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Abstract: Soil physicochemical properties, climate, and human activities can create barriers to arable land in varying degrees,
affecting  land  quality.  The  Huanghuaihai  Plain  (HHHP)  is  an  important  agricultural  region  in  China.  To  clarify  the  factors
influencing the formation of barriers to arable land in this area and their spatial distribution characteristics, this study took the
northern  part  of  the  HHHP  as  the  research  object,  screened  and  quantified  the  factors  influencing  barriers  to  arable  land,
constructed a multifactor-based arable land barrier evaluation index system, and used the index system to spatially classify the
barriers to arable land. The results showed that 1) 16 evaluation indicators including the five dimensions of chemical indicators,
physical indicators, biological indicators, management measures, and plot environment were screened out through the random
forest  model;  2)  the  average  rating  of  the  multifactor  barrier  for  arable  land  in  the  northern  part  of  the  HHHP  was  5.3,
exhibiting a medium level, and the area of grade 5 and grade 6 land accounted for the highest percentage, at up to 30%; 3) the
order  of  barrier  degree  of  main  barrier  factors  from  high  to  low  was  organic  matter>salt  content>available  phosphorus>
available  potassium>irrigation  capacity>soil  texture  class>soil  bulk  density;  and  4)  according  to  the  idea  of  ranking  barrier
factors,  15  types  of  barriers  were  obtained  and  then  divided  into  the  three  major  barrier  area  categories  of  organic  matter,
irrigation  capacity,  and  salinity,  and  the  prioritization  of  cropland  quality  improvement  was  determined  according  to  the
sequential  order  of  the  combination  of  barrier  factors.  A  preliminary  multifactor  barrier  index  system  for  croplands  was
constructed, which can provide a reference for cropland barrier abatement and the precise improvement of cropland quality in
the HHHP area.
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1    Introduction
High-quality  land,  as  a  valuable  natural  resource,  is  an

important  safeguard  for  maintaining  ecological  balance,  food
production,  and  human  health[1].  However,  the  degradation  of
ecosystem  services,  climate  change,  biodiversity  loss,  water

scarcity, and reduction in arable lands[2-6] pose significant threats to
soil  quality[7].  These  unfavorable  conditions  affect  crop  growth,
development,  and  yield  formation  and  influence  the  quality  of
crops,  with  adverse  effects  on  the  ecological  environment.  In  this
context,  the  systematic  identification  of  the  factors  hindering  the
cultivation of arable land, building a mechanism to reduce barriers,
and realizing the precise improvement of the quality of arable land
have  become  research  focuses  in  the  field  of  global  land  science.
This issue is particularly urgent in China, which is undergoing rapid
urbanization  and  industrialization.  Due  to  the  special  national
conditions  of  a  large  population  base  and  scarce  arable  land
resources, China faces the dual challenges of arable land protection
and food security,  which are more complicated than those of other
countries[8].

Soil  is  a  complex  ecosystem  in  which  various  physical,
chemical,  and  biological  traits  can  affect  soil  quality  to  varying
degrees,  creating  barriers[9,10].  Much  useful  research  has  been
conducted  on  the  factors  that  influence  soil  quality.  For  example,
Yang,  He,  Yan,  and  Qu  et  al.[11-14]  proposed  several  factors  closely
related to barriers to arable land quality, such as heavy metals, soil
water content, AP, pH, and cropland efficiency, in the North China
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Plain, Loess Plateau, Nanxiong Basin, and Northeastern Black Soil
Region  of  China,  respectively.  The  aforementioned  studies  have
revealed  that  the  majority  of  existing  research  concentrates  on  a
single  factor  in  the  formation  of  barriers  to  arable  land.  However,
studies on the synergistic or interlocking effects of these factors are
scarce.  In  the  soil  ecosystem,  no  factors  exist  in  isolation;  rather,
they  operate  through  mutual  constraints  or  promotions  to  impact
soil quality. Furthermore, the findings of the aforementioned studies
indicate  that  the  barrier  factors  affecting  arable  land  exhibit
significant variation across different soil types, posing considerable
challenges  in  determining  the  specific  barrier  factors  affecting
arable  land.  Consequently,  the  development  of  a  multifactor-based
evaluation  index  system  for  barriers  to  croplands  and  the
quantification  of  the  interrelationships  among  the  factors  represent
crucial  research  avenues  for  future  identification  and  mitigation  of
barriers to croplands.

