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Abstract: Root-knot  nematodes  can  infect  over  2000  plants,  which  causes  significant  economic  losses.  Rapid  and  accurate
detection of root-knot nematode disease is the key to screening resistant varieties and evaluating the effect of prevention and
control. To address the challenge of detecting root-knot nematode disease caused by dense root knots, multiple fibrous roots,
and small root knots, this paper takes cucumber as the research object to propose a detection and grading model Root-YOLOv7.
Specifically,  the  backbone  network  of  YOLOv7  is  restructured,  which  enables  the  proposed  model  to  better  capture  object
information  at  different  scales  through  a  hierarchical  structure  and  a  self-attention  module  based  on  shifted  windows.
Additionally,  combined  with  the  Wise-IoU  loss  function,  the  proposed  model  can  adaptively  adjust  the  weight  of  the
overlapping  part  of  the  object  box,  which  solves  the  problem  that  bounding  box  regression  cannot  be  optimized  effectively
when  detecting  low-quality  objects.  Furthermore,  an  improved  head  network  structure  is  proposed  to  compute  the  attention
weights by capturing the cross-dimension interaction of the root knot feature between the spatial and channel dimensions. To
verify  the effectiveness  of  the  proposed model,  the  performance of  Root-YOLOv7 is  compared with typical  object  detection
models.  Experimental  results  show  that  the  AP@0.5  of  Root-YOLOv7  reaches  87.40%,  which  is  72.67%,  5.60%,  5.28%,
9.68%, 5.83%, and 7.45% higher than Faster R-CNN, RT-DETR, YOLOv5, YOLOv6, YOLOv7, and YOLOv8, respectively.
The  proposed  approach  is  expected  to  reduce  the  workload  of  plant  pathologists  and  provide  technical  support  for  the
cultivation of plant varieties with disease resistance.
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1    Introduction
As one of the major pathogens of infectious plant diseases, root-

knot  nematodes  have  posed  a  great  threat  to  the  production  of
vegetables, fruit trees, and other crops worldwide, which has led to
50%  or  even  total  crop  failure[1].  According  to  the  statistics,  root-
knot  nematode  diseases  cause  approximately  $160  billion  in
economic  losses  worldwide  each  year,  which  has  become a  global
issue  that  plant  pathologists  cannot  ignore[2].  Cultivating  resistant
varieties is one of the effective measures to prevent and control root-
knot nematode disease[3], while the detection, counting, and grading
of  root  knots  in  plant  root  systems are  prerequisites  for  evaluating
resistant  varieties.  Currently,  the  counting  of  root  knots  and  the
grading  of  disease  are  performed  manually  based  on  experience[4].

This  method  is  not  only  time-consuming  and  laborious  but  also
greatly  influenced  by  subjective  factors[5].  Consequently,  the
development  of  efficient  methods  for  the  detection  and  grading  of
root-knot  nematode  disease  is  an  urgent  challenge  that  requires
resolution.

Recent advancements in artificial  intelligence technology have
found  extensive  application  across  various  domains,  including
underwater  object  detection[6],  industrial  processes[7,8],  medical
diagnostics[9],  food  quality  inspection[10],  and  animal  behavior
recognition[11].  Researchers  have  also  engaged  in  numerous
correlated  studies  in  the  field  of  plant  disease  detection.  For
example, Bohnenkamp et al. established a hyperspectral database of
wheat  leaf  diseases  caused  by  various  fungal  pathogens  and
employed machine learning techniques for analysis[12]. Gomez-Caro
et  al.[13]  utilized  close-range  thermal  imaging  and  reflectance
spectroscopy  to  identify  Bacillus  anthraci  in  mangoes.  Principal
component analysis and partial least squares regression were used to
discriminate spectral responses, and the spectral bands with disease
characteristics  were  obtained.  Mohammadpoor  et  al.[14]  utilized  the
Fuzzy  C-means  algorithm to  highlight  the  diseased  areas  on  grape
leaves  and  employed  support  vector  machines  to  ascertain  the
presence  of  disease.  To  detect  common  guava  plant  diseases,
Almadhor et al.[15] applied the DeltaE model to segment the infected
regions,  identified  the  diseases  using  multiple  machine  learning
classifiers, and proposed an artificial intelligence-driven framework.
Ostovar  et  al.[16] utilized machine learning techniques to  realize the
automatic  detection  of  Norwegian  spruce  stump  root  rot  based  on
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RGB  images  and  classify  the  stump  according  to  whether  it  is
rotten.  Collectively,  the  aforementioned  research  studies
demonstrate  promising  results  in  the  detection  of  plant  diseases
through  traditional  machine  learning  methods.  However,  these
approaches  necessitate  manual  feature  extraction  and  do  not  have
end-to-end learning capabilities.

