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Abstract: Path planning and task allocation are the key technologies of multi-machine collaboration. Current approaches focus
on  field  operations,  but  actually  orchard  operations  are  also  a  promising  area.  In  order  to  improve  the  efficiency  of  orchard
mowing,  a  cooperative  operation  scheduling  method  was  proposed  for  multiple  mowing  robots  in  the  dwarf  dense  planting
orchards. It aims to optimize the non-working time of the robot in the intra-plot paths and inter-plot routes. Firstly, a genetic
algorithm with multi-mutation and improved circle algorithm (MC-GA) was proposed for path planning. Subsequently, an ant
colony optimization algorithm with mixed operator (Mix-ACO) was proposed for task allocation. With regard to the shortage of
robots,  a  local  search algorithm was designed to  reassign work routes.  Simulation experiment  results  show that  MC-GA can
significantly reduce the total turning time and the number of reverses for the robot. Mix-ACO can effectively allocate tasks by
generating multiple work routes and reduce the total transfer time for the robot fleet. When the number of work routes exceeds
the  number  of  mowing  robots,  the  local  search  algorithm  can  reasonably  reallocate  multiple  routes  to  robots,  reducing  the
difference  in  task  completion  time  of  the  robot  fleet.  Field  experiment  results  indicate  that  compared  with  the  reciprocating
method,  SADG,  and  GA,  MC-GA  can  reduce  fuel  consumption  rate  by  1.55%-8.69%  and  operation  time  by  84-776  s.
Compared with ACO, Mix-ACO can reduce the total  transfer  time by 130 s.  The research results  provide a more reasonable
scheduling method for the cooperative operation of multiple mowing robots.
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1    Introduction
Orchard  grass  is  a  soil  management  model  which  involves

planting grass artificially in orchards to avoid soil exposure. It plays
a  positive  role  in  improving  soil  conditions  as  well  as  increasing
fruit  yields.  Thus,  the  economic  benefits  of  planting  grass  are
greater than those of clear tillage in orchards[1]. To take advantage of
grass  planting,  the  techniques  of  orchard  grass  and  mechanical
mowing are often combined to achieve the cutting and returning of
the  grass  to  the  field.  However,  the  traditional  mowing  methods
often  require  manual  operation,  which  increases  labor  costs.  It  is
time  to  introduce  mowing  robots  in  orchards  to  replace  manual
operations to alleviate the dependence of  orchards on human labor
and  optimize  management  costs[2-4].  With  the  growing  maturity  of

computer  technology,  sensor  technology,  and  automatic  control
theory, more research[5,6] has demonstrated the feasibility of orchard
mowing  robots.  Meanwhile,  fruit  cultivation  in  China,  such  as
apples,  citrus,  and  cherries,  is  shifting  towards  the  dwarf  dense
planting  mode,  making  it  easier  for  robots  to  operate.  This  is
because  in  dwarf  dense  planting  orchards,  trees  form  a  fixed
operational  structure,  which  allows  robots  to  repeatedly  perform
operations to cover the entire orchard by moving along each row of
trees from one end to another[7].

The  comprehensive  operational  efficiency of  robots  is  the  key
to  determining  whether  they  are  suitable  for  production[8].  To
improve  the  efficiency  of  orchard  mowing,  using  multiple  small
mowing  robots  working  together  is  more  effective  and  energy-
efficient[9]than  the  method  of  increasing  the  mower’s  power  and
weight. In recent years, people have conducted more research on the
collaborative  operation  of  multiple  agricultural  machines  of  the
same  type,  including  intra-block  multi-machine  collaboration  as
well as inter-block multi-machine collaboration. Complete coverage
path  planning  (CCPP)  and  task  allocation,  as  the  core  issues  for
multi-machine  collaboration,  have  become  priorities  in  recent
research.  Effective  path  planning  and  task  allocation  can
significantly  improve  the  operational  efficiency  of  agricultural
machinery[10].

