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Abstract: Accurate estimation of reference crop evapotranspiration (ET,) is essential for water resource management and
irrigation scheduling. A multitude of empirical models have been employed to estimate ET,, yielding satisfactory outcomes.
However, the performance of each model is contingent upon the empirical parameters utilized. This study examines the
applicability of four empirical ET, models, namely the Makkink (Mak), Irmark-Allen (IA), improved Baier-Robertson (MBR),
and Brutsaert-Stricker (BS) models. Meteorological data from 24 weather stations across various regions in China were
procured and employed to assess the ET, simulation results. The study employed the Differential Evolution (DE) optimization
algorithm, Grey Wolf Optimizer (GWO) algorithm, and a hybrid algorithm that combines DE and GWO algorithms (DE-GWO
algorithm) to optimize the parameters of the four empirical models. The findings revealed that the optimization algorithms
significantly enhanced the regional adaptability of the four models, particularly the BS model. The DE-GWO algorithm
demonstrated superior optimization performance (RMSE=0.055-0.372, R?>=0.912-0.998, MAE=0.037-0.311, and FS=0.864-
0.982) compared to the DE (RMSE=0.101-2.015, R*=0.529-0.997, MAE=0.075-1.695, and FS=0.383-0.967) and GWO
(RMSE=0.158-0.915, R*=0.694-0.987, MAE=0.111-0.701, and FS=0.688-0.947) algorithms. The DE-GWO-optimized BS
model was the most accurate and improved, followed by the MBR model. The IA and Mak models also showed slightly better
performance after optimization with the DE-GWO algorithm. The DE-GWO-optimized BS model performed better in the
southern agricultural region than in other regions. It is recommended to utilize the DE-GWO to enhance the accurate prediction
of empirical ET, models across the nine agricultural regions of China.
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1 Introduction

Water scarcity has emerged as a pressing global concern,
particularly for arid and semi-arid regions. Amidst the backdrop of
exponential population growth and escalating pollution, nations are
increasingly striving to optimize water resource management. This
endeavor is being pursued through the implementation of innovative
strategies and technologies aimed at enhancing the efficiency and
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sustainability of water use!". According to the survey, population
growth by 2050 will consume about double the current demand for
food, and to meet food security in the coming decades, a major
reform of agricultural water management is needed”. Therefore,
effective water management irrigation and water resources
allocation are the best ways to improve the rational use of regional
water resources. ET is an essential parameter in the hydrological
cycle. An accurate ET estimation is the basis for efficient
agricultural water use, which is crucial for water resource
management and agricultural water-saving irrigation®. ET can be
directly measured using field instruments; however, this is
expensive and difficult. Mathematical models for estimating the ET
have been proposed by several researchers, including Priestley-
Taylor, Blaney-Criddle, Turc, and Hargreaves*®. Such models can
facilitate ET measurement. The FAO-56 Penman-Monteith (FAO-
56 PM) model is the most accurate for estimating ET"¥. The ET
estimated by the FAO-56 PM model can be used as a benchmark for
validating the other models”'. However, the FAO-56 PM model
requires a considerable number of parameters for ET estimation,
including sunshine hours, air temperature, radiation, humidity, and
other meteorological data. In practical settings, meteorological data
are often missing, which affects the efficiency of ET estimations”.
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Hence, it is imperative to develop a simpler approach to accurately
calculate ET. The Mak model is precise to a point where it can
almost represent the universally accepted Penman-Monteith model
when the ET process is applied*"”.. Gunston and Batchelor reported
that the Priestley-Taylor model is a suitable alternative to the FAO-
56 PM model in tropical climates with high humidity"®. More than
60 models have been proposed for estimating the ET, including
empirical models based on temperature, radiation, humidity, water
pressure, and hybrid models"*". Multiple empirical models have
been integrated to validate their reliability. Tabari et al. compared
various ET models under humid conditions in the northern parts of
Iran and found that the radiation-based models were the best among
the models studied, followed by the temperature-based and pan
evaporation-based models®?!. Zhao et al. used FAO-56 PM as the
benchmark model and evaluated different ET models (including
HG) in a semi-arid region of China and concluded that the HG was
the best ET model in the studied region®. Majidi et al. tested and
ranked the applicability of various models by applying the Bowen
ratio energy balance method and found that the Mak model (which
is based on radiation and temperature data) had good applicability
for evaporation estimation™. Feng et al. investigated the
applicability of three ET empirical models in southwest China and
observed that the Priestley-Taylor model was more accurate than
the Mak and Ritchie models®!. The results of the empirical models
depend on the empirical parameters, and regions differ in their
characteristics. Moreover, it is difficult to obtain precise ET
estimates on different spatial scales. To address these challenges,
optimization algorithms have been extensively used to optimize
model parameters and improve the prediction accuracy”*. Wu et
al. evaluated 12 daily-scale ET models (four temperature models,
five radiation models, and three hybrid models) by using the whale
optimization algorithm in the four climate zones in China, revealing
that the hybrid empirical model was the most accurate”. Yang et al.
used the least squares method to optimize the Rohwer, Romanenko,
Turc, Hargreaves, and Penman models and reported that the models
performed better after calibration with the least squares method™.
Zhang et al. estimated ET in Northwest China using the Mak model,
for which the parameters were optimized using the least squares
method, and noted that the model increased when optimized using
the least squares method®®. The Firefly Algorithm (FA) has strong
robustness and reliability. It can be used to predict ET in the West
African deserts. Inspired by nature, FA has significantly improved
the performance of the classical Adaptive Neuro-Fuzzy Inference
System (ANFIS) model optimization in practical applications™ .
However, no single optimization algorithm has good optimization
effects for all constrained optimization problems because each
evolutionary algorithm has its own advantages in solving
constrained optimization problems. Therefore, hybrid optimization
algorithms are useful in situations in which single optimization
algorithms are ineffective. Mohammadi and Mehdizadeh coupled
Support Vector Regression (SVR) and the Whale Optimization
Algorithm (WOA) to build a new ET model. The results indicated
that the performance of the hybrid model was better than that of the
pure SVR model®™. Long et al. used a hybrid Grey Wolf
Optimization algorithm to solve high-dimensional complex
functions, and noted that this algorithm exhibited significantly
higher accuracy and a more favorable convergence speed than
Particle Swarm Optimization (PSO) and universal gravitational
search algorithms. Accordingly, hybrid algorithms exhibit superior
performance and precision compared with single algorithms.
Consequently, this research has chosen four evapotranspiration