Aiming  at  the  aforementioned  issues,  relevant  scholars  have
employed  deep  learning  to  realize  the  detection  of  plant  diseases
and  pests.  For  instance,  Huang  et  al.  introduced  the  convolutional
block  attention  module  and  an  adaptive  spatial  feature  fusion
structure in YOLOv5s to detect gray planthoppers in crops such as
rice and wheat[17]. Li et al. proposed a semantic segmentation model
that combined attention mechanism and transfer learning to segment
lesions  in  cucumber  leaves  and  assess  the  disease  severity
accurately[18].  Wang et  al.[19] enhanced the detection performance of
cucumber leaf diseases by integrating an extraction module,  which
consisted  of  a  Swin  Transformer  backbone  network  and  gradient-
weighted  class  activation  mapping  into  a  generative  adversarial
network.  Wang  et  al.[20]  proposed  an  intelligent  typical  method  for
apple  pest  identification  and  enumeration,  which  solved  various
types  of  pest  identification  challenges.  Liu  et  al.[21]  proposed  an
algorithm for the identification of tomato pests, which mitigated the
issue of imbalanced sample sizes in images by enhancements to the
attention  mechanism  and  loss  function.  Qi  et  al.[22]  proposed  an
improved approach for detecting tomato viruses, which had a good
detection  effect  on  the  diseased  area.  Xue  et  al.[23]  utilized  deep
convolutional  neural  networks  to  recognize  microscopic  images  of
nematodes  and  compute  ecological  indices.  Sharma  et  al.[24]

introduced ensemble block sequences in the channel layer to extract
deep features and construct a lightweight model for the detection of
plant leaf disease.

From  the  aforementioned  studies  and  related  research,  it  is
evident  that  there  exists  substantial  research  focused  on  the
detection  of  diseases  and  pests  utilizing  deep  learning  techniques.
However, investigations specifically addressing root-knot nematode
disease  are  extremely  rare.  This  is  because  the  roots  of  diseased
plants have the characteristics of dense root knots, numerous fibrous
roots, and significant differences in root knot sizes, which makes it
difficult  to count root  knots and grade diseases.  To the best  of  our
knowledge, only one study has been reported on root knot detection
based on deep learning, and this research does not involve root knot
counting  and  grading  of  disease  severity[25].  Considering  that
cucumber  is  one  of  the  plants  severely  affected  by  root-knot
nematode disease, this paper focuses on cucumber as the subject of
investigation  and  proposes  a  multi-scale  adaptive  deep  learning
model  for  root-knot  nematode  disease  detection  and  grading.  The
main contributions  of  this  paper  are  summarized as  follows:  (1)  A
detection  model  has  been  developed  using  datasets  of  cucumber
roots  with  varying  degrees  of  root-knot  nematode  disease.  (2)  The
backbone  network  of  YOLOv7  has  been  reconstructed  using  a
hierarchical  construction  to  process  images  of  diverse  scales  and
complexities,  thereby  enhancing  the  generalization  ability  of  the
model. (3) An improved network architecture for the head layer has
been proposed, which enables the model to effectively focus on key
features. 

2    Materials and methods
 

2.1    Image data acquisition
The dataset used in this research is obtained from the Qingdao

Dagu  River  Basin  National  Agricultural  Science  and  Technology
Park,  Jimo  District,  Qingdao  City,  Shandong  Province,  China.  A

total  of  100  cucumber  plants  are  cultivated  in  pots  within  the
greenhouse, with each pot containing an equal volume of nematode-
free sandy loam soil. The potted soil is artificially and quantitatively
inoculated  with  the  root-knot  nematode  (Meloidogyne  incognita).
The pertinent experimental conditions are illustrated in Figure 1.
 
 

a. Configured root-knot

nematode suspension

b. Inoculation of nematodes

utilizing a pipette

Figure 1    Schematic diagram of root-knot nematode
inoculation experiment

 

The  experiment  comprises  nematode  treatment  and  blank
control groups. In the treatment group, the potted soil is inoculated
with  the  southern  root-knot  nematode  at  nine  different  inoculation
doses,  resulting  in  nine  separate  nematode  dose  treatments.  In  the
blank control group, the soil is inoculated with 100cc of pure water.
In the trial, for each nematode dose treatment and blank control, 10
potted plants are set as replicates. The detailed inoculation design is
presented in Table 1.
 