The  objective  of  CCPP  is  to  achieve  low  operation  costs  and
high operation efficiency when it seeks the optimal path to traverse
the entire operation area[11]. A field is completely covered by a set of
parallel  tracks  or  paths,  which  is  the  most  commonly  used  field
coverage mode for agricultural machinery[12]. In this case, CCPP can
be  regarded  as  agricultural  routing  planning  (ARP),  which
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determines  the  optimal  path  for  agricultural  machinery  to  travel  in
the  field[13].  It  is  difficult  to  obtain  an  exact  solution  for  the  ARP
problem,  so  metaheuristic  algorithms  are  often  used  to  solve  it[14].
Different  methods  have  been  developed  for  ARP  problems  to
realize various objectives in recent years. Bochtis et al.[7] developed
a  route  planning  approach  for  orchard  operations  based  on  B-
patterns  to  minimize  the  non-working  distance  traveled  by  an
agricultural autonomous vehicle. Seyyedhasani et al.[15] transformed
the  agricultural  operation  path  planning  problem  into  a  vehicle
routing  problem  and  solved  it  by  using  a  tabu  search  algorithm,
reducing the field operation time by 17.3%. For specific agricultural
activities,  Conesa-Muñoz  et  al.[16]  used  a  simulated  annealing
algorithm  to  solve  the  path  planning  problem  of  site-specific
herbicide  spraying  by  an  agricultural  vehicle  fleet.  Evans  et  al.[17]

developed a genetic algorithm to optimize the harvest route of row
crop  harvesters  and  reduce  operational  costs.  Zhang  et  al.[6]

proposed  an  improved  A*  algorithm  to  search  optimal  paths  for
multiple mowing robots in the same plot.

The  essence  of  agricultural  machinery  task  allocation  is  a
resource  scheduling  problem  with  spatial  and  temporal
characteristics,  as  well  as  resource constraints  between agricultural
machinery  supply  and  farmland  management  demand[18].  A  large
number of studies have shown that this problem can be transformed
into  a  variant  of  the  vehicle  routing  problem  (VRP)  based  on  the
constraints to solve it. The VRP studies how to arrange vehicles to
transport  goods  from  warehouses  to  multiple  geographically
dispersed  customer  points  or  return  goods  to  warehouses  under
certain  constraints[19].  Over  the  last  few  years,  research  on  multi-
agricultural machinery scheduling based on the VRP has expanded.
Cao  et  al.[20]  used  an  ant  colony  algorithm  to  optimize  the  task
sequence  of  agricultural  machinery  operation,  which  effectively
reduced  the  path  cost.  Wang  et  al.[21]  proposed  a  multi-machine
collaborative  static  task  allocation  method  based  on  a  multi-
variation group genetic algorithm to reduce the work cost, including
time,  fuel  consumption,  and  distance.  He  et  al.[22]  applied  a  hybrid
tabu search approach to optimize the scheduling plan for combine-
harvesters  of  agricultural  machinery  cooperatives,  which  could
reduce the wheat harvesting period by approximately 10%.

Research  on  path  planning  and  task  allocation  for  agricultural
machinery  is  well-established.  However,  few studies  seem to  have
considered  the  scheduling  problem  of  multi-machine,  multi-plot
operations  in  orchard  environments.  The  goal  of  this  paper  is  to
propose a multi-constraint scheduling method to solve the problem
of  collaborative  operation  for  multiple  mowing  robots  in  dwarf
dense planting orchards. The goal is achieved by focusing on intra-
plot complete coverage path planning and inter-plot task allocation,
and  by  considering  several  factors,  namely,  path  costs,  work
capacity, matching supply and demand, and completion time. 

2    Problem description
 

2.1    Overall research framework
In  China,  most  orchards  are  located  in  hilly  areas,  with

characteristics  of  highlighting  topographic  and  geomorphic,  small
scale, and scattered plots. Therefore, during the mowing season, it is
more  convenient  and  flexible  to  use  compact  and  lightweight
mowing robots  for  operation instead of  large mowing machines.  It
can greatly improve the mowing efficiency to use multiple mowing
robots  to  work  together  in  fragmented  and  dispersed  plots.
However,  during  actual  orchard  operations,  the  path  planning  and
task  allocation  for  the  robot  fleet  is  an  optimization  problem
influenced  by  multiple  factors.  This  paper  considers  the  following

factors in relation to the actual situations:
1) Path cost: The row spacing of fruit trees is about 3.5-4.0 m,

and the working width of the mowing robot is relatively small. So,
each inter-row corridor  needs  to  be  operated twice back and forth.
In  order  to  maintain  moisture,  increase  temperature,  and  suppress
weed growth, a black ground cloth approximately 2 meters wide is
also placed along the row of fruit trees. It will result in uneven track
spacing  (here,  the  term "row" refers  to  a  group of  trees  parallel  to
the direction of robot operation, and "track" refers to the operation
path starting from one end and ending at the other end, with tracks
existing  in  the  row  space).  Therefore,  there  are  different  turning
costs  for  the  mowing  robot  between  intra-row  and  inter-row.
Similarly, the plots in the orchard are scattered, so the transfer costs
for the mowing robot to operate across the plots are different.