(ET) models, namely, the Makkink (Mak), Irmark-Allen (IA),
improved Baier-Robertson (MBR), and Brutsaert-Stricker (BS)
models, and optimized them using the Differential Evolution-Grey
Wolf Optimizer (DE-GWO), Grey Wolf Optimizer (GWO), and
Differential Evolution (DE) algorithms. In order to assess the
adaptability of these ET models across various agricultural regions
and to validate the enhancement in performance achieved by the
different optimization algorithms on empirical formulas, this study
collected data from 24 locations across nine distinct agricultural
regions in China. The objectives of this study are threefold: 1) to
propose a hybrid optimization algorithm for the optimization of ET
estimation models, 2) to compare the optimization accuracy of the
hybrid algorithm with that of the individual constituent algorithms,
and 3) to evaluate the adaptability of each model in the nine
agricultural regions based on their respective accuracies.

2 Materials and methods

2.1 Study area

Based on China’s Comprehensive Agricultural Regional
Planning, the country is divided into 10 first-level agricultural
regions and 38 second-level regions. The 10th region is the marine
aquatic region; the first nine regions are comprehensive agricultural
regions and are generally referred to as the nine major
comprehensive agricultural areas, which are outlined as follows: the
Northern Arid and Semiarid Region (NASR), the Northeast China
Plain (NCP) area, the Yunnan-Guizhou Plateau (YGP) area, the
South China (SC) area, the Sichuan Basin and surrounding (SBSR)
area, the middle and lower reaches of the Yangtze Plain (MLYP),
the Qinghai-Tibet Plateau (QTP) area, the Loess Plateau (LP) area,
and the Huang-Huai-Hai Plain (HHP) area. In this study, a total of
24 stations were selected in these nine major agricultural areas.
2.2 Data collection