 

Table 1    Inoculation design of root-knot nematodes
Dose treatment

(DT) No.
Root-knot nematode
inoculation dose

Number of
potted plants

CK 0/100cc 10
DT 1 0.5/100cc 10
DT 2 1/100cc 10
DT 3 5/100cc 10
DT 4 10/100cc 10
DT 5 20/100cc 10
DT 6 50/100cc 10
DT 7 100/100cc 10
DT 8 200/100cc 10
DT 9 500/100cc 10

 

Following inoculation, cucumber seedlings of uniform size are
selected  for  transplantation,  and  labels  are  affixed  to  each  pot  for
marking and indications, as illustrated in Figure 2.

The  extracted  roots  are  washed,  and  the  roots  are  allowed  to
naturally  unfold  against  a  well-lighted  blue  background,  ensuring
that  the  root  surfaces  are  free  from  water  droplets.  The  camera
(Canon PowerShot SX50 HS) is employed to capture images of the
cucumber  roots.  A  total  of  519  images  with  a  resolution  of
3000 dpi×4000 dpi are obtained through a manual filtering process
of  the  original  images.  The dataset  comprises  images  of  cucumber
roots  with  different  degrees  of  disease  severity,  as  illustrated  in
Figure 3. 

2.2    Data preprocessing
To  enhance  the  diversity  of  the  dataset  and  mitigate  the

phenomenon  of  overfitting  during  model  training,  image
augmentation methods, including brightness transformation, random
rotation, random noise addition, and mirroring, have been employed
to  increase  the  total  number  of  images  to  2595.  The  effect  of  data
augmentation is illustrated in Figure 4.
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a. Potted plants inoculated with root-knot nematodes of different densities

b. Growth of potted plants

Figure 2    Schematic diagram of potted plants
 
 

a. Mildly infected b. Moderately infected c. Severely infected

Figure 3    Images of cucumber roots with different degrees of disease severity
 
 
 

Mirroring

Brightness

Noise

Original image

Dataset
Rotation

Figure 4    Effect of data augmentation
 

In this research, the Labelimg image annotation tool is utilized
for  the  manual  annotation  of  root  knots,  and  the  corresponding
annotation  files  are  saved  in  XML  format.  Labelimg  is  an  image
annotation  software  that  requires  a  Python  environment  to  run.  In
this  research,  Python  version  3.9  is  used.  It  is  widely  recognized
that  the  quality  of  the  dataset  significantly  influences  the  training
efficacy  of  the  model[26].  To  minimize  the  errors  caused  by
annotation,  the  dataset  is  annotated  under  the  guidance  of  domain

experts. Furthermore, the dataset is randomly divided into training,
testing,  and  validation  sets  at  a  ratio  of  7:2:1  to  prevent  sample
imbalance,  which  can  adversely  affect  the  detection  accuracy  of
the model. 

2.3    Proposed Root-YOLOv7
The  object  detection  model  can  be  divided  into  two  primary

types:  one-stage  detectors  and  two-stage  detectors[27,  28].  Two-stage
detectors  are  usually  slower  performance  compared  to  their  one-
stage  counterparts.  Consequently,  this  paper  adopts  the  one-stage
detector  YOLOv7  model  as  the  foundational  framework.  The
YOLOv7  model  incorporates  composite  model  scaling,  which
facilitates the initial attributes of the model to be retained, obtaining
the optimal structure[29]. In addition, the mosaic data augmentation in
the  YOLOv7  model  preprocessing  strategy  is  suitable  for
recognizing  small  objects[30],  which  meets  the  needs  of  detecting
small  root  knots.  Despite  the  robust  capabilities  of  the  YOLOv7
model,  its  performance  in  the  detection  of  root  knots  remains
suboptimal.  To  enhance  the  detection  of  root  knots,  this  paper
proposes  the  Root-YOLOv7.  The  structure  diagram  of  Root-
YOLOv7 is illustrated in Figure 5.