Many useful  studies  have been conducted by previous authors
to screen and evaluate barrier factors. For example, in the screening
of  evaluation  indices,  studies  have  been  conducted  to  assess  the
quality of arable land using the random forest method[15,16] to assess
the  importance  of  features  and  the  principal  component  analysis
(PCA)  method  to  construct  a  minimum  dataset  (MDS)[17-20].  The
majority  of  existing  research  in  this  field  has  employed  the
hierarchical  analysis  method  (AHP)[21]  and  the  entropy  weight
method[22]  to  determine  the  weights  and  degree  of  affiliation.  The
affiliation function reflects the degree to which an element belongs
to  a  certain  fuzzy  set,  which  can  be  broadly  classified  into  three
main categories: triangular, trapezoidal, and Gaussian functions[23,24],
with regional variations influencing their performances[25]. The final
physical  and  chemical  properties  of  the  soil  from  the  soil  health
status,  utilization  conditions,  ecological  security,  arable  land
productivity,  and  other  latitudes  were  used  to  construct  an
evaluation index system[26-28].  Nevertheless,  existing research on the
construction of an index system for evaluating the quality of arable
land lacks a systematic evaluation from the perspective of exploring
the  synergy  of  barrier  factors  from  the  common  departure  of
multiple  dimensions.  Therefore,  it  is  important  to  construct  a
multifactor barrier evaluation index system for arable land from the
perspective  of  the  mechanisms  and  paths  of  arable  land  barrier

formation.  This  will  facilitate  a  more  scientific  and  accurate
evaluation  of  the  index  system  of  arable-land  barriers  and  enable
targeted conservation and the upgrading of land strength.

The  Huanghuaihai  Plain  (HHHP)  is  one  of  the  main  grain-
producing  areas  in  China  and  plays  a  key  role  in  guaranteeing
China’s  food  security[29,30].  However,  in  recent  years,  with  the
deterioration  of  climatic  conditions,  ecological  pollution,  and
decline in soil  fertility, the quality of arable land in the HHHP has
been  seriously  affected,  further  threatening  regional  food  security.
Therefore,  accurately  identifying  the  barriers  to  croplands  in  the
HHHP  and  improving  the  quality  of  croplands  have  become  key
problems  that  need  to  be  solved  in  this  district.  In  this  study,  the
barriers to arable land in the northern part of the HHHP were taken
as  the  object  of  study,  and  the  screening  and  evaluation  of  the
barriers to arable land and the classification of the degree of barriers
to  arable  land  in  the  district  were  carried  out  using  mathematical
models,  such  as  random  forest  and  barrier  degree  models.  This
study  aims  to  clarify  the  factors  and  combinations  of  driving
mechanisms of barriers to arable land quality in the northern part of
the  HHHP and to  quantify  the  spatial  distribution  of  the  degree  of
barriers  to arable land quality in the district.  This  study provides a
reference  for  the  construction  of  technical  systems  to  improve  the
quality  of  arable  land  and  reduce  barriers  to  arable  land  in  HHHP
and similar regions. 

2    Material and methods
 

2.1    Study area and data sources
The data collection area for this study was the northern part of

HHHP  (113°88 ′E-117°44 ′E,  37°50 ′N-39°58 ′N),  comprising  49
county-level  administrative  districts  and  a  total  land  area  of
approximately 8×106 hm2.  This region is the most important winter
wheat-summer  maize  one-year  grain-producing  area  in  China.  The
fundamental  data  for  this  study  were  sourced  from  the  five-year
mean  data  provided  by  the  Department  of  Agriculture  and  Rural
Affairs  of  Hebei  Province  from  2017  to  2021  (Table  1).
Topographic  data  were  primarily  sourced  from the  geospatial  data
cloud  (http://www.gscloud.cn/)  to  obtain  30×30  m  DEM  data,
which  were  then  integrated  with  the  grading  criteria  for  a
comprehensive assessment, as shown in Figure 1.