For model calibration evaluation,
meteorological data measured at the same sites were collected from
the China Meteorological Data Sharing Service System (http://
cdc.nmic.cn) for the period from January 1, 1960, to December 31,

and performance

2019. The meteorological dataset (latitude, longitude, altitude,
average temperature, relative humidity, wind speed (U), and
maximum and minimum temperatures) were divided into two parts.
All the data were collected from each site. The continuous daily
meteorological data from each station were divided into two parts,
according to the time series, as the training and test samples of the
model. The first part, comprising 80% (1960-2007) of the dataset,
was used for model calibration, and the second part, comprising
20% (2008-2019) of the dataset, was used for model testing.
2.3 Models for estimating ET
2.3.1 FAO-56 PM model

The FAO-56 PM model is based on the principles of
aerodynamics and energy balance, and it comprehensively considers
various factors that influence ET. The FAO-56 PM model did not
require parameter correction to account for regional climatic
differences. The accuracy of the FAO-56 PM model was verified
using global meteorological data. Therefore, this study used the ET
estimates provided by the FAO-56 PM model as a benchmark for
comparison with other models. The FAO-56 PM model can be
expressed as follows™'" "
0.408-A-(R,—G)+7- <T302073) Uy (e,—e,)

A+y-(1+0.34-u,)

ET, =

(1)

where, ET is the daily reference evapotranspiration, mm/d; R, is the
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crop surface net radiation, MJ/m*d; G is the soil heat flux density,
MJ/m*d; T is the daily mean air temperature at a height of 2 m, °C;
u, is the daily mean wind speed at a height of 2 m, m/s; e, is the
saturated vapor pressure, kPa; e, is the actual vapor pressure, kPa; A
is the slope of the curve of pressure versus temperature, kPa/°C; and
y is the hygrometric constant, kPa/°C.
2.3.2 Empirical model

This study used the FAO-56 Penman-Monteith formula (PM)
recommended by the FAO to verify the optimization results of the
empirical model. The four empirical models (Mak, IA, MBR, and
BS) were compared with the FAO-56 PM model and optimized to
evaluate their applicability. Finally, the four empirical models were
optimized using three optimization algorithms, and their
performance and adaptability in different regions were observed
through evaluation indicators. Each of these models is presented in
Table 1.

Table 1 Models to be optimized
. Recommended
Empirical Model (EM) Values
A a .
ETy=— -—-Ry-b a=0.61; b=—-0.12 Makkink, 195762
A+y A

a=0.489; b=0.289;

ETo=a+b-R,+c-T Irmak et al., 20035

¢=0.023
ETo =a-(Tmax — Tmin) + b R+ ai0.1844§ B . Baier and
b=0.1135; <=2.811; Robertson, 196564
c(es—eg)+d -Tmax +e =0.0039; e=—4.04 ’

Brutsaert and
Stricker, 19795

A
ETy=(2-a=1)- 2=+ (Ry =)~
, +y a, b=0.26; c=0.86

A+y-[b~(1+c-uz)]~(ex—ea)

Note: a, b, ¢, d, and e are the reference empirical coefficients of each empirical formula.

2.4 Optimization algorithms
2.4.1 DE algorithm

The DE algorithm™ is a stochastic and population-based
optimization method to determine the overall optimal solution in a
multidimensional space®”. The operating procedures are described
as followst™:

Initialization: The space is regarded as comprising N-
dimensional (D) vectors, which implies that the population size is
NP. The initial population is generated randomly.

X=X, +rand(0,1)- (xj-x); i=12,....N; j=1,2,....D (2)

where, i represents the ith individual; j represents the jth
component; x represents the lower bound of the jth component;
and x} represents the upper bound of the jth component.

Mutations: A mutation operator is employed to generate a new
target individual.

Crossover: A crossover operation is performed between each
individual and the offspring mutation vector they produce. More
specifically, for each component, the algorithm probabilistically
chooses either the offspring mutation vector or the original vector to
create the trial individual.

Selection: The selection process employs a greedy strategy,
where individuals with lower fitness function values are chosen
from both the experimental and current populations to advance to
the next generation.

242 GWO algorithm

The Grey Wolf Optimizer (GWO) algorithm is a metaheuristic
approach devised by Mirjalili et al. Within this framework, grey
wolves are classified into hierarchical roles: alpha (a), beta (f),
delta (J), and omega (w) wolves. The alpha wolves hold dominance

over the lower-ranking wolves, who, in turn, follow the lead of their
superiors®.