In Figure  5,  the  red  dashed  box  marked  with  a  red  star  is  the
innovative  component.  The  backbone  network  is  responsible  for
extracting  features  and  obtains  three  different  sizes  of  features  of
the  object  information.  Subsequently,  the  head  layer  integrates
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features  from the  backbone  layer  to  construct  bounding  boxes  and
generate  feature  maps  at  these  three  different  sizes.  Finally,  the

RepConv  layer  employs  a  reparameterized  structure  to  generate
prediction results of three different sizes.
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Figure 5    Network structure diagram of Root-YOLOv7
 
 

2.3.1    Reconstituted backbone module
In  the  YOLO  series  of  networks,  the  backbone  network  is

critical  for  feature  extraction[31].  To  extract  rich  features  of  root
knots,  this  paper  employs  the  Swin  Transformer  to  reconstruct  the
backbone network of YOLOv7, which can effectively utilize large-
scale parallel computing and provide better performance. The Swin
Transformer network is characterized by a hierarchical design, and
its shifted window scheme restricts the self-attention computation to
non-overlapping local windows while permitting connections across
different windows[32].

Swin Transformer contains four stages,  each of which reduces
the  resolution  of  the  input  feature  map  while  progressively
expanding  the  receptive  field.  The  image  size  remains  constant  in
the  Swin  Transformer  Block,  and  only  the  feature  weights  are
optimized  throughout  the  entire  stage  without  altering  the
dimensions,  as  illustrated  in Figure  6.  The  Patch  Merging  module
effectively  reduces  dimensions  of  the  feature  maps  by  half  while
simultaneously  doubling  the  number  of  channels,  thereby
facilitating the establishment of multi-scale information.
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Figure 6    Schematic diagram of the Swin Transformer blocks
  

2.3.2    Improved loss function
The  bounding  box  loss  function  plays  a  crucial  role  in
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determining  the  outcomes  of  object  detection[33].  WIoU  is  used  in
this  research,  which  enables  the  model  to  measure  the  degree  of
overlap  of  object  boxes  effectively  and  prioritize  anchor  boxes  of
ordinary quality.  The WIoU loss  function provides  a  gradient  gain
allocation  strategy  that  evaluates  the  quality  of  anchor  boxes  by
calculating their outliers and subsequently assigns different gradient
gains based on the evaluation[34,35].

There are low-quality instances in training data, and geometric
attributes will amplify the impact of these instances, which reduces
the  generalization  ability  of  the  model.  The  implementation  of  an
effective loss function is essential for mitigating the adverse impact
of  such  instances.  In  this  context,  a  distance  attention  mechanism
has  been  constructed,  leading  to  the  formulation  of  WIoU  v1
through the application of a dual-layer attention mechanism:

LWIoUv1 = RWIoULIoU (1)

where, RWIoU∈[1, e), LIoU∈[0, 1].
Lλ∗IoU

LWIoUv1 Lλ∗IoU LIoU

LIoU

The gradient gain   is the monotonic focusing coefficient for
.  The    decreases  as    decreases,  affecting  the

convergence  speed  of  the  model  in  the  late  stage  of  training.
Therefore, the   is introduced to obtain WIoU v2:

LWIoUv2 =

Å
L∗IoU

LIoU

ãλ
×LWIoUv1 (2)

LIoUÅ
L∗IoU

LIoU

ãλwhere,    is  the  exponential  moving  average,  which  keeps

 at a high level.

βThe    is  defined  to  describe  the  quality  of  the  anchor  box,  as
follows:

β =
L∗IoU

LIoU

∈ [0,+∞) (3)

A  non-monotonic  focusing  coefficient  is  constructed  and
combined with WIoU v1 to obtain WIoU v3:

LWIoUv3 = γLWIoUv1, γ = β

µαβ−µ
(4)

µ γ β µ

β

where,    makes  =1  when  = .  The  anchor  box  will  enjoy  the
highest gradient gain when   is a constant value.

This  paper  undertakes  a  series  of  experiments  aimed  at
identifying  the  optimal  variant  of  the  WIoU  loss  function.
Comprehensive  details  regarding  the  experiments  can  be  found  in
Section 4.1. 

2.3.3    Enhanced head module
The  main  function  of  the  attention  mechanism  is  to  highlight

significant  features  and  suppress  general  features.  To  enhance  the
correlation  between  the  key  root  knot  features  captured  by  the
model  and  the  representation  of  feature  information,  this  paper
introduces the Triplet  Attention mechanism in the head layer.  This
mechanism  emphasizes  the  significance  of  multidimensional
interactions  without  reducing  dimensionality  and  effectively
eliminates indirect correspondences between channels and weights.