 
 

Table 1    Names of indicators in the study area and corresponding abbreviations
Indicator name Abbreviation Indicator name Abbreviation Indicator name Abbreviation
Altitude/m ALT Barrier Layer Type BLT Total Nitrogen/g∙kg–1 TN
Longitude LON Barrier Layer Depth BLD Available Phosphorus/mg∙kg–1 AP
Latitude LAT Barrier Layer Thickness/cm BL Available Potassium/mg∙kg–1 AK
Soil Type STL Irrigation Capacity IC Slowly Available Potassium/mg∙kg–1 SRK

Soil Subtype STB Irrigation Method IM Soil pH pH
Soil Group STG Water Source Type TWS Available Sulfur/mg∙kg–1 AS
Soil Series STS Drainage Capacity DC Available Copper/mg∙kg–1 ACu

Parent Material PM Cropping System CS Available Zinc/mg∙kg–1 AZn
Landform Type LFT Annual Cropping System PCS Available Iron/mg∙kg–1 AFe
Soil Texture Class TC Cleanliness Degree AP Available Manganese/mg∙kg–1 AMn

Topographic Position TP Main Crop Name AK Available Boron/mg∙kg–1 AB
Slope Gradient/(°) FS Annual Yield/kg∙hm–2 SRK Available Molybdenum/mg∙kg–1 AMo

Groundwater Depth/m DGW Biodiversity pH Available Silicon/mg∙kg–1 ASi
Effective Soil Depth/cm ESD Farmland Afforestation AS Lead Pb

Plough Layer Thickness/cm PLD Salinization Type ACu Chromium/mg∙kg–1 Cr
Plough Layer Texture PLT Degree of Salinity AZn Cadmium/mg∙kg–1 Cd

Soil Bulk Density/g∙cm–3 SBD Salt Content AFe Mercury/mg∙kg–1 Hg
Obstacle Factor OF Cleanliness Degree AP Arsenic/mg∙kg–1 As
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a. Elevation map b. Point density map
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Note: The study area is located in the northern Huanghuaihai Plain.
Figure 1    Geographic location of the study area

  

2.2    Research methods 

2.2.1    Screening of evaluation indicators

(I) (X j) j
[I(X j)]

The  random  forest  model  was  created  using  the  “Random
Forest” package in R software version 4.1.1 to identify 53 different
factors  that  influence  the  yield  (GY).  The  out-of-bag  error  (OOB
error)  was  used  to  calculate  the  importance  of  the  characteristic
variables  .  The  significance  of  the  variable    to  the    is
expressed  as  .  Coefficient  of  determination  (R2),  Relative
prediction  deviation  (RPD),  Root  mean  square  error  (RMSE),  and
Mean  absolute  error  (MAE)  were  used  as  metrics  to  evaluate  and
validate  model  accuracy[31].  In  this  study,  the  random forest  model
was constructed with an R2 value of 0.789, RPD of 2.030, RMSE of
61.925, and MAE of 34.997.

I(X j) =
1
n

n∑
i=1

(
E j

i −Ei

)
(1)

R2 =

n∑
i=1

(ŷi − ȳ)2

n∑
i=1

(yi − ȳ)2

(2)

MAE =
1
n

n∑
i=1

|ŷi − yi| (3)

RPD = SD/RMSE (4)

RMSE =

√
1
n

n∑
i=1

(ŷi − yi)
2 (5)

 

2.2.2    Constructing indicator weights and affiliations
1) AHP method
AHP,  proposed  in  the  early  1970s,  integrates  quantitative  and

qualitative aspects to determine the weights of individual evaluation
indicators  (Table  2  and  Table  3).  To  maintain  perceived
consistency,  this  study  verified  the  consistency  by  calculating
consistency  ratios.  These  ratios  were  used  to  gauge  the  level  of
consistency  between  pairwise  comparisons  of  different  criteria,
which is a key strength of the AHP method. The fundamental steps
of the AHP approach are as follows[32]:

(1) Building judgment matrix:

U = (auv)m×m (6)

U m×m
auv

u v

  is  an    judgment  matrix  that  represents  the  relative
importance of factors in the same hierarchy; the matrix element 
represents  the  importance  of  factor    relative  to  factor  ,  and  its
value ranges from 1 to 9.

(2) Compute the maximum eigenvector of the judgment matrix.