2)  Work  capacity:  The  small  size  of  orchard  mowing  robots
requires  that  they  operate  within  fuel  capacity  limits  without
exceeding their capacity.

3)  Supply  and  demand  matching:  If  the  number  of  mowing
robots in the orchard garage is  not enough to complete all  tasks in
one  trip,  it  is  necessary  to  consider  the  scenario  where  the  fleet
members complete all tasks in multiple trips.

4)  Completion  time:  It  is  important  to  consider  whether  the
workload for each member is balanced when assigning tasks to the
robot fleet. The purpose is to avoid unfair treatment of one mowing
robot that may experience extremely long or short working hours.

To  address  these  constraints,  the  framework  of  this  paper  is
illustrated in Figure 1. Firstly, based on the ARP model[13], a genetic
algorithm with multi-mutation and improved circle algorithm (MC-
GA) is proposed to plan the intra-plot complete coverage path. The
algorithm  aims  to  minimize  the  non-working  time  of  the  mowing
robot  while  working  in  the  plot.  Subsequently,  based  on  the
capacitated  vehicle  routing  problem (CVRP)  model,  an  ant  colony
optimization algorithm with mixed operator (Mix-ACO) is proposed
for  task  allocation.  The  algorithm  aims  to  minimize  the  non-
working time of the mowing robot while transferring between plots.
Finally,  considering  the  situation  where  all  tasks  cannot  be
completed  in  one  trip  due  to  the  shortage  of  mowing  robots,  each
robot needs to operate continuously multiple times to complete the
tasks  on  multiple  routes.  A  local  search  algorithm  is  designed  to
perform the second task allocation by reassigning work routes. The
algorithm aims to  minimize the  difference in  task completion time
among the members of the robot fleet, and find the complete work
routes for each mowing robot to complete all tasks in multiple trips.
  

Multi-mowing robot
cooperation operation

Complete coverage
path planning

Multi-robot task
allocation

The second task
allocation for the
shortage of robots

MC-GA Mix-ACO Local search

Workload Work routes

Minimize the non-working
time in the plot

Minimize the non-working
time between plots

Minimizethe difference in task
completion time of robot fleet

Figure 1    Overall framework of the research program
  

2.2    Complete coverage path planning
The  results  of  path  planning  determine  how  a  mowing  robot

covers a plot. A reasonable path can effectively reduce non-working
time.  As  shown  in Figure  2,  a  plot  can  be  divided  into  two  parts,
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including working area and non-working area. The working area is
the  area  that  needs  to  be  mowed,  while  the  non-working  area
includes  the  ground  cloth  coverage  area  and  two  field  edges.  The
headland serves as the turning area for the mowing robot. The upper
headland  is  labeled  UH,  and  the  lower  one  is  labeled  LH.  The
mowing  robot  operates  twice  in  each  row.  If  there  are  n  rows  of
fruit trees, it must traverse 2n tracks to completely cover them. It is
assumed  that    represents  the  horizontal  and  vertical
coordinates  of  the  first  fruit  tree  in  the  k-th  row,  and

represents the horizontal and vertical coordinates of the last
fruit tree in the k-th row, where 1≤k≤n. The coordinates of the fruit
trees  at  both  ends  of  each  row  can  be  represented  by  a  two-
dimensional  matrix.  Therefore,  based  on  the  Global  Navigation
Satellite  System,  the  boundary  between  the  headland  and  the
working area can be determined.
  

a. A dwarf dense planting orchard

b. Schematic of a mowing robot working scene
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Figure 2    Scenario analysis
 