The  Triplet  Attention  employs  three  dedicated  branches  to
capture the dependencies among the dimensions of the input tensor
of  (C,  H),  (C,  W),  and  (H,  W)  to  achieve  cross-dimensional
interaction.  Thus,  the  associations  among  different  parts  are
captured  more  accurately,  and  the  feature  extraction  ability  of  the
model  to  the root  knot  is  improved.  Ultimately,  a  refined attention
tensor y of an input tensor is obtained, and the process is delineated
as follows:

y =
1
3

(x̂1σ(ε1(x̂∗1))+ x̂2σ(ε2(x̂∗2))+ xσ(ε3(x̂3))) (5)

ε1 ε2 ε3where, σ  represents  the sigmoid activation function;  ,  ,  and 
represent  the  standard  two-dimensional  convolutional  layers.
Simplify Eq. (5) to obtain y:

y =
1
3

(x̂1w1 + x̂2w2 + xw3) =
1
3

(y1 + y2 + y3) (6)

y1 y2

where,  w1,  w2,  and  w3  are  the  three  cross-dimensional  attention
weights computed in Triplet Attention. The   and   denote the 90◦

clockwise rotation to preserve the original input shape. 

2.4    Network performance evaluation indicators
P RThis  paper  introduces  Precision  ( ),  Recall  ( ),  Average

Precision  (AP),  and  F1  as  performance  evaluation  indicators  for
models, and their definitions are as follows:

P =
T P

T P+FP
(7)

R =
T P

T P+FN
(8)

F1 =
2×P×R

P+R
(9)

AP =
w 1

0
P(R)dR (10)

where, TP, FP,  and FN  represent  the  number  of  samples  correctly
predicted  as  positive,  incorrectly  predicted  as  positive,  and
incorrectly predicted as negative, respectively.

In  addition, AP@0.5 is  the  average accuracy value of  0.5  IoU
thresholds. AP@0.5:0.95  is  the  average  of  10  IoU  thresholds  with
IoU∈[0.5: 0.05: 0.95]. 

2.5    Experimental configuration
The image size is standardized to 640 x 640 pixels for the input

during  the  model  training  process.  The  training  procedure
encompasses 300 iterations with a batch size of 16. The momentum
for  the  learning  rate  is  established  at  0.937,  and  the  optimizer
utilized is SGD. Detailed hardware and software configurations for
the experimentation are presented in Table 2.
  

Table 2    Hardware and software configuration
Software/Hardware Configuration
Operating system Windows10 (64-bit)

CPU Intel(R) Xeon(R) CPU E5-4627 v4
RAM 64 GB

Programming language Python
Framework Pytorch 2.10

Label software Labelimg
 

3    Results
 

3.1    Experimental results and analysis
The  training  results  of  Root-YOLOv7  and  YOLOv7  are

illustrated  in Figure  7.  It  can  be  seen  from Figure  7  that  the P, R,
AP@0.5,  and  AP@0.5:0.95  values  of  Root-YOLOv7  are
significantly higher than those of YOLOv7, and the changing trend
of  values  of  Root-YOLOv7  is  relatively  stable.  In  addition,  the
curve of the original YOLOv7 model has a large fluctuation in the
process  of  the  first  100  iterations,  while  the  curve  of  the  Root-
YOLOv7 model is relatively flat as a whole. This indicates that the
research  in  this  paper  improves  the  robustness  of  the  model.  The
partial  detection  results  of  YOLOv7  and  Root-YOLOv7  on  root
knots are illustrated in Figure 8.

From Figure 8b and 8d, it  can be seen that the Root-YOLOv7
model  demonstrates  superior  capabilities  in  detecting  small  object
root  knots  and  densely  clustered  root  knots  that  are  overlooked  in
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the  YOLOv7  model.  The  missed  detection  in  the  latter  may  be
attributed  to  the  reduced  pixel  count  in  images  of  small  objects,
which  consequently  leads  to  a  diminished  extraction  of  features
during  the  convolution  process.  In  Figure  8c,  the  presence  of  two
overlapping  root  knots  can  obscure  the  significance  of  their

features.  However,  the  Root-YOLOv7  model  is  still  able  to
accurately  differentiate  between  them.  The  detection  performance
and  anti-interference  ability  of  the  Root-YOLOv7  model  have
shown  marked  improvement.  In  conclusion,  Root-YOLOv7  has
better performance in detecting root-knot nematode disease.
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Figure 7    Training results of Root-YOLOv7
 