Uw = λmaxw (7)

Uw U
w λmax

U w
λmax

  is  the  product  of  the  judgment  matrix    and  the
eigenvector  .    is  the  maximum  eigenvalue  of  the  judgment
matrix  , which is used to measure the consistency of the matrix. 
is  the  eigenvector  corresponding  to  the  maximum eigenvalue  ,
which represents the weight of each factor.

CR(3) Using the consistency test,  the consistency indicator    is
calculated as follows:

CR =
CI
RI

(8)

CI RI
CR

where,    is  the  consistency  index  and    is  the  randomized
average  consistency  index;  when  <0.1,  the  judgment  matrix
passes the consistency test.

CI(4) The   was calculated as follows:

CI =
λmax −n

n−1
(9)

Wi(5)  The  weight    of  each  indicator  was  obtained  after
normalization.

2) Calculation of the degree of the affiliation of each indicator
To  establish  a  relationship  between  the  selected  evaluation

indicators  and  the  quality  of  cultivated  land,  the  national  standard
for  Cultivated  Land  Quality  Grade  (GB/T33469-2016)  was
referenced in conjunction with a fuzzy mathematical method based
on  the  characteristics  of  the  northern  HHHP.  This  resulted  in  the
classification  of  the  relationships  into  above-the-fold,  peak,
conceptual,  and  selected  numerical  categories.  The  conceptual
indicators  are  non-numerical  and  partially  numerical  and  are  not
linearly  related  to  the  quality  of  cultivated  land.  Therefore,  an
affiliation function is not necessary to establish a linear relationship
between these indicators and the arable land quality.

 
 

Table 2    Cropland barrier evaluation indicator affiliation function
Membership function type Formula Marginal notes Evaluation indicator

Above-the-fold function yi =


0, ui ≤ ut

1/
[

1+ai(ui − ci)2, ut < ui < ci
]

(i = 1, 2, . . . , m)

1, ci < ui

yi
ui

ci
ai

ut

 is the affiliation of the ith factor;
 is the measured value of the sample;

 is the standardized indicator;
 is the indicator coefficient;

 is the lower limit value of the indicator

SOM, AP, AK, TN

Peak function yi =


0, ui > ut1 or ui < ut2

1/
[

1+ai(ui − ci)2
]
, ut1 < ui < ut2

1, ui = ci

ut1 ut2 and   are the upper and lower limit values of
the indicator, respectively pH, SBD

Conceptual indicators - - TC, PLT, BD, TP, IC, DC
Selected numerical indicators - - ESD, PLD, DGW, SC
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Table 3    Affiliation of indicators for evaluating barriers to cropland

Degree of
affiliation

Dimensions
Conceptual index Numerical index

PLT TC TP BD IC DC PLD ESD DWG SC

1.00 Medium
loam -

Low altitude alluvial plain/Low altitude alluvial
flood plain/Low altitude alluvial lacustrine

plain/Plain low grade
Abundant Fully satisfied Fully

satisfied ≥20 ≥100 ≥10 ≤0.02

0.95 - Sticky type Low altitude erosion and denudation plains - - - - - - -

0.94 Light loam - - - - - - - - -

0.93 - Loose on top and tight on
bottom type - - - - - - - -

0.92 Heavy
loam - - - - - - -

0.90 Loamy
type

Low altitude alluvial floodplains/Low altitude
alluvial depressions - - - - - - -

0.88 Clay loam - - - - - - -

0.85 - Firm type Low altitude alluvial floodplain low terrace/Low
altitude fluvial low terrace - Satisfied Satisfied - - - -

0.80 Sandy
loam Sandwich type Low altitude marine alluvial plains/Plains

middle order Average 15-
20

60-
100 10-5 0.02-

0.05

0.75 - Sponge type/Tight on top
and loose on bottom type - - - - - - - -

0.70 - Loose type Low altitude marine depressions/Low altitude
river high terraces - Largely

satisfied
Largely
satisfied - - - -

0.65 - - Erosion and denudation of low altitude low hills - - - - - - -

0.60 - Through-body sand Plains higher Not abundant - - ≤15 30-60 ≤5 0.05-
0.08

0.50 Sandy Soil - - - Not satisfied Not satisfied - - - -

0.40 - Thin layer type High hills at altitude in erosion and denudation - - - - <30 - ≥0.08

0.35 - - Erosion and denudation of small undulating mesas - - - - - - -
0.20 - - Erosion and denudation of the great rolling hills - - - - - - -

 
 

2.3    Evaluation of cropland barrier levels
The  cropland  quality  was  divided  into  ten  grades  using  the

equidistant  method,  with  grade  1  being  the  lowest  obstacle  and
grade 10 being the highest. The data were then spatially interpolated
using  ArcGIS 10.2  software  to  obtain  the  evaluation  results  of  the
multifactor obstacle grades of the cropland in the study area.

