reaches  of  the  Yangtze  Plain  (MLYP),
the Qinghai-Tibet Plateau (QTP) area, the Loess Plateau (LP) area,
and the Huang-Huai-Hai Plain (HHP) area. In this study, a total of
24 stations were selected in these nine major agricultural areas. 

2.2    Data collection
For  model  calibration  and  performance  evaluation,

meteorological data measured at the same sites were collected from
the  China  Meteorological  Data  Sharing  Service  System  (http://
cdc.nmic.cn) for the period from January 1, 1960, to December 31,
2019.  The  meteorological  dataset  (latitude,  longitude,  altitude,
average  temperature,  relative  humidity,  wind  speed  (U),  and
maximum and minimum temperatures) were divided into two parts.
All  the  data  were  collected  from  each  site.  The  continuous  daily
meteorological  data  from each station were divided into two parts,
according to the time series, as the training and test samples of the
model.  The  first  part,  comprising  80% (1960-2007)  of  the  dataset,
was  used  for  model  calibration,  and  the  second  part,  comprising
20% (2008-2019) of the dataset, was used for model testing. 

2.3    Models for estimating ET 

2.3.1    FAO-56 PM model
The  FAO-56  PM  model  is  based  on  the  principles  of

aerodynamics and energy balance, and it comprehensively considers
various  factors  that  influence  ET.  The  FAO-56  PM model  did  not
require  parameter  correction  to  account  for  regional  climatic
differences.  The  accuracy  of  the  FAO-56  PM  model  was  verified
using global meteorological data. Therefore, this study used the ET
estimates  provided  by  the  FAO-56  PM model  as  a  benchmark  for
comparison  with  other  models.  The  FAO-56  PM  model  can  be
expressed as follows[3,11,31]:

ET0 =

0.408 ·∆ · (Rn −G)+ γ ·
( 900

T +273

)
·u2 · (es − ea)

∆+ γ · (1+0.34 ·u2)
(1)

where, ET is the daily reference evapotranspiration, mm/d; Rn is the
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crop surface net radiation, MJ/m2∙d; G  is the soil heat flux density,
MJ/m2∙d; T is the daily mean air temperature at a height of 2 m, °C;
u2  is  the  daily  mean  wind  speed  at  a  height  of  2  m,  m/s; es  is  the
saturated vapor pressure, kPa; ea is the actual vapor pressure, kPa; Δ
is the slope of the curve of pressure versus temperature, kPa/°C; and
γ is the hygrometric constant, kPa/°C. 

2.3.2    Empirical model
This  study  used  the  FAO-56  Penman-Monteith  formula  (PM)

recommended by the FAO to verify the optimization results  of  the
empirical  model.  The  four  empirical  models  (Mak,  IA,  MBR,  and
BS) were compared with the FAO-56 PM model  and optimized to
evaluate their applicability. Finally, the four empirical models were
optimized  using  three  optimization  algorithms,  and  their
performance  and  adaptability  in  different  regions  were  observed
through evaluation indicators. Each of these models is presented in
Table 1.
  

Table 1    Models to be optimized

Empirical Model (EM) Recommended
Values

ET0 =
∆

∆+ γ
· a
λ
·Rs −b a=0.61; b=–0.12 Makkink, 1957[32]

ET0 = a+b ·Ra + c ·T a=0.489; b=0.289;
c=0.023 Irmak et al., 2003[33]

ET0 =a · (Tmax −Tmin)+b ·Ra+

c · (es − ea)+d ·Tmax + e

a=0.1844;
b=0.1135; c=2.811;
d=–0.0039; e=–4.04

Baier and
Robertson, 1965[34]

ET0 = (2 ·a−1) · ∆
∆+ γ

· (Rn −G)−

γ
∆+ γ

· [b · (1+ c ·u2)] · (es − ea)
a, b=0.26; c=0.86 Brutsaert and

Stricker, 1979[35]

Note: a, b, c, d, and e are the reference empirical coefficients of each empirical formula.
  

2.4    Optimization algorithms 

2.4.1    DE algorithm
The  DE  algorithm[36]  is  a  stochastic  and  population-based

optimization method to determine the overall  optimal solution in a
multidimensional  space[37].  The  operating  procedures  are  described
as follows[38]:

Initialization:  The  space  is  regarded  as  comprising  N-
dimensional  (D)  vectors,  which  implies  that  the  population  size  is
NP. The initial population is generated randomly.

xi, j = xl
j + rand (0,1) ·

(
xu

j − xl
j

)
; i = 1,2, . . . ,N; j = 1,2, . . . ,D (2)

xl
j

xu
j

where,  i  represents  the  ith  individual;  j  represents  the  jth
component;    represents  the  lower  bound  of  the  jth  component;
and   represents the upper bound of the jth component.