1) Tracking, chasing, and approaching prey: During the hunting
process, grey wolves strategically encircle their prey. This
envelopment behavior can be mathematically modeled as follows:

Xt+1)=X,¢+1)-A-D 3)

B=|C-X,0-X0)| 4)

where, X is the position of the grey wolf; ¢ is the current number of

5

iterations; X, is the position of the prey; and D is the distance
between the grey wolf and its prey.

2) Pursuing, encircling, and harassing the prey until it stops
moving: In the GWO algorithm, « represents the optimal grey wolf,
P represents the second-best grey wolf, o represents the third-best
grey wolf, and w represents the rest of the grey wolves. The
algorithm is established on the basis that o is the optimal solution,
and that § and the other wolves know the location of the prey. In the
iterative process, a, f5, and ¢ were used to guide the movement of @
to achieve global optimization. The positions X,,X;, and X; of a, f3,
and o are used to update the positions of all grey wolves using the
following equations (=1, 2, 3):

}?i = )?a,ﬁﬁ (t) - X: . 50ﬁ.6 (5)
5(yﬁ.5 = }61 ')?(yﬁ.o' (t) _f(l)| (6)

X, + );z +X; %

3) Attack toward prey: Grey wolves conclude the hunt by
striking the prey when it ceases to move. In Equation (8), ¢ denotes
the current iteration count, while 7' signifies the predefined
maximum number of iterations. As a diminishes from 2 to 0, the

X@t+1)=

corresponding value of a also varies within the range [—a, a]. With
an increasing value of a, the grey wolves venture further afield from
their pack members in search of more promising prey, thereby
encouraging a global search (|aj>1). Conversely, as a diminishes,
the grey wolves draw closer to the prey, steering the wolves towards
a more localized search (Ja[<1).

a=2-2-— (8)

2.4.3 Hybrid DE-GWO algorithm

Taking into account the limitations of the Differential
Evolution (DE) and Grey Wolf Optimizer (GWO) algorithms,
including premature inadequate stability, and
susceptibility to getting stuck in local optima, this research
introduces a more effective hybrid optimization algorithm: the DE-
GWO algorithm. This algorithm aims to enhance the global search

convergence,

capability and circumvent the aforementioned drawbacks associated
with DE and GWO. The operational steps of the DE-GWO
algorithm are detailed below.

1) Population initialization: The algorithm commences by
configuring the essential parameters for the hybrid optimization
algorithm, which include the population size N, the maximum
number of iterations MAX iter, the crossover probability pCR, the
search dimension D, and the search range bounds ub (upper bound)
and Ib (lower bound), as well as the scaling factor F. It then
initializes the parameters a, 4, and C, and carries out the DE
mutation operation on the population individuals to produce
intermediate solutions. Following this, a competitive selection
process is conducted to refine the initialized population individuals.
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The iteration counter is then set to =1.

2) Iteration: The algorithm calculates the objective function
value of each grey wolf in the population, sorts the grey wolves
according to the size of the objective function value, and selects the
top three optimal individuals X, Xj, and X;.

3) Selection: The algorithm evaluates the distance of each grey
wolf in the population from the optimal position and updates their
positions based on this assessment. This operation is carried out
using a cross-update strategy. Additionally, the parameters a, 4, and
C are utilized to perform the crossover operation, leading to the
generation of new individuals. Following this, the positions of the
top three grey wolves are refined with the optimal values obtained.

4) Termination condition: According to the count value, if the
maximum number of iterations MAX iter is reached, the algorithm
exits and outputs the objective function value of the global optimal
X,; otherwise, it sets ¢ to #+1 and restarts the execution from step (2).
2.5 Model evaluation metrics

The root mean square error (RMSE), determination coefficient
(R?), mean absolute error (MAE), predictive score (FS), and global
evaluation index (GPI) were used as metrics to evaluate the
performance of each ET model.

R o P
RMSE= , [~ z(u[ V) )

li (u; —u)- (v; — 1_))‘|

R = — — (10)
> w-w Y -y
i=1 i=1
1 n
MAE:z-z_l:lui—vil (11)
_ RMSE in presented model
ES=1- RMSE in benchmark model (12)

The GPI was used to integrate the comprehensive evaluation
results of the four indicators, which are expressed as follows:

GPI=Za'j (g,»—yj) (13)

where, u; is the ith daily value simulated by the model; v, is the ith
standard daily value calculated by the FAO-56 PM model; i is the
average value of u; ¥ is the average value of v;; n is the number of
samples in the test set; g; is the normalized value of RMSE, R’,
MAE, and NSE; and y; is the median of the parameter.