Q =
∑

(Mi ×Ni) (10)

Q
Mi ith Ni

jth

where,    is  the  multifactor  barrier  composite  index  for  the  grain
fields,   is the weight of the   indicator, and   is the degree of
affiliation of the   indicator.

Average grade of barriers to cultivation=∑(
Cropland obstacle class × area of that class

)
Total area of cultivated land (11)

 

2.3.1    Obstacle diagnosis model
This study referred to the calculation method of Cui et al.[33] and

impairment  degree  model  to  explain  the  primary  and  secondary
relationships among impairment factors. This study categorized the
degree  of  indicator  impairment  into  four  levels:  no  obstacle  (0),
mild  obstacle  (0%–10%),  moderate  obstacle  (10%–15%),  and
severe obstacle (≥15%).

Oi j =

(
1−Fi j

)
×Wi j

j∑
i=1

[(
1−Fi j

)
×Wi j

] ×100% (12)

Oi j jth ith

Fi j Wi j

where,    is  the  barrier  value  of  the    indicator  in  the    study
area,    is  the  factor  contribution,  and    is  the  weight  of  the
indicator.  To  further  clarify  the  synergistic  relationship  between
barrier  factors,  evaluation  indicators  with  a  barrier  degree  greater
than 5% were selected as key indicators for the analysis. 

2.3.2    Barrier factor combination ideas
The idea of barrier zoning for the study area is as follows: use

ArcGIS  10.2  software  to  rank  the  seven  barrier  factors  and  select
the first-, second-, and third-level barriers. When the barrier degree
of  the  first  barrier  factor  reaches  a  severe  barrier  (≥15%)  and  the
second  and  third  barrier  factors  are  moderate  or  less  (≤15%),  the
evaluation unit for barriers to arable land is determined to be an area
of the “first  barrier  factor”  type.  When the first  and second barrier
factors reach the level of severe barrier (≥15%) and the third barrier
factor  is  at  the  level  of  moderate  barrier  or  below  (≤15%),  the
evaluation unit of barriers to arable land is determined to be an area
of  the  type  “first  barrier  factor  -  second  barrier  factor”.  When  the
primary, secondary, and tertiary barrier factors all reach the level of
severe  barrier  (≥15%),  the  arable  land  barrier  evaluation  unit  is
determined to be a “primary barrier factor - secondary barrier factor -
third  barrier  factor”  type  area.  When  the  first,  second,  and  third
barrier  factors  are  all  at  the  level  of  moderate  barriers  or  less  (≤
15%), the evaluation unit for barriers to arable land is determined to
be an area of the “first barrier factor” type. 

3    Results
 

3.1    Screening of factors affecting cultivated land quality
In Figure 2a, the first 16 variables of the random forest model

are listed according to the OOB error, which is more sensitive to the
evaluation  results.  The  five  most  important  variables  were  SOM,
pH, TN, AP, and SC. The following characteristics of each indicator
were considered: physical soil indicators (PLD and SBD), chemical
indicators  (SOM,  pH,  TN,  AP,  AK,  and  SC),  biological  indicators
(BD), plot environments (PLT, TP, TC, and ESD), and management
measures  (IC,  DC,  and  DGW).  Among  these,  soil  chemical
indicators  accounted  for  the  highest  percentage  of  the  variables
(83%), followed by plot environment (8%), physical soil indicators
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(3.6%), management measures (4.2%), and biological soil indicators
(1.2%).  Among  the  weights  assigned  to  the  indicators,  irrigation
capacity  had  the  highest  weight,  followed  by  tillage  texture  and
texture  configuration.  Among  the  chemical  indicators,  organic
matter  had  the  highest  weight  and  biodiversity  had  the  lowest
weight (Figure 2b).
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a. Random forest importance ranking b. Indicator weighting