When an orchard mowing robot drives to the end of the track, it
needs to make a 180° turn at the headland before entering the next
track.  According  to  reference  [12],  a  large  portion  of  the  non-
working  time  for  agricultural  machinery  occurs  during  turning,
while  the  non-working  time  during  turning  mainly  depends  on  the
driving distance and average speed during turning. As this indicates,
the  choice  of  turning  patterns  is  important.  Due  to  the  easy
operation  of  some  turning  types,  they  can  be  quickly  executed  by
machine, while others require good driving skills and a large area of
field  edge  to  perform.  The  most  common  turning  patterns  are  the
forward-turn  (Ω-turn),  double  round  corner  (U-turn),  and  switch-

back-turn  (T-turn)[12].  Usually,  the  latter  two  types  of  turns  will  be
initiated  only  when  the  U-turn  cannot  be  executed.  For  example,
when Lw<2r, where Lw is the spacing between the current track and
the next track, and r is the minimum turning radius of the machine,
the width of the headland and the length of the path occupied by the
Ω-turn  are  much  larger  than  those  of  the  T-turn[14].  Based  on  a
comprehensive  comparison,  only  the  U-turn  and  T-turn  are
considered for use in this paper, with their turning principles shown
in Figure 3.
 
 

a. U-turn

b. T-turn

A

A

B

B
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Note: O1  and O2  represent  the  centers  of  the  auxiliary  circles; A, B, C, and D
represent the tangent points of the turning path to circles O1 and O2.

Figure 3    Schematic of turning patterns
 

As  shown  in  Figure  3,  when  the  mowing  robot  travels  to  the
end of the track, its driving direction will form an angle θ with the
boundary of the headland. If the angle θ  is less than 90°, the robot
will  use  the  U-turn  or  T-turn  with  an  inclination  angle  θ  in  the
process of entering the next track. If the angle θ is equal to 90°, the
normal U-turn or T-turn will be used. The former turning method is
suitable  for  irregular  plots,  while  the  latter  is  more  suitable  for
rectangular  plots[23].  The  tracks  within  the  plot  are  parallel  to  each
other. Generally speaking, as long as the boundary of the headland
is determined, the angle θ can be obtained through measurement in
advance.  The  traditional  approach  commonly  adopts  the
reciprocating scheduling strategy for each row, which often needs to
be used with the T-turn. However, the T-turn involves stopping and
reversing,  which  not  only  consumes  more  time  but  also  increases
the wear on the tires due to soil friction. Therefore, it is advisable to
avoid the T-turn as much as possible during actual operations. This
objective  can  be  achieved  by  optimizing  the  mowing  robot’s
traversal order across the tracks. 

2.3    Multi-robot task allocation
Task  allocation  requires  establishing  a  clear  mapping

relationship  between  multiple  agricultural  machines  and  multiple
plots to be operated[20]. Therefore, firstly, the workload of each plot
needs  to  be  obtained  based  on  the  path  planning  result.  Then,  the
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path  cost  is  calculated  based  on  the  distance  between  the  mowing
robot  and  each  plot.  Finally,  considering  the  workload,  path  cost,
work  capacity,  and  supply  and  demand  matching,  a  global
scheduling  model  is  established  with  short  paths,  high  efficiency,
and reasonable configuration.

A batch of mowing robots is parked and scheduled uniformly in
the orchard, allowing multiple robots to complete multiple tasks in
parallel.  According  to  [24],  it  can  be  described  as  the  ST-SR-TA
problem  (single-task  robots,  single-robot  tasks,  time-extended
assignment).  Each  plot  in  the  orchard  is  considered  as  a  task  unit,
and the information for each task is known. Each task can only be
operated  by  one  mowing  robot,  while  one  mowing  robot  can  be
assigned multiple tasks. The objective is to allocate the tasks to each
robot so as to minimize the transfer time taken by a robot to serially
execute  its  allocated  tasks.  Furthermore,  considering  practical
application  scenarios,  some  constraints  have  been  added.  The  fuel
capacity  of  each  robot  determines  the  number  of  tasks  it  can
perform  in  one  trip.  When  assigning  tasks  to  the  robot  fleet,  it  is
necessary  to  consider  the  workload  of  each  plot  and  the  current
remaining capacity of  the robot.  Once the robot’s  capacity reaches
the lower limit,  it  must  return to the garage.  Of course,  it  can also
return  to  the  garage  after  all  tasks  are  completed.  As  shown  in
Figure 4, the fleet of mowing robots departs from the garage at the
same time and serves multiple plots in the orchard in an organized
manner,  following  a  preset  work  route.  Due  to  fuel  capacity
constraints,  each  mowing  robot  can  only  service  a  limited  number
of plots at a time, and when they run out of fuel, they need to return
to  the  garage  for  refueling  before  starting  a  new  trip.  Therefore,
plots  on  the  same-colored  route  in  Figure  4  indicate  that  they  are
serviced by the same mower. When there are not enough mowers in
the  orchard,  one  mower  is  often  responsible  for  plots  on  multiple
routes.
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Figure 4    Schematic of the collaborative operation scenario for
multiple mowing robots

 
In  summary,  in  order  to  simplify  the  problem  to  facilitate

model calculation, the following assumptions are proposed:
1)  In  task  allocation,  each  plot  can  only  be  mowed  by  one

robot, but one robot can serve multiple plots.
2) An orchard has only one garage, and all the mowing robots

depart  from  the  garage  at  the  same  time,  returning  to  it  after
completing their assigned tasks.