3 Results and discussion

3.1 Recalibration of the ET empirical model

The parameters of Mak, 1A, MBR, and BS models were
optimized using DE-GWO, GWO, and DE algorithms, and the
results were analyzed. Initially, the parameter a for the Mak model,
as optimized by the three algorithms, remained within a stable range
(0.620-0.754) across all study areas. The values were notably higher
in the NCP, NASR, and QTP compared to the SC, SBSR, and other
regions. For the Mak model optimized by the DE-GWO and GWO
algorithms, the parameter b followed similar trends as a, but this
was not the case for the DE algorithm, with b values showing
greater variability in the NASR and NCP areas (—0.644-0.391).

In the IA model, the parameter a optimized by all three

algorithms exhibited considerable variation, mirroring the
characteristics of the Mak model’s a, yet with less fluctuation in the
NCP, NASR, and QTP areas compared to the SC, SBSR, and
MLYP areas (—0.734-0.753). The parameter b for the IA model
optimized by the DE-GWO algorithm showed the most significant
variation in the NASR area. The b values of the IA model optimized
by the three algorithms were less variable in the SC, SBSR, and
other areas than in the NCP, NASR, and other areas (0.159-0.403),
while the ¢ values were considerably smaller and showed little
variation (—0.036-0.110).

For the MBR model, the parameters a, b, and d optimized by
the three algorithms were generally smaller than ¢ and e. Although
a, b, and d showed some variation across the nine areas, the extent
of variation was relatively minor (—0.087-0.195, —0.010-0.201, and
—0.010-0.201, respectively). However, the parameter ¢ maintained a
more stable range (2.051-5.309) in the SC, MLYP, HHP, and NCP
areas. The parameter e showed a stable variation range in the LP
and HHP areas compared to other regions.

Lastly, for the BS model, the parameter b optimized by the
three algorithms varied across all nine areas (0.657-0.896), with the
amplitudes of b in the SC, SBSR, and MLYP areas being relatively
stable. The parameter a for this model, optimized by the three
algorithms, fluctuated within a narrow range (0.140-0.880). Among
the parameters, ¢ was the most sensitive across the nine areas. The
performance of the three optimization algorithms was not uniform.
The ¢ parameter of the model optimized by the DE-GWO algorithm
showed the greatest variation in the LP area. The amplitude of ¢ for
the model optimized by the GWO algorithm was the largest in the
SC area, and the variation in ¢ for the model optimized by the DE
algorithm was the most pronounced in the SC and SBSR areas
(—18.244-73.099)

In summary, the three optimization algorithms provided
relatively similar optimization results for various empirical models
in the nine areas. Therefore, the parameters of the models optimized
by the three optimization algorithms can provide a basis for
obtaining highly precise ET estimates in the nine areas.

3.2 Comparison of different optimization algorithms

In this study, four daily ET prediction models (Mak, IA, MBR,
and BS) were constructed and then optimized using three
optimization algorithms (DE, GWO, and DE-GWO). Table 2
presents the R?, RMSE, MAE, and FS values derived for the
optimized models for the training and test datasets obtained at each
of the 24 stations. The results revealed that the Mak model had the
highest accuracy (RMSE=0.496-0.940, R>=0.767-0.872, MAE=
0.343-0.641), followed by the IA model (RMSE=0.500-0.794,
R*=0.748-0.846, MAE=0.425-0.720), MBR model (RMSE=0.803-
1.752, R*=0.588-0.852, MAE=0.664-1.504), and BS model
(RMSE=2.649-3.594, R*=0.383-0.451, MAE=2.226-2.947).