Figure 2    Ranking of importance and weighting of indicators for
evaluating barriers to cropland

  

3.2    Barrier class of arable land in the study area
The range of  the composite  index of  barriers  to  arable  land in

the northern part of HHHP was 0.620 736-0.975 018, which yielded

an  average  grade  of  5.3  for  multifactorial  barriers  to  arable  land,
indicating a medium level of severity. In the entire range of graded
classes, 10%-15% were classified as classes III, IV, V, VI, VII, and
VIII.  The  highest  percentage  was  observed  in  classes  V  and  VI,
which  together  accounted  for  30%.  Meanwhile,  0%–10%  were
classified  as  class  I,  class  II,  class  IX,  and  class  X.  Class  X
constituted  the  lowest  proportion  (3%).  Lands  classified  as  classes
I–IV were distributed across a vast expanse of the southwestern and
northern  regions  of  the  study  area.  Lands  designated  as  classes
V–VII  exhibited  a  more  dispersed pattern  and were  situated in  the
western,  central,  northeastern,  and  southeastern  parts  of  the  study
area. Conversely, high-grade lands, classified as classes IX–X, were
concentrated in the northwestern and eastern regions (Figure 3). 

3.3    Diagnosis of single-factor barriers
As shown in Figure 4, chemical indicators exhibited the highest

barrier degree (42.21%). Among chemical indicators, SOM and SC
had  the  highest  barriers,  at  16.37% and  15.79%,  respectively.  The
level  of  management  measures  had  IC  with  the  highest  barrier
degree  (9.52%).  The  plot  environment  had  the  highest  TC  barrier
degree  at  6.89%,  physical  indicators  had  the  highest  BD  barrier
degree  at  5.44%,  and  biological  indicators  had  the  lowest  barrier
degree at 0.97%. The seven indicators with obstacle degrees greater
than 5% were SOM, SC, AP, AK, BD, TC, and IC, which were the
major barriers to croplands in the northern HHHP.

 
 

a. Spatial distribution of cropland barrier levels map b. Percentage of area of cropland barrier levels
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Figure 3    Map of multifactorial obstacle classes for cropland and the percentage of area in obstacle classes
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Figure 4    Diagnostic results of cropland barrier factors
  

3.4    Multifactor barrier types
In  accordance  with  the  concept  of  barrier  factor  ordering,  15

barrier  types  were  identified  and  subsequently  classified  into  three
principal  categories  of  barrier  areas:  SOM,  IC,  and  SC.  The  SOM
barriers are divided into six types of barriers: SOM, SOM-IC, SOM-
SC,  SOM-SC-AP,  SOM-AP,  and  SOM-TC.  The  IC  barriers  are
categorized as IC, IC-SC, IC-SC-SOM, IC-SOM, IC-SOM-SC, and

IC-TC.  The  SC  obstacle  zone  is  divided  into  three  types  of
obstacles:  SC,  SC-SOM, and  SC-SOM-AP.  The  SOM barrier  type
area  has  the  largest  area  of  2  297  783.27  hm2,  accounting  for
61.71%  of  the  total  area  of  the  study  area,  with  a  relatively
decentralized distribution. The IC barrier type area covers an area of
1  244  699.89  hm2,  accounting  for  33.43%  of  the  total  area  of  the
northern part of the HHHP, and it is mainly located in the western,
southwestern,  and  northeastern  parts  of  the  study  area.  The  SC
barrier area is the smallest, which is 181 334.23 hm2, accounting for
4.87% of the total area of the study area, and is mainly distributed in
the southeastern coastal area of the study area. 

4    Discussion
 

4.1    Construction of the evaluation index system for barriers to
arable land

In  the  screening  process  for  evaluation  indicators,  a  random
forest model was employed to identify 16 representative evaluation
indicators.  This  approach  effectively  identifies  key  variables
through  feature  importance  ranking,  and  its  objectivity  has  been
extensively  validated  in  soil  quality  assessment  research[34-36].  For
instance, Wang et al.[37] utilized random forest modeling to calculate
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the feature importance of red-edge parameters, whereas Cao et al.[38]

incorporated  multiple  environmental  factors  as  downscaling
variables for indicator screening. These methodological approaches
are  aligned  with  the  algorithmic  design  employed  in  this  study.
Although  random  forest  modeling  objectively  quantifies  indicator
contributions  through  information  gain  ratios,  inherent
methodological  uncertainties  persist.  First,  the  model  demonstrates
sensitivity  to  initial  parameter  configurations,  potentially  affecting
the  feature  importance  rankings[39].  Second,  the  default  assumption
of  additive  relationships  among  input  variables  may  neglect
nonlinear interactions affecting cultivated land degradation[40].