 

Original images

YOLOv7

Root-YOLOv7

a. Global objects c. Local overlapb. Local small objects d. Dense objects

Figure 8    Comparison of detection results of YOLOv7 and Root-YOLOv7
 
 

3.2    Ablation experiments
To  assess  the  effectiveness  of  the  enhanced  method,  eight

groups  of  ablation  experiments  utilizing  YOLOv7  were  designed,
incorporating  various  combinations  of  the  improved  modules.  The

experimental results are presented in Table 3, in which the symbol
“+”  denotes  the  inclusion  of  a  module,  while  “−”  signifies  its
exclusion.  The  data  presented  in  bold  indicates  the  optimal
performance achieved during the experiments.
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Table 3    Ablation experiments

Models Swin
Transformer WIoU v2 Triplet

Attention P/% R/% AP@
0.5/%

AP@0.5:
0.95/%

YOLOv7 − − − 78.78 76.49 81.57 42.94

Model1 + − − 85.28 80.94 87.16 48.31

Model2 − + − 80.98 79.44 84.56 45.14

Model3 − − + 85.06 78.29 85.14 47.16

Model4 + + − 81.41 76.70 83.62 43.99

Model5 + − + 77.54 75.37 81.20 42.58

Model6 − + + 76.21 71.99 78.26 40.48

Ours + + + 86.62 80.31 87.40 47.50
 

From  Table  3,  it  can  be  seen  that  there  is  a  significant
enhancement  in  the  overall  performance  of  the  model  when  the
Swin  Transformer,  WIoU  v2  loss  function,  and  Triplet  Attention
module  are  applied  independently.  The  Swin  Transformer  module
has an extremely positive impact on the model, which benefits from
its  hierarchical  design  and  shifted  window  scheme.  The  model
captures  the  cross-dimension  interaction  of  the  root  knot  feature
between  the  spatial  and  channel  dimensions  after  introducing  the
Triplet Attention module, which makes the model show satisfactory
performance. The variations in P and F1 values of the eight models
are illustrated in Figure 9.
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Figure 9    3D heat map of P and F1 value of eight models

It is evident from Figure 9 that the P and F1 value of the Root-
YOLOv7 model  attain  their  maximum values  following the  fusion
of  three improved methods.  The ablation experiments  indicate  that
the  proposed  approach  significantly  optimizes  the  detection  ability
of the YOLOv7 model. 

3.3    Comparison with other object detection models
To  further  validate  the  detection  effectiveness  of  the  Root-

YOLOv7  model,  this  paper  conducts  a  comparative  analysis  with
several  prominent  object  detection  models,  including  Faster  R-
CNN[36],  RT-DETR[37],  YOLOv5[38],  YOLOv6[39],  YOLOv7[40],  and
YOLOv8[41]. The comparative experiments are all based on the same
dataset,  and  the  comparison  results  of  the  seven  models  are
presented in Table 4.
  

Table 4    Comparison of the performances of seven models

Models P/% R/% AP@
0.5/%

AP@0.5:
0.95/%

GFLOPs/
G

Parameters/
M

Faster R-CNN 27.89 24.63 14.73 4.70 251.40 41.30
RT-DETR 80.30 75.22 81.80 43.07 110.00 31.99
YOLOv5 79.85 74.74 82.12 44.55 15.80 7.01
YOLOv6 73.85 71.24 77.72 45.09 11.80 4.23
YOLOv7 78.78 76.49 81.57 42.94 120.70 37.35
YOLOv8 75.67 72.79 79.95 47.23 8.10 3.01

Root-YOLOv7 86.62 80.31 87.40 47.50 183.80 50.18
 

The  data  presented  in  Table  4  indicates  that  Root-YOLOv7
exhibits  superior  accuracy  compared  to  the  other  six  models.
Notably,  Root-YOLOv7  achieves  the  highest P, R,  and AP  values
among  the  YOLO series  models.  In  particular,  when  compared  to
the  recent  YOLOv8,  Root-YOLOv7  also  demonstrates  remarkable
performance  improvements,  with P, R,  and AP@0.5  increased  by
10.95%,  7.52%,  and  7.45%,  respectively.  Furthermore,  in
comparison  to  YOLOv7,  Root-YOLOv7  achieves  higher  accuracy
with  a  slight  increase  in  the  number  of  model  parameters.  A
comprehensive  analysis  leads  to  the  conclusion  that  the  Root-
YOLOv7  model  possesses  significant  advantages  in  the  specific
context  of  root  knots,  thereby  enhancing  its  applicability  in  the
detection domain.