The DE, GWO, and DE-GWO algorithms improved the
accuracy of the models to a certain extent. The DE-GWO-optimized
BS model exhibited the highest accuracy and greatest improvement
after optimization (RMSE=0.055-0.372, R*=0.912-0.998, MAE=
0.037-0.311, FS=0.864-0.982), followed by the GWO-optimized BS
model (RMSE=0.158-0.915, R*=0.694-0.987, MAE=0.111-0.701,
FS=0.688-0.947) and DE-optimized BS model (RMSE=0.101-
2.015, R=0.529-0.997, MAE=0.075-1.695, FS=0.383-0.967). The
DE-GWO-optimized MBR model was slightly less accurate than
the DE-GWO-optimized BS model (RMSE=0.399-0.730, R*=0.855-
0.957, MAE=0.303-0.504, FS=0.289-0.787). Therefore, the DE-
GWO algorithm resulted in greater improvement in the MBR model
than the GWO algorithm (RMSE=0.441-0.814, R>=0.811-0.956,
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Table 2 Using the recommended values, the precision values of
the daily ET, optimized by the DE-GWO, GWO, and DE optimiz-
ation algorithms in nine major agricultural regions in China

Station Model RMSE R MAE FS

M-BR 0.721 0.913 0.531 -
DE-GWO-MBR 0.449 0.952 0.322 0.378
50758 GWO-MBR 0.459 0.945 0.323 0.364
DE-MBR 0.447 0.951 0.311 0.380

M-BR 1.702 0.778 1.356 -
51567 DE-GWO-MBR 0.518 0.938 0.359 0.695
GWO-MBR 0.523 0.937 0.356 0.693
DE-MBR 0.621 0.909 0.473 0.635

M-BR 1.491 0.793 1.143 -
DE-GWO-MBR 0.524 0.932 0.372 0.649
33615 GWO-MBR 0.639 0.900 0.489 0.571
DE-MBR 0.534 0.928 0.388 0.642

M-BR 1.357 0.827 0.992 -
DE-GWO-MBR 0.442 0.948 0.318 0.674
53664 GWO-MBR 0.522 0.926 0.403 0.615
DE-MBR 0.487 0.930 0.364 0.641

M-BR 1.095 0.822 0.827 -
DE-GWO-MBR 0.585 0.887 0.440 0.465
53986 GWO-MBR 0.661 0.857 0.517 0.396
DE-MBR 0.870 0.831 0.701 0.205

M-BR 0.967 0.878 0.743 -
s4134 DE-GWO-MBR 0.554 0.935 0.392 0.428
GWO-MBR 0.584 0918 0.432 0.397
DE-MBR 0.562 0.927 0.405 0.419

M-BR 1.231 0.741 0.938 -
DE-GWO-MBR 0.398 0.936 0.301 0.677
54285 GWO-MBR 0.423 0.926 0.318 0.656
DE-MBR 0.414 0.929 0.315 0.664

M-BR 0.887 0.854 0.677 -
4346 DE-GWO-MBR 0.440 0.933 0.307 0.504
GWO-MBR 0.471 0918 0.339 0.470
DE-MBR 0.441 0.932 0.314 0.503

M-BR 1.114 0.845 0.830 -
DE-GWO-MBR 0.569 0.912 0.423 0.490
4518 GWO-MBR 0.571 0.911 0.422 0.487
DE-MBR 0.668 0.845 0.531 0.400

M-BR 1.162 0.713 1.012 -
54806 DE-GWO-MBR 0.533 0.882 0.403 0.542
GWO-MBR 0.545 0.871 0415 0.531
DE-MBR 0.879 0.829 0.597 0.243

M-BR 1.496 0.583 1.271 -
DE-GWO-MBR 0.365 0.902 0.280 0.756
35664 GWO-MBR 0.399 0.870 0.313 0.733
DE-MBR 0.407 0.868 0.321 0.728

M-BR 1.937 0.592 1.661 -
56137 DE-GWO-MBR 0.451 0.848 0.354 0.767
GWO-MBR 0.574 0.781 0.449 0.704
DE-MBR 0.844 0.777 0.678 0.564

M-BR 0.788 0.818 0.664 -
DE-GWO-MBR 0.425 0.889 0.319 0.460
56485 GWO-MBR 0.483 0.856 0.371 0.387
DE-MBR 0.454 0.866 0.351 0.424

M-BR 1.426 0.686 1.038 -
56856 DE-GWO-MBR 0.450 0.848 0.342 0.685
GWO-MBR 0.497 0.819 0.386 0.652
DE-MBR 0.531 0.818 0.413 0.628