Significant variations emerged across distinct topographic units
regarding  the  regional  adaptability  of  the  indicator  systems.  To
illustrate  this,  in  the  case  of  China’s  freshwater  lake  wetland
region[41], a comprehensive evaluation index system was constructed
using SOM, TN, AP, AK, pH, TP, and TK. In contrast, for the hilly
regions of East China [42], indicators such as SOM, AP, AK, and TP
were selected. In a study on the US federal state wetland region[43],
indicators for the evaluation of MDS were screened, including pH,
TN, BD, and total organic carbon (TOC). From this, it can be seen
that  chemical  indicators  such as  SOM, pH,  TN,  AP,  and AK have
been  widely  studied  by  various  scholars,  which  is  consistent  with
the  results  of  this  study.  Further  analysis  revealed  potential
uncertainties  in  constructing  the  indicator  system.  At  the  data
collection  level,  the  density  of  the  spatial  distribution  of  soil
samples  may  not  be  able  to  fully  capture  the  microtopographic
variability.  At  the  temporal  dynamics  level,  data  collected  at  a

single  time  point  makes  it  difficult  to  characterize  the  interannual
fluctuations  in  soil  properties.  Future  research  should  enhance
system  robustness  through  spatiotemporal  interpolation  modeling
and dynamic threshold adjustment mechanisms.

Notably,  indicator  selection  discrepancies  stem  from
fundamental differences in research scales and objectives. While the
principal  component  analysis-derived  MDS[44]  simplifies  the
evaluation  systems,  the  large-scale  study  encompassing  diverse
landforms requires multilevel  indicator  frameworks.  This  approach
aligned  with  the  recommendations  of  Bünemann  et  al.[45]  that
hierarchical  systems  should  be  employed  at  scales  exceeding  1:
100 000. Furthermore, crop-specific studies, such as that of Sánchez-
Guzmán  et  al.  on  maize  cultivation[46],  introduced  specialized
indicators (SMR and qCO2) in addition to conventional parameters.
By  incorporating  regional  indicators  (SC,  PLT,  and  TC)  while
preserving  the  comparability  of  core  parameters  (SOM,  pH,  and
TN),  this  study  enhanced  the  systemic  interpretability.  Future
investigations  should  adopt  context-specific  indicator  selections
based on spatial scales and research objectives. 

4.2    Classification of types of barriers to arable land
Soils  are  the  basis  of  human  survival;  however,  they  are

complex  and  fragile  ecosystems  in  which  small  changes  in  certain
indicators  can  lead  to  a  decline  in  the  productive  capacity  of  the
soil,  thereby  reducing  its  ability  to  self-regulate  and  recover.  TN,
SOM,  pH,  available  nitrogen,  and  CEC  were  found  to  be  the
primary  degradation  factors  in  the  Hetao  Plain[47],  whereas  the
Yangtze River Basin[42] showed limitations in terms of ESD, SOM,
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Figure 5    Types of barriers to cropland
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pH,  IC,  OF,  and  tillage  layer  texture.  Jiangxi’s  red  soil  sloping
fields[48]  demonstrate  high  PLD  constraints,  in  contrast  to  the
elevation and IC dominance in the northern Tianshan Mountains[49].
This  study  revealed  that  SOM,  SC,  AP,  AK,  IC,  TC,  and  BD  are
critical  constraints  in  the  northern  HHHP,  aligning  with  previous
findings on the significance of SOM and AK. These results not only
confirm the pivotal role of SOM in soil quality assessment but also
guide targeted soil improvement strategies.