Mutations: A mutation operator is employed to generate a new
target individual.

Crossover:  A  crossover  operation  is  performed  between  each
individual  and  the  offspring  mutation  vector  they  produce.  More
specifically,  for  each  component,  the  algorithm  probabilistically
chooses either the offspring mutation vector or the original vector to
create the trial individual.

Selection:  The  selection  process  employs  a  greedy  strategy,
where  individuals  with  lower  fitness  function  values  are  chosen
from  both  the  experimental  and  current  populations  to  advance  to
the next generation. 

2.4.2    GWO algorithm
The Grey Wolf Optimizer (GWO) algorithm is a metaheuristic

approach  devised  by  Mirjalili  et  al.  Within  this  framework,  grey
wolves  are  classified  into  hierarchical  roles:  alpha  (α),  beta  (β),
delta (δ), and omega (ω) wolves. The alpha wolves hold dominance

over the lower-ranking wolves, who, in turn, follow the lead of their
superiors[39-41].

1) Tracking, chasing, and approaching prey: During the hunting
process,  grey  wolves  strategically  encircle  their  prey.  This
envelopment behavior can be mathematically modeled as follows:

X⃗ (t+1) = X⃗ p (t+1)− A⃗ · D⃗ (3)

D⃗ =
∣∣C⃗ · X⃗ p (t)− X⃗ (t)

∣∣ (4)

X⃗ p

where, X is the position of the grey wolf; t is the current number of
iterations;    is  the  position  of  the  prey;  and  D  is  the  distance
between the grey wolf and its prey.

Xα Xβ Xδ

2)  Pursuing,  encircling,  and  harassing  the  prey  until  it  stops
moving: In the GWO algorithm, α represents the optimal grey wolf,
β  represents  the  second-best  grey  wolf, δ  represents  the  third-best
grey  wolf,  and  ω  represents  the  rest  of  the  grey  wolves.  The
algorithm is established on the basis  that α  is  the optimal solution,
and that β and the other wolves know the location of the prey. In the
iterative process, α, β, and δ were used to guide the movement of ω
to achieve global optimization. The positions  , , and   of α, β,
and δ are used to update the positions of all  grey wolves using the
following equations (i=1, 2, 3):

X⃗i = X⃗α,β,δ (t)− A⃗i · D⃗α,β,δ (5)

D⃗α,β,δ =
∣∣C⃗1 · X⃗α,β,δ (t)− X⃗ (t)

∣∣ (6)

X⃗ (t+1) =
X⃗1 + X⃗2 + X⃗3

3
(7)

3)  Attack  toward  prey:  Grey  wolves  conclude  the  hunt  by
striking the prey when it ceases to move. In Equation (8), t denotes
the  current  iteration  count,  while  T  signifies  the  predefined
maximum  number  of  iterations.  As  a  diminishes  from  2  to  0,  the
corresponding value of a also varies within the range [–a, a]. With
an increasing value of a, the grey wolves venture further afield from
their  pack  members  in  search  of  more  promising  prey,  thereby
encouraging  a  global  search  (|a|>1).  Conversely,  as  a  diminishes,
the grey wolves draw closer to the prey, steering the wolves towards
a more localized search (|a|<1).

a = 2−2 · t
T

(8)
 

2.4.3    Hybrid DE-GWO algorithm
Taking  into  account  the  limitations  of  the  Differential

Evolution  (DE)  and  Grey  Wolf  Optimizer  (GWO)  algorithms,
including  premature  convergence,  inadequate  stability,  and
susceptibility  to  getting  stuck  in  local  optima,  this  research
introduces a more effective hybrid optimization algorithm: the DE-
GWO algorithm. This algorithm aims to enhance the global search
capability and circumvent the aforementioned drawbacks associated
with  DE  and  GWO.  The  operational  steps  of  the  DE-GWO
algorithm are detailed below.