M-BR 1.174 0.795 0.888 -
57144 DE-GWO-MBR 0.508 0.889 0.387 0.567
GWO-MBR 0.603 0.847 0.477 0.487
DE-MBR 0.523 0.878 0.403 0.555

MAE=0.297-0.615, FS=0.273-0.742). The DE algorithm showed
the least improvement among the three algorithms (RMSE=0.434-
0.917, R=0.745-0.937, MAE=0.321-0.735, and FS=0.030-0.695).
The DE-GWO algorithm slightly improved the accuracy of the IA
model, but resulted in lower accuracy improvement levels for the
MBR and BS models (RMSE=0.168-0.858, R*=0.825-0.981, MAE=
0.125-0.592, FS=0.040-0.756). The GWO-optimized IA model had
relatively low accuracy (RMSE=0.291-0.907, R*=0.705-0.938,
MAE=0.179-0.711, FS=0.012-0.639), as did the DE-optimized IA
model (RMSE=0.337-0.915, R*=0.715-0.917, MAE=0.228-0.745,
FS=0.042-0.584). The Mak and DE-GWO-optimized Mak models
were the most accurate, followed by the GWO-optimized Mak
model (RMSE=0.226-0.764, R*=0.806-0.975, MAE=0.165-0.542,
FS=0.145-0.523) and the DE-optimized Mak model (RMSE=0.242-
0.775, R*=0.792-0.969, MAE=0.188-0.566, FS=0.013-0.489).
Although the DE-GWO-optimized Mak model had favorable
accuracy levels, its accuracy improvement levels were the lowest
among the optimized models (RMSE=0.226-0.737, R*=0.821-0.975,
MAE=0.167-0.49, FS=0.125-0.523).

The three optimization algorithms performed well. The DE
algorithm has a simple mathematical structure, is easy to
implement, converges rapidly, and is highly robust. It reacts quickly
and requires short execution time. Additionally, it has a one-to-one
selection strategy and an optimal mutation strategy, which allows it
to converge faster than other algorithms, reducing the complexity of
the population more quickly and, in turn, improving its search
capability. If it is affected by interference, premature phenomena
appear in later stages, which worsen the results. The GWO
algorithm is more complex, converges more rapidly, has a better
search capability, and is better at optimization than the DE
algorithm. During the search process, all three individuals
unavoidably fell into the local optimum, which considerably
reduced the accuracy of the overall search results of the model,
which in turn reduced the accuracy and optimization ability. The
DE-GWO algorithm combines the advantages of DE and GWO
algorithms. This improves the global search ability by avoiding the
introduction of defects caused by the premature stagnation of
individuals that have fallen into the local optimum. The DE-GWO
algorithm breaks through the local limit value easily, is precise,
converges well, and is better at optimization than the GWO and DE
algorithms. The three optimization algorithms were the most
effective for the BS model. The RMSE, R?, and MAE values
derived for the BS model increased by 92%-96%, 120%-152%, and
92%-97%, respectively, after optimization using the DE-GWO
algorithm; by 80%-84%, 107%-118%, and 81%-86%, respectively,
after optimization using the GWO algorithm; and by 57%-86%,
83%-104%, and 68%-87%, respectively, after optimization using
the DE algorithm.

In summary, the three optimization algorithms exhibited high
performance in improving the ET prediction models. The values of
the four indicators (RMSE, R?, MAE, and FS) for the models after
optimization using the different algorithms are shown in Figure 1.
The optimization algorithms can be ordered according to their
performance as follows: DE-GWO>GWO>DE.

3.3 Performance of ET models in different agricultural areas

The adaptability of the optimized models differed in the nine
areas, and the accuracy of the optimized models was higher than
that of the non-optimized models. The terrain and climate of each
area influenced the performance of each model. The RMSE, R*
MAE, FS, and GPI metrics were used to evaluate the applicability
of each model for each area. The accuracy of each model is shown
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Figure 1 Comparison of the accuracies of different optimization

algorithms for different empirical models

in the Taylor diagram in Figure 2; in the accuracy evaluation, the
FAO-56 PM model was used as a benchmark. The estimates
provided by the optimized models closely matched the results
provided by the FAO-56 PM model, demonstrating the accuracy of
the optimized models.