To  more  intuitively  evaluate  the  effect  of  different  models  in
the  detection  of  root  knots,  the  confusion  matrices  of  different
models are plotted in this research, as shown in Figure 10.
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Figure 10    Confusion matrices for different models

　April, 2025 Zhao Y, et al.　Root-YOLOv7: Multi-scale adaptive object detection and grading of root-knot nematode disease Vol. 18 No. 2 　 265　



From Figure  10,  it  can  be  seen  that  the  Root-YOLOv7 model
performs  the  best.  Compared  with  other  models,  Root-YOLOv7
achieves  the  highest  TP,  which  indicates  its  excellent  ability  to
correctly  detect  root  knot  objects.  Meanwhile,  its FP  and FN  are
significantly  lower  than  the  other  models.  These  results  fully
demonstrate  that  Root-YOLOv7  can  not  only  achieve  more
comprehensive detection but also effectively reduce the occurrence
of  false  and  missed  detections,  providing  a  more  reliable  solution
for root knot object detection tasks. 

3.4    Grading of root-knot nematode disease
The  reliable  and  accurate  assessment  of  plant  disease  is

essential  for  enabling  farmers  to  implement  early  prevention  and
management,  predict  yield  loss,  and  evaluate  plant  resistance.  On
the  basis  of  achieving  the  optimal  root  knot  detection  effect,  it  is
necessary  to  quantify  the  number  of  root  knots  and  subsequently
assess  the  degree  of  root-knot  nematode  disease  through  the  root
knot  counting  method[42].  Figure  11  illustrates  the  disease  grading
results derived from randomly selected root images.

 
 

Figure 11    Grading results of root-knot nematode disease
 

Root  knot  index  (RKI)  is  a  comprehensive  index  that
incorporates  both  the  incidence  rate  and  the  disease  severity  into
account.  It  can  be  derived  from  the  root-knot  nematode  disease
grade  obtained  above,  and  then  the  corresponding  prevention  and
control effect (PCE) of the plant can be calculated, as illustrated in
the following equation:

RKI =

∑
(N ×D)

T ×H
×100% (11)

PCE =
C−E

C
×100% (12)

where, N represents the number of plants at a certain disease level,
D  represents  the  disease  level,  T  represents  the  total  number  of
plants, H  represents  the  highest  level, C  represents  the RKI  in  the

control group, and E represents the RKI in the experimental group.
In addition, the RKI can also be used to evaluate the resistance

of  plants  to  root-knot  nematode  disease.  Therefore,  the  detection
and grading of root-knot nematode disease can not only help plant
pathologists  achieve  efficient  control  but  also  provide  theoretical
guidance for the cultivation of plant varieties with disease resistance. 

4    Discussion
 

4.1    Impact of WIoU loss function on performance
This  paper  employs  the  WIoU  v2  loss  function.  Within  the

WIoU  series,  different  loss  functions  exert  a  distinct  influence  on
the  performance  of  the  model.  The  impact  of  different  WIoU loss
functions  on  model  performance  in  this  research  is  illustrated  in
Figure 12.

 
 

WIoU v1 WIoU v2 WIoU v3
0

0.2

0.4

0.6

0.8

1.0

R

WIoU v1 WIoU v2 WIoU v3 WIoU v1 WIoU v2 WIoU v3

WIoU v1 WIoU v2 WIoU v3
0

0.2

0.4

0.6

0.8

1.0

A
P

@
0
.5

a. R value b. AP@0.5 value

Figure 12    Effects of different WIoU loss functions on model performance
 

From Figure 12, it is evident that the R value and the AP@0.5
value of WIoU v2 are significantly higher than those for WIoU v1
and  WIoU  v3.  Furthermore,  the  scatter  points  associated  with  the
WIoU  v2  loss  function  exhibit  less  fluctuation  compared  to  the
other two versions, suggesting that WIoU v2 contributes to greater
stability in the model. In conclusion, among the series of WIoU loss
functions  examined,  WIoU  v2  demonstrates  a  more  favorable
impact  on  all  aspects  of  the  dataset  in  this  paper.  Consequently,

this  paper  designates  WIoU  v2  as  the  selected  loss  function  for
the model. 