3) There are no obstacles in the plots and roads of the orchard.
During the operation, the parameters of the robot fleet are the same
and  not  affected  by  external  factors,  without  experiencing
malfunctions.

4)  All  roads  are  wide  enough  to  be  used  by  multiple  mowing
robots  simultaneously  to  avoid  collisions  during  the  transfer
process.

5) The plots are not interconnected. The mowing robot can only
enter and exit the plots through the designated entrance/exit.

6)  The  plot  can  only  be  allocated  when  the  remaining  fuel  of
the  mowing  robot  is  sufficient  to  complete  the  task.  If  there  is  no
suitable  plot,  the  mowing  robot  needs  to  return  to  the  garage  to
replenish fuel. 

3    Methods and materials
 

3.1    Complete coverage path planning within the plot 

3.1.1    Mathematical model

R = {R1,R2, . . . ,R|N|}

The parallel  tracks  in  the  plot  are  regarded  as  the  nodes  to  be
traversed  by  the  mowing  robot.  When  the  robot  visits  the  node,  it
also completes the operation of the track at the same time. Let N be
the set of nodes and E be the set of edges connecting the nodes. The
cost matrix C is associated with each edge, where cij represents the
time cost of the mowing robot to travel from node i to node j, ∀ i, j
∈N. xij is a decision variable, with xij =1 if and only if the mowing
robot  transfers  from  node  i  to  node  j,  and  xij=0  otherwise.  The
solution to the ARP problem is to determine the shortest path for the
mowing robot to traverse all tracks.   is assumed
as a path for the mowing robot, where Ri is the node to be traversed.
The path optimization model can be described as follows:

Minimize
∑

i∈N

∑
j∈N

ci j xi j (1)

Subject to: ∑
j∈N

xi j = 1; ∀i ∈ R (2)

R0 = R|N|+1 = 1,and
{

R1,R2, . . . ,R|N |
}
⊆ N (3)∑

i∈N

∑
j∈N

xi j ≤ |S | −1; ∀S ⊆ N, |S | > 1 (4)

xi j ∈ {0,1} ; ∀i, j ∈ N (5)

The  time  for  a  mowing  robot  to  cover  a  plot  consists  of  two
parts,  namely,  the working time on the tracks and the turning time
between  the  tracks.  When  the  environment  is  determined,  the
working  time  is  constant,  so  the  main  focus  needs  to  be  on  the
turning  time.  The  objective  function  [Equation  (1)]  aims  to
minimize  the  total  turning  time  when  the  robot  covers  the  plot.
Equation  (2)  ensures  that  each  track  represented  by  a  node  is
traversed only once. The first track near the entrance/exit of the plot
is regarded as node 1. To simplify operations and avoid adding new
nodes, Equation (3) specifies that the mowing robot starts at node 1
and  returns  to  node  1  after  completing  the  task.  Equation  (4)
excludes  disjoint  sub-loops  from  a  feasible  solution.  Finally,
Equation  (5)  specifies  that  the  decision  variables  only  use  binary
values.

cUH
i j = cLH

i j

cUH
i j , cLH

i j

The  time  cost  matrix C  is  composed  of  the  working  time  and
the turning time. When i=j, cij represents the working time required
for  the  mowing  robot  on  the  track.  When  i≠j,  cij  represents  the
turning time required for the mowing robot to transfer from node i
to  node  j.  At  this  point,  there  are  two possibilities:  1)  the  mowing
robot  turns  at  the  headland  UH;  2)  the  mowing  robot  turns  at  the
headland LH. In the rectangular plots, fruit trees are symmetrically
distributed  on  both  sides  of  the  headland,  so  .  In  the
irregular  plots,  fruit  trees  are  asymmetrically  distributed  on  both
sides of the headland, so  . Thus, the time cost matrix C is
expressed as follows:
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C =



c11 ∞
∞ c11

cUH
12 ∞
∞ cLH

12

. . .
cUH

1|N| ∞
∞ cLH

1|N|

cUH
21 ∞
∞ cLH

21

c22 ∞
∞ c22

. . .
cUH

2|N| ∞
∞ cLH

2|N|
...