The DE-GWO-optimized Mak model had the highest accuracy
and best adaptability in the MLYP area (RMSE=0.318-0.362,
R=0.942-0.960, MAE=0.237-0.283, FS=0.383-0.459, GPI=1.051-
1.431, GPI ranking 5-16). The DE-GWO-optimized Mak model was
slightly less accurate in the NCP area, and the GWO-optimized Mak
model had the same accuracy as that of the DE-GWO-optimized
Mak model in this area. The DE-GWO-optimized Mak model was
less accurate in the NASR and LP areas than in the MLYP and NCP

areas. Moreover, the DE-GWO-optimized Mak model had the
second-highest accuracy in the NASR and LP areas. The optimized
models performed moderately in the HHP, SC, and YGP areas. The
DE-GWO-optimized Mak model performed worst in the QTP and
SBSR areas. The DE-GWO-optimized IA model was the best in the
NCP area (RMSE=0.463-0.719, R=0.845-0.921, MAE=0.338-
0.536, FS=0.058-0.330, GPI=1.150-1.297, GPI ranking 6-9),
followed by the NASR, MLYP, and LP areas, YGP, SC, and HHP
areas, SBSR area, and QTP area. The DE-GWO-optimized MBR
model was the best in the MLYP area (RMSE=0.463-0.719,
R=0.845-0.921, MAE=0.338-0.536, FS=0.058-0.330, GPI=1.150-
1.297, GPI ranking 6-9), followed by the NCP area, HHP and
NASR areas, LP and YGP areas, and QTP and SBSR areas. The DE-
GWO-optimized BS model was the best in the HHP area
(RMSE=0.463-0.719, R>=0.845-0.921, MAE=0.338-0.536, FS=
0.058-0.330, GPI=1.150-1.297, GPI ranking 6-9), followed by the
NASR and LP areas. The DE-GWO-optimized BS model’s
performance in the NCP and SC areas was the same as that of the
DE-optimized BS model’s performance in the MLYP area;
however, the performance in the NCP, SC, and MLYP areas was
not as high as that in the HHP, NASR, and LP areas. The GWO-
optimized BS model adapted moderately in the YGP area and
poorly in the SBSR and QTP areas. Although the models had low
precision in some areas, they still ranked highly in these areas. For
example, the GWO-optimized Mak model had low adaptability in
the SBSR area, but the GPI value at the Leibo site was 1.503,
ranking fourth. Furthermore, the DE-GWO-optimized IA model had
a GPI value of 1.885 at site 59 293, ranking it second.

Overall, the adaptabilities of the models in the nine areas were
different. Some models had good adaptability in the NASR and
MLYP areas but poor adaptability in the QTP and SBSR areas; their
adaptability in other areas was relatively moderate. The adaptability
of the independent empirical models was improved using
optimization algorithms. The models optimized using the hybrid
optimization algorithm outperformed independent models.

4 Conclusions

To improve the accuracy and applicability of empirical ET
estimation models, this study selected 24 sites in nine major
agricultural regions in China as representative research sites and
used three optimization algorithms (DE-GWO, GWO, and DE) to
optimize four ET empirical models. Thus, ET estimation models
with high accuracy and universality were developed.

The optimized models performed differently in various
agricultural areas. The optimization significantly improved the
accuracy and applicability of the four empirical models. Compared
with the GWO- and DE-optimized models, the DE-GWO-optimized
models exhibited significant improvements in accuracy and
adaptability. The optimization algorithms can be ordered as follows
in accordance with their performance: DE-GWO>GWO>DE. The
DE-GWO-optimized BS model exhibited the highest accuracy
(RMSE=0.087-0.279, R>=0.966-0.995, MAE=0.062-0.208, FS=
0.371-0.684), followed by the DE-GWO-optimized MBR, DE-
GWO-optimized IA, and DE-GWO-optimized Mak models. All
three optimization algorithms significantly improved the
performance of the models. In general, the optimized models
exhibited good adaptability in the NASR and MLYP areas but poor
adaptability in the QTP area. The performance of the models in
other areas was relatively low, although their accuracy and GPI
rankings were high. This study is mainly applicable to nine major
agricultural regions in China, and the adaptability to various regions
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Figure 2

of the world may be slightly biased and insufficient. This study
makes a certain contribution to the optimization algorithm in
optimizing the parameters of the empirical formula; meanwhile, it
can facilitate evapotranspiration research in various regions of
China.
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