1)  Population  initialization:  The  algorithm  commences  by
configuring  the  essential  parameters  for  the  hybrid  optimization
algorithm,  which  include  the  population  size  N,  the  maximum
number of iterations MAX_iter, the crossover probability pCR, the
search dimension D, and the search range bounds ub (upper bound)
and  lb  (lower  bound),  as  well  as  the  scaling  factor  F.  It  then
initializes  the  parameters  a,  A,  and  C,  and  carries  out  the  DE
mutation  operation  on  the  population  individuals  to  produce
intermediate  solutions.  Following  this,  a  competitive  selection
process is conducted to refine the initialized population individuals.
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The iteration counter is then set to t=1.
2)  Iteration:  The  algorithm  calculates  the  objective  function

value  of  each  grey  wolf  in  the  population,  sorts  the  grey  wolves
according to the size of the objective function value, and selects the
top three optimal individuals Xα, Xβ, and Xδ.

3) Selection: The algorithm evaluates the distance of each grey
wolf  in  the  population from the  optimal  position and updates  their
positions  based  on  this  assessment.  This  operation  is  carried  out
using a cross-update strategy. Additionally, the parameters a, A, and
C  are  utilized  to  perform  the  crossover  operation,  leading  to  the
generation  of  new individuals.  Following  this,  the  positions  of  the
top three grey wolves are refined with the optimal values obtained.

4)  Termination condition:  According to the count  value,  if  the
maximum number of iterations MAX_iter is reached, the algorithm
exits and outputs the objective function value of the global optimal
Xα; otherwise, it sets t to t+1 and restarts the execution from step (2). 

2.5    Model evaluation metrics
The root mean square error (RMSE), determination coefficient

(R2),  mean absolute error (MAE), predictive score (FS), and global
evaluation  index  (GPI)  were  used  as  metrics  to  evaluate  the
performance of each ET model.

RMSE =

√
1
n
·

n∑
i=1

(ui − vi)
2 (9)

R2 =

[
n∑

i=1

(ui − ū) · (vi − v̄)

]2

n∑
i=1

(ui − ū)2 ·
n∑

i=1

(vi − v̄)2

(10)

MAE =
1
n
·

n∑
i=1

|ui − vi| (11)

FS = 1− RMSE in presented model
RMSE in benchmark model (12)

The  GPI  was  used  to  integrate  the  comprehensive  evaluation
results of the four indicators, which are expressed as follows:

GPI =
4∑

j=1

α j

(
g j − y j

)
(13)

ū
v̄

where, ui is the ith daily value simulated by the model; vi is the ith
standard daily value calculated by the FAO-56 PM model;   is the
average value of ui;   is the average value of vi; n is the number of
samples  in  the  test  set;  gj  is  the  normalized  value  of  RMSE,  R2,
MAE, and NSE; and yj is the median of the parameter. 

3    Results and discussion
 

3.1    Recalibration of the ET empirical model
The  parameters  of  Mak,  IA,  MBR,  and  BS  models  were

optimized  using  DE-GWO,  GWO,  and  DE  algorithms,  and  the
results were analyzed. Initially, the parameter a for the Mak model,
as optimized by the three algorithms, remained within a stable range
(0.620-0.754) across all study areas. The values were notably higher
in the NCP, NASR, and QTP compared to the SC, SBSR, and other
regions. For the Mak model optimized by the DE-GWO and GWO
algorithms,  the  parameter  b  followed  similar  trends  as  a,  but  this
was  not  the  case  for  the  DE  algorithm,  with  b  values  showing
greater variability in the NASR and NCP areas (−0.644-0.391).

In  the  IA  model,  the  parameter  a  optimized  by  all  three

algorithms  exhibited  considerable  variation,  mirroring  the
characteristics of the Mak model’s a, yet with less fluctuation in the
NCP,  NASR,  and  QTP  areas  compared  to  the  SC,  SBSR,  and
MLYP  areas  (−0.734-0.753).  The  parameter  b  for  the  IA  model
optimized by the  DE-GWO algorithm showed the  most  significant
variation in the NASR area. The b values of the IA model optimized
by  the  three  algorithms  were  less  variable  in  the  SC,  SBSR,  and
other areas than in the NCP, NASR, and other areas (0.159-0.403),
while  the  c  values  were  considerably  smaller  and  showed  little
variation (−0.036-0.110).