Further  analysis  of  the  above  revealed  that  several  barrier
factors  were  specific  to  croplands  in  different  regions.  TN and pH
constraints  in  the  Hetao  Plain  reflect  arid  salinization
characteristics,  whereas  northern  HHHP  SOM  and  AK  depletion
correlate  with  high  cropping  intensity.  The  ESD  and  tillage  layer
issues of the Yangtze Basin are linked to hilly erosion processes, in
contrast to the flat terrain of the northern HHHP, which minimizes
such  effects.  A  comparative  analysis  showed  that  Jiangxi’s  PLD
constraints  are  associated  with  acidic  soil  structural  instability,
whereas  Xinjiang’s  IC  issues  stem  from  irrigation  practices.  The
northern HHHP exhibits compound salinity-nutrient constraints due
to groundwater overexploitation.

Notably,  the  northern  HHHP  exhibited  significant  spatial
heterogeneity, with 15 identified degradation types (Figure 3a). This
variation  stems  from  a  combination  of  the  internal  topography,
climate, and pedological diversity.  Specifically, the northern plains
experience  increased  soil  compaction  due  to  urban-induced
fragmentation, whereas the central and southwestern grain belts face
depletion  of  SOM  and  AK  as  a  result  of  intensive  cultivation.
Irrigation limitations are a prominent issue in western mountainous
areas,  whereas  the  eastern  riverine  zones  contend  with  salt
accumulation.  Furthermore,  spatiotemporal  variations  in  cropping
indices  and  management  practices  have  exacerbated  spatial
disparities.

The  results  of  the  aforementioned  studies  provide  a  wealth  of
insight  that  can  inform  subsequent  research  on  the  barriers  to
cropland  abatement  in  diverse  ecological  settings.  However,  a
notable limitation of these studies is their exclusive focus on single-
factor  barrier  assessment.  From the complexity of  soil  ecosystems,
it  can  be  inferred  that  the  quality  of  arable  land  itself  contains
several  intertwined  influencing  factors.  In  this  regard,  this  study
proposed  a  multifactor  barrier  evaluation  index  system  for  arable
land  based  on  a  combination  of  barrier  factors  using  an  obstacle
diagnosis  model  and  the  concept  of  barrier  factor  combination.
Furthermore,  this  study  quantitatively  classified  barriers  to  arable
land in the northern part of the HHHP in China. However, this study
was  deficient  in  its  exploration  of  the  synergistic  relationship
between  barrier  factors;  the  concept  of  establishing  a  multifactor
barrier  evaluation  index  system  through  a  combination  of  barrier
factors is  of reference value.  Further research will  be conducted to
gain  a  deeper  understanding  of  the  synergistic  mechanisms  and
driving pathways among barrier factors. The technical pathways of
multifactor  barrier  abatement  will  be  integrated,  validated,  and
optimized,  providing  a  basis  for  the  precise  enhancement  of  the
quality of arable land in the HHHP area. 

5    Conclusions
A random forest  model was employed to screen 16 evaluation

indicators affecting the quality of arable land in the northern part of
the HHHP. These included SOM, AP, and AK. The contributions of
these indicators were ranked. Furthermore, based on the affiliations
and  weights  of  the  aforementioned  evaluation  indicators,  the
average  rank  of  the  multifactor  barriers  to  arable  land  in  the

northern  part  of  the  HHHP  was  determined.  The  extent  of  the
barriers  posed  by  the  evaluation  indicators  of  arable  land  in  the
northern  part  of  the  HHHP  was  quantified  and  a  multifactor
evaluation  index  system  for  barriers  to  arable  land  was  proposed
based  on  a  combination  of  primary  and  secondary  barrier  factors.
The  aforementioned  indicator  system  was  employed  to  categorize
the  barriers  to  arable  land  in  the  northern  part  of  the  HHHP  into
three  principal  categories:  SOM,  IC,  and  SC.  The  spatial
distributions of these barrier areas were determined.

Based on the results of this research, it is recommended that the
relevant  decision-makers  make  precise  resource  inputs,  allocate
agricultural resources according to the dominant factors in different
obstacle  zones,  classify  management  by  zones,  formulate
differentiated  protection  and  utilization  policies  for  different
obstacle zones, establish a long-term dynamic monitoring system to
monitor  and  evaluate  the  quality  of  arable  land  regularly  so  that
measures can be adjusted promptly, strengthen the technical training
of  farmers,  and  popularize  appropriate  agricultural  technologies  to
improve the quality of arable land in the northern part of the HHHP
in various aspects. 
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