...
. . .

...

cUH
|N |1 ∞
∞ cLH

|N |1

cUH
|N|2 ∞
∞ cLH

|N|2
. . .

c|N||N| ∞
∞ c|N ||N|


(6)

cUH
i j cUH

i jThe calculation of   or    is  related to the turning strategy
employed. When Lw≥ 2r, the U-turn is used; otherwise, the T-turn is
used.  In  this  context,  Equation  (7)  or  (8)  is  used  to  calculate  the
turning  time  required  for  the  robot  at  the  headland.  It  is  worth
noting that the angle θ is set based on the specific characteristics of
the plot.

Ui j =
πr+

√
(di, jw+ zLd −2r)2

+ (di, jw+ zLd)
2cot2θ

vt
(7)

Ti j =
πr+
»(

2r−di, jw− zLd

)2
+ (di, jw+ zLd)

2cot2θ

va
(8)

where, Uij is the U-turn time, (s); Tij is the T-turn time, (s); di,j is the
span  between  the  two  tracks  during  turning, di,j=|i–j|,  i≠j; w  is  the
working width of the mowing robot, (m); z is the number of ground
cloths crossed by the mowing robot during turning; Ld is the width
of the ground cloth, (m); vt is the turning speed of the mowing robot
without  reversing,  (m/s);  va  is  the  average  turning  speed  of  the
mowing  robot  when  it  is  in  reverse,  (m/s); θ  is  the  angle  between
the driving direction of the robot and the boundary of headland, (°).

Next  follow  the  calculation  formulas  for  the  time  cost  tstart
(from node 1 to the first track) and the time cost tback (back to node 1
from the end of the last track).

tstart = cUH
1R1

(9)

tback =

®
cUH

1R|N|
, turning at the UH

cLH
R|N|1
+ c11, turning at the LH

(10)
 

3.1.2    Algorithm description
The genetic algorithm is the most popular algorithm for solving

the  agricultural  routing  planning  (ARP)  problem[23],  and  is  adopted
in this paper. The genetic algorithm is the search algorithm based on
population  optimization  that  imitates  the  genetic  evolution  process
of  natural  organisms[25].  Inspired  by  biology,  chromosomes  are
represented as the solutions to the problem in the genetic algorithm,
which  are  evaluated  with  the  fitness  value.  Then,  the  genetic
algorithm  regards  the  population  as  the  solution  set,  updating  it
through the process of selection, crossover, and mutation in order to
ultimately  select  the  individual  with  the  best  fitness  in  the
population.

R =
{

R1,R2, . . . ,R|N|
}The track sequence in route R is encoded using natural number

codes  as  the  genes  of  the  chromosome.  Therefore,  a  chromosome
can  be  represented  by  the  set    as  shown  in
Figure 5. After the formation of the population, the fitness function
is  defined as  the  total  turning time when the  mowing robot  covers
the  plot.  The  chromosomes  with  smaller  fitness  values  indicate
better  path  optimization  effects,  and  the  chromosome  with  the
lowest fitness value represents the best path solution.

The  selection  operator  determines  whether  the  chromosomes
are involved in the next generation reproduction or not. Usually, the
genetic  algorithm  selects  the  parent  based  on  the  fitness  value  of
each chromosome. Tournament selection is used to select the parent

chromosomes  in  this  paper.  Compared  with  other  selection
strategies,  tournament  selection  is  more  suitable  for  solving
minimization  problems  and  simple  to  implement.  After  using  the
tournament selection strategy to select  a  group of chromosomes as
the group of parents, a mutation operator is still required to generate
offspring.  Traditional  genetic  algorithms  select  different  mutation
operators  by  mutation  probability.  In  this  paper,  a  variety  of
mutation operators (Swap, Insertion, Inversion) are used to generate
multiple offspring instead of choosing one operator, which increases
the  population  diversity  while  updating  the  population.  Figure  6
describes the process of mutation.
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Figure 5    Schematic of track coding
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Figure 6    The process of chromosome mutation
 

To enhance the  algorithm’s  ability  to  quickly  find the  optimal
solution, the improved circle algorithm is employed to optimize the
parent  chromosomes.  The  improved  circle  algorithm  is  a  heuristic
algorithm. Its principle involves modifying the path node order in a
Hamiltonian  cycle  once,  resulting  in  a  Hamiltonian  cycle  with  a
shorter  path  length.  By  repeatedly  modifying  it,  an  approximately
optimal  operating  path  is  obtained.  Therefore,  if  the  parent
chromosome  is  optimized  by  the  improved  circle  algorithm,  its
fitness value must be inevitably better than that before optimization.