For  the  MBR model,  the  parameters a, b,  and d  optimized  by
the three algorithms were generally smaller than c and e. Although
a, b, and d showed some variation across the nine areas, the extent
of variation was relatively minor (−0.087-0.195, −0.010-0.201, and
−0.010-0.201, respectively). However, the parameter c maintained a
more stable range (2.051-5.309) in the SC, MLYP, HHP, and NCP
areas.  The  parameter  e  showed  a  stable  variation  range  in  the  LP
and HHP areas compared to other regions.

Lastly,  for  the  BS  model,  the  parameter  b  optimized  by  the
three algorithms varied across all nine areas (0.657-0.896), with the
amplitudes of b in the SC, SBSR, and MLYP areas being relatively
stable.  The  parameter  a  for  this  model,  optimized  by  the  three
algorithms, fluctuated within a narrow range (0.140-0.880). Among
the parameters, c was the most sensitive across the nine areas. The
performance of the three optimization algorithms was not uniform.
The c parameter of the model optimized by the DE-GWO algorithm
showed the greatest variation in the LP area. The amplitude of c for
the model optimized by the GWO algorithm was the largest  in the
SC area,  and the variation in c  for the model optimized by the DE
algorithm  was  the  most  pronounced  in  the  SC  and  SBSR  areas
(−18.244-73.099)

In  summary,  the  three  optimization  algorithms  provided
relatively similar  optimization results  for  various empirical  models
in the nine areas. Therefore, the parameters of the models optimized
by  the  three  optimization  algorithms  can  provide  a  basis  for
obtaining highly precise ET estimates in the nine areas. 

3.2    Comparison of different optimization algorithms
In this study, four daily ET prediction models (Mak, IA, MBR,

and  BS)  were  constructed  and  then  optimized  using  three
optimization  algorithms  (DE,  GWO,  and  DE-GWO).  Table  2
presents  the  R2,  RMSE,  MAE,  and  FS  values  derived  for  the
optimized models for the training and test datasets obtained at each
of the 24 stations. The results revealed that the Mak model had the
highest  accuracy  (RMSE=0.496-0.940,  R2=0.767-0.872,  MAE=
0.343-0.641),  followed  by  the  IA  model  (RMSE=0.500-0.794,
R2=0.748-0.846,  MAE=0.425-0.720),  MBR  model  (RMSE=0.803-
1.752,  R2=0.588-0.852,  MAE=0.664-1.504),  and  BS  model
(RMSE=2.649-3.594, R2=0.383-0.451, MAE=2.226-2.947).

The  DE,  GWO,  and  DE-GWO  algorithms  improved  the
accuracy of the models to a certain extent. The DE-GWO-optimized
BS model exhibited the highest accuracy and greatest improvement
after  optimization  (RMSE=0.055-0.372,  R2=0.912-0.998,  MAE=
0.037-0.311, FS=0.864-0.982), followed by the GWO-optimized BS
model  (RMSE=0.158-0.915,  R2=0.694-0.987,  MAE=0.111-0.701,
FS=0.688-0.947)  and  DE-optimized  BS  model  (RMSE=0.101-
2.015,  R2=0.529-0.997,  MAE=0.075-1.695,  FS=0.383-0.967).  The
DE-GWO-optimized  MBR  model  was  slightly  less  accurate  than
the DE-GWO-optimized BS model (RMSE=0.399-0.730, R2=0.855-
0.957,  MAE=0.303-0.504,  FS=0.289-0.787).  Therefore,  the  DE-
GWO algorithm resulted in greater improvement in the MBR model
than  the  GWO  algorithm  (RMSE=0.441-0.814,  R2=0.811-0.956,
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MAE=0.297-0.615,  FS=0.273-0.742).  The  DE  algorithm  showed
the  least  improvement  among  the  three  algorithms  (RMSE=0.434-
0.917,  R2=0.745-0.937,  MAE=0.321-0.735,  and  FS=0.030-0.695).
The DE-GWO algorithm slightly  improved the  accuracy of  the  IA
model,  but  resulted  in  lower  accuracy  improvement  levels  for  the
MBR and BS models (RMSE=0.168-0.858, R2=0.825-0.981, MAE=
0.125-0.592, FS=0.040-0.756). The GWO-optimized IA model had
relatively  low  accuracy  (RMSE=0.291-0.907,  R2=0.705-0.938,
MAE=0.179-0.711,  FS=0.012-0.639),  as  did  the  DE-optimized  IA
model  (RMSE=0.337-0.915,  R2=0.715-0.917,  MAE=0.228-0.745,
FS=0.042-0.584).  The  Mak  and  DE-GWO-optimized  Mak  models
were  the  most  accurate,  followed  by  the  GWO-optimized  Mak
model  (RMSE=0.226-0.764,  R2=0.806-0.975,  MAE=0.165-0.542,
FS=0.145-0.523) and the DE-optimized Mak model (RMSE=0.242-
0.775,  R2=0.792-0.969,  MAE=0.188-0.566,  FS=0.013-0.489).
Although  the  DE-GWO-optimized  Mak  model  had  favorable
accuracy  levels,  its  accuracy  improvement  levels  were  the  lowest
among the optimized models (RMSE=0.226-0.737, R2=0.821-0.975,
MAE=0.167-0.49, FS=0.125-0.523).