4.2    Result analysis of the ablation experiment
In  the  ablation  experiment,  the AP  value  of  Root-YOLOv7  is

maximized  when  the  IoU  threshold  is  established  at  0.5.  This
outcome can be attributed to the enhanced synergistic effects of the
Swin  Transformer,  WIoU  v2,  and  Triplet  Attention  modules
integrated  within  Root-YOLOv7.  Conversely,  when  the  IoU
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threshold  is  adjusted  to  the  range  of  0.5:0.95,  the  AP  of  Root-
YOLOv7  is  observed  to  be  0.81%  lower  than  that  of  YOLOv7
combined  with  the  Swin  Transformer.  This  discrepancy  may  be
indicative  of  certain  inhibitory  interactions  among  the  multiple
embedded  modules  (Swin  Transformer  +  WIoU  v2  +  Triplet
Attention).

Furthermore,  the  P  of  YOLOv7  combined  with  the  Swin
Transformer  and  WIoU  v2  is  0.43% higher  than  that  of  YOLOv7
with  WIoU  v2.  However,  the AP  is  lower  than  that  of  YOLOv7
with WIoU v2.  This  discrepancy may be attributed to  the fact  that
Swin Transformer enhances the capability to capture object feature
information  across  various  scales  when  it  is  embedded  in  the
backbone  network,  thus  improving  the  prediction  accuracy  of  the
model.  Nevertheless,  the  AP  does  not  exhibit  significant  change,
which may be due to the influence of recall. 

4.3    Influence factors of model performance
The  P  and  AP@0.5  values  of  Root-YOLOv7  are  7.84%  and

5.83%  higher  than  those  of  YOLOv7,  respectively.  Despite  the
significant  enhancement  in  detection  performance,  a  small  portion
of root knots remain undetected. This limitation may be attributed to
several factors: (1) Cucumber roots exhibit numerous fibrous roots,
dense  root  knots,  and  root  knot  objects  that  are  relatively  small,
which  may  impair  the  convolutional  neural  network  semantic
extraction  ability  and  comprehensive  feature  extraction  ability  of
YOLOv7 during detection. (2) The dataset lacks sufficient richness.
A diverse dataset  includes samples from various regions,  varieties,
or  backgrounds[43].  A  well-diversified  dataset  can  provide  more
comprehensive  information,  thereby  enabling  the  model  to  better
capture  the  object  features  and  enhance  its  generalization
capabilities. (3) During the dataset acquisition process, it is difficult
to fix the distance and angle between the camera and the roots, and
the location of the root knots is also inconsistent. Such variations in
shooting distance and angle may influence detection performance to
some extent[44]. 

4.4    Limitations and future outlook
This  research  takes  519  original  root-knot  nematode  disease

samples  for  cucumbers.  In  fact,  root-knot  nematode  disease  is  a
kind of disease that is prone to occur in the growth of various crops.
Therefore, it can be considered to expand the research to other crops
to  increase  the  generalization  ability  of  the  model  in  the  future.  In
addition,  our  research  focuses  on  detection  accuracy  and  does  not
consider the issue of a lightweight model. In practical applications,
it is sometimes necessary to consider a lightweight model to deploy
it  on  mobile  devices  such  as  embedded  systems.  Therefore,
subsequent  research  may  focus  on  improving  the  generalization
ability  and  lightweight  level  of  the  model  in  order  to  further
enhance its universality and real-time performance. 

5    Conclusions
The  detection  of  root-knot  nematode  disease  presents

significant challenges due to the extensive presence of fibrous roots,
dense root knots, and the occurrence of diminutive root knots within
the roots of diseased plants. To address these challenges, this paper
proposes a multi-scale adaptive object detection and grading model
Root-YOLOv7 for the identification of root-knot nematode disease
using  cucumber  plants  as  the  research  object.  The  P  of  Root-
YOLOv7  is  7.84%  higher  than  the  original  YOLOv7,  which
indicates  the  effectiveness  of  the  improved  approach  in  this
research.  This  model  facilitates  the  detection  and  quantification  of
root  knots  within  the  root  systems  of  plants,  thereby  providing
insights  into  the  extent  of  damage  caused  by  root-knot  nematode

disease.  The  findings  of  this  paper  hold  both  theoretical  and
practical  significance  for  the  advancement  of  grading  devices  for
root-knot  nematode  disease  and  the  cultivation  of  varieties  with
stress resistance. 
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