The  three  optimization  algorithms  performed  well.  The  DE
algorithm  has  a  simple  mathematical  structure,  is  easy  to
implement, converges rapidly, and is highly robust. It reacts quickly
and requires short execution time. Additionally, it has a one-to-one
selection strategy and an optimal mutation strategy, which allows it
to converge faster than other algorithms, reducing the complexity of
the  population  more  quickly  and,  in  turn,  improving  its  search
capability.  If  it  is  affected  by  interference,  premature  phenomena
appear  in  later  stages,  which  worsen  the  results.  The  GWO
algorithm  is  more  complex,  converges  more  rapidly,  has  a  better
search  capability,  and  is  better  at  optimization  than  the  DE
algorithm.  During  the  search  process,  all  three  individuals
unavoidably  fell  into  the  local  optimum,  which  considerably
reduced  the  accuracy  of  the  overall  search  results  of  the  model,
which  in  turn  reduced  the  accuracy  and  optimization  ability.  The
DE-GWO  algorithm  combines  the  advantages  of  DE  and  GWO
algorithms. This improves the global search ability by avoiding the
introduction  of  defects  caused  by  the  premature  stagnation  of
individuals  that  have fallen into the local  optimum. The DE-GWO
algorithm  breaks  through  the  local  limit  value  easily,  is  precise,
converges well, and is better at optimization than the GWO and DE
algorithms.  The  three  optimization  algorithms  were  the  most
effective  for  the  BS  model.  The  RMSE,  R2,  and  MAE  values
derived for the BS model increased by 92%-96%, 120%-152%, and
92%-97%,  respectively,  after  optimization  using  the  DE-GWO
algorithm; by 80%-84%, 107%-118%, and 81%-86%, respectively,
after  optimization  using  the  GWO  algorithm;  and  by  57%-86%,
83%-104%,  and  68%-87%,  respectively,  after  optimization  using
the DE algorithm.

In  summary,  the  three  optimization  algorithms  exhibited  high
performance in improving the ET prediction models. The values of
the four indicators (RMSE, R2,  MAE, and FS) for the models after
optimization  using  the  different  algorithms  are  shown in Figure  1.
The  optimization  algorithms  can  be  ordered  according  to  their
performance as follows: DE-GWO>GWO>DE. 

3.3    Performance of ET models in different agricultural areas
The  adaptability  of  the  optimized  models  differed  in  the  nine

areas,  and  the  accuracy  of  the  optimized  models  was  higher  than
that  of  the  non-optimized  models.  The  terrain  and  climate  of  each
area  influenced  the  performance  of  each  model.  The  RMSE,  R2,
MAE, FS,  and GPI metrics  were used to  evaluate  the applicability
of each model for each area. The accuracy of each model is shown

 

Table 2    Using the recommended values, the precision values of
the daily ET0 optimized by the DE-GWO, GWO, and DE optimiz-

ation algorithms in nine major agricultural regions in China
Station Model RMSE R2 MAE FS

50758

M-BR 0.721 0.913 0.531 -
DE-GWO-MBR 0.449 0.952 0.322 0.378
GWO-MBR 0.459 0.945 0.323 0.364
DE-MBR 0.447 0.951 0.311 0.380

51567

M-BR 1.702 0.778 1.356 -
DE-GWO-MBR 0.518 0.938 0.359 0.695
GWO-MBR 0.523 0.937 0.356 0.693
DE-MBR 0.621 0.909 0.473 0.635

53615

M-BR 1.491 0.793 1.143 -
DE-GWO-MBR 0.524 0.932 0.372 0.649
GWO-MBR 0.639 0.900 0.489 0.571
DE-MBR 0.534 0.928 0.388 0.642

53664

M-BR 1.357 0.827 0.992 -
DE-GWO-MBR 0.442 0.948 0.318 0.674
GWO-MBR 0.522 0.926 0.403 0.615
DE-MBR 0.487 0.930 0.364 0.641

53986

M-BR 1.095 0.822 0.827 -
DE-GWO-MBR 0.585 0.887 0.440 0.465
GWO-MBR 0.661 0.857 0.517 0.396
DE-MBR 0.870 0.831 0.701 0.205

54134

M-BR 0.967 0.878 0.743 -
DE-GWO-MBR 0.554 0.935 0.392 0.428
GWO-MBR 0.584 0.918 0.432 0.397
DE-MBR 0.562 0.927 0.405 0.419

54285

M-BR 1.231 0.741 0.938 -
DE-GWO-MBR 0.398 0.936 0.301 0.677
GWO-MBR 0.423 0.926 0.318 0.656
DE-MBR 0.414 0.929 0.315 0.664

54346

M-BR 0.887 0.854 0.677 -
DE-GWO-MBR 0.440 0.933 0.307 0.504
GWO-MBR 0.471 0.918 0.339 0.470
DE-MBR 0.441 0.932 0.314 0.503

54518

M-BR 1.114 0.845 0.830 -
DE-GWO-MBR 0.569 0.912 0.423 0.490
GWO-MBR 0.571 0.911 0.422 0.487
DE-MBR 0.668 0.845 0.531 0.400

54826

M-BR 1.162 0.713 1.012 -
DE-GWO-MBR 0.533 0.882 0.403 0.542
GWO-MBR 0.545 0.871 0.415 0.531
DE-MBR 0.879 0.829 0.597 0.243

55664

M-BR 1.496 0.583 1.271 -
DE-GWO-MBR 0.365 0.902 0.280 0.756
GWO-MBR 0.399 0.870 0.313 0.733
DE-MBR 0.407 0.868 0.321 0.728

56137

M-BR 1.937 0.592 1.661 -
DE-GWO-MBR 0.451 0.848 0.354 0.767
GWO-MBR 0.574 0.781 0.449 0.704
DE-MBR 0.844 0.777 0.678 0.564

56485

M-BR 0.788 0.818 0.664 -
DE-GWO-MBR 0.425 0.889 0.319 0.460
GWO-MBR 0.483 0.856 0.371 0.387
DE-MBR 0.454 0.866 0.351 0.424

56856

M-BR 1.426 0.686 1.038 -
DE-GWO-MBR 0.450 0.848 0.342 0.685
GWO-MBR 0.497 0.819 0.386 0.652
DE-MBR 0.531 0.818 0.413 0.628

57144

M-BR 1.174 0.795 0.888 -
DE-GWO-MBR 0.508 0.889 0.387 0.567
GWO-MBR 0.603 0.847 0.477 0.487
DE-MBR 0.523 0.878 0.403 0.555
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in  the  Taylor  diagram in Figure  2;  in  the  accuracy  evaluation,  the
FAO-56  PM  model  was  used  as  a  benchmark.  The  estimates
provided  by  the  optimized  models  closely  matched  the  results
provided by the FAO-56 PM model, demonstrating the accuracy of
the optimized models.

The DE-GWO-optimized Mak model had the highest accuracy
and  best  adaptability  in  the  MLYP  area  (RMSE=0.318-0.362,
R2=0.942-0.960,  MAE=0.237-0.283,  FS=0.383-0.459,  GPI=1.051-
1.431, GPI ranking 5-16). The DE-GWO-optimized Mak model was
slightly less accurate in the NCP area, and the GWO-optimized Mak
model  had  the  same  accuracy  as  that  of  the  DE-GWO-optimized
Mak model  in  this  area.  The DE-GWO-optimized Mak model  was
less accurate in the NASR and LP areas than in the MLYP and NCP

areas.  Moreover,  the  DE-GWO-optimized  Mak  model  had  the
second-highest accuracy in the NASR and LP areas. The optimized
models performed moderately in the HHP, SC, and YGP areas. The
DE-GWO-optimized  Mak  model  performed  worst  in  the  QTP  and
SBSR areas. The DE-GWO-optimized IA model was the best in the
NCP  area  (RMSE=0.463-0.719,  R2=0.845-0.921,  MAE=0.338-
0.536,  FS=0.058-0.330,  GPI=1.150-1.297,  GPI  ranking  6-9),
followed by the NASR, MLYP, and LP areas, YGP, SC, and HHP
areas,  SBSR  area,  and  QTP  area.  The  DE-GWO-optimized  MBR
model  was  the  best  in  the  MLYP  area  (RMSE=0.463-0.719,
R2=0.845-0.921,  MAE=0.338-0.536,  FS=0.058-0.330,  GPI=1.150-
1.297,  GPI  ranking  6-9),  followed  by  the  NCP  area,  HHP  and
NASR areas, LP and YGP areas, and QTP and SBSR areas. The DE-
GWO-optimized  BS  model  was  the  best  in  the  HHP  area
(RMSE=0.463-0.719,  R2=0.845-0.921,  MAE=0.338-0.536,  FS=
0.058-0.330,  GPI=1.150-1.297,  GPI  ranking  6-9),  followed  by  the
NASR  and  LP  areas.  The  DE-GWO-optimized  BS  model’s
performance in the NCP and SC areas was the same as that  of  the
DE-optimized  BS  model’s  performance  in  the  MLYP  area;
however,  the  performance  in  the  NCP,  SC,  and  MLYP  areas  was
not  as  high  as  that  in  the  HHP,  NASR,  and  LP  areas.  The  GWO-
optimized  BS  model  adapted  moderately  in  the  YGP  area  and
poorly  in  the  SBSR and QTP areas.  Although the  models  had low
precision in some areas, they still ranked highly in these areas. For
example,  the  GWO-optimized  Mak  model  had  low  adaptability  in
the  SBSR  area,  but  the  GPI  value  at  the  Leibo  site  was  1.503,
ranking fourth. Furthermore, the DE-GWO-optimized IA model had
a GPI value of 1.885 at site 59 293, ranking it second.

Overall, the adaptabilities of the models in the nine areas were
different.  Some  models  had  good  adaptability  in  the  NASR  and
MLYP areas but poor adaptability in the QTP and SBSR areas; their
adaptability in other areas was relatively moderate. The adaptability
of  the  independent  empirical  models  was  improved  using
optimization  algorithms.  The  models  optimized  using  the  hybrid
optimization algorithm outperformed independent models. 

4    Conclusions
To  improve  the  accuracy  and  applicability  of  empirical  ET

estimation  models,  this  study  selected  24  sites  in  nine  major
agricultural  regions  in  China  as  representative  research  sites  and
used  three  optimization  algorithms  (DE-GWO,  GWO,  and  DE)  to
optimize  four  ET  empirical  models.  Thus,  ET  estimation  models
with high accuracy and universality were developed.

The  optimized  models  performed  differently  in  various
agricultural  areas.  The  optimization  significantly  improved  the
accuracy and applicability of the four empirical models. Compared
with the GWO- and DE-optimized models, the DE-GWO-optimized
models  exhibited  significant  improvements  in  accuracy  and
adaptability. The optimization algorithms can be ordered as follows
in  accordance  with  their  performance:  DE-GWO>GWO>DE.  The
DE-GWO-optimized  BS  model  exhibited  the  highest  accuracy
(RMSE=0.087-0.279,  R2=0.966-0.995,  MAE=0.062-0.208,  FS=
0.371-0.684),  followed  by  the  DE-GWO-optimized  MBR,  DE-
GWO-optimized  IA,  and  DE-GWO-optimized  Mak  models.  All
three  optimization  algorithms  significantly  improved  the
performance  of  the  models.  In  general,  the  optimized  models
exhibited good adaptability in the NASR and MLYP areas but poor
adaptability  in  the  QTP  area.  The  performance  of  the  models  in
other  areas  was  relatively  low,  although  their  accuracy  and  GPI
rankings  were  high.  This  study  is  mainly  applicable  to  nine  major
agricultural regions in China, and the adaptability to various regions
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Figure 1    Comparison of the accuracies of different optimization
algorithms for different empirical models
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of  the  world  may  be  slightly  biased  and  insufficient.  This  study
makes  a  certain  contribution  to  the  optimization  algorithm  in
optimizing  the  parameters  of  the  empirical  formula;  meanwhile,  it
can  facilitate  evapotranspiration  research  in  various  regions  of
China. 
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Figure 2    Accuracy of empirical and optimized empirical models
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