Table 1 lists the pseudocode of the genetic algorithm based on
multi-mutation  and  improved  circle  algorithm  (MC-GA).  The
details are indicated as follows:

1)  Input  the  information of  the  plots  and the  mowing robot  to
generate time cost matrix.

2) Set the algorithm parameters and initialize the population.
3)  Determine  whether  the  maximum  number  of  iterations  has

been exceeded. If  so,  proceed to step (9);  otherwise,  perform steps
(4)-(8).

4)  Calculate  the fitness  value of  each individual  in  the current
population and retain the best individual of the population.

5) Based on the tournament selection method, randomly select
four  chromosomes  to  form  a  group  for  comparison,  retain  the
individual with the lowest fitness value as the parent,  and then use
the improved circle algorithm to optimize the parent chromosome.

6)  Use  multiple  mutation  operators  to  mutate  the  optimized
parent chromosome multiple times to generate multiple offspring.

7) Repeat steps (5)-(6) until a new population is formed.
8) Increment the iteration count and skip to step (3).
9) Output the path of the best individual.
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Table 1    The pseudocode of MC-GA
Algorithm 1 MC-GA
1: Input the information of the plots and the mowing robot

2: Set the parameters

3: pop=zeros (popSize, :)

4: globest=Inf

5: offspring=zeros (4, :)

6: newpop=zeros (popSize, :)

7: pop=randperm (popSize, :)

8: while iter<=iter_max do

9:　Calculate the path cost of each individual in pop

10:　curbest←Min(cost)

11:　curbest_path ← Min(cost)_path

12:　if crnbest< globest then
13:　　globest← curbest

14:　　globest_path← curbest_path

15:　end if
16:　randomorder=randperm(popSize)

17:　for i= 4:4: popSize do
18:　　bestparent←Tournament_Selection (pop (randomorder (i-3: i)))
19:　　optparent←Improved Circle Algorithms(bestparent)

20:　　offspring (1, :)← optparent

21:　　offspring (2, :)←Swap (optparent)

22:　　offspring (3, :)←Insertion (optparent)

23:　　offspring (4, :)←Inversion (optparent)

24:　　newpop (i-3: i, :) =offspring
25:　end for
26:　pop=newpop

27:　iter=iter+1
28: end while
29: Output the globest and globest_path
  

3.2    Multi-robot task allocation among the plots 

3.2.1    Mathematical model
In  the  orchard,  multiple  mowing  robots  with  limited  fuel

capacity depart  from the garage simultaneously to service multiple
scattered plots in turn. If the plots are regarded as customers and the
fuel as goods, this scheduling problem can be transformed into the
famous capacitated vehicle routing problem (CVRP), which is also
a  combinatorial  optimization  problem  in  essence.  Therefore,  the
assumptions  made  in  the  previous  section  are  continued,  but
expanded to include the entire orchard, not just a specific plot.

T = {T 1,

In  mathematical  terms,  CVRP  is  represented  as  a  weighted
graph G={N, E}, where N={0, 1, 2, …, n} is the set of nodes, and
E={(i,  j)|i,  j ∈N}  is  the  set  of  arcs.  In  this  context,  the  garage  is
represented  as  the  node  0,  and  the  n  plots  to  be  served  are
represented  by  other  nodes.  The  cost  matrix C  is  associated  with
each  edge;  when  i≠j,  cij  represents  the  time  cost  for  the  mowing
robot to travel from node i to node j, and when i=j, cij represents the
time  for  the  mowing  robot  to  cover  each  plot.  The  demand  at  the
garage is set to zero. Ideally, the single working time of the mowing
robot  is  only  determined  by  its  fuel  tank  capacity.  So,  a  common
endurance time limit L for each robot was given. The power system
of the mowing robot can be divided into the working power system
(driven by an engine) and the traveling power system (driven by a
battery  pack).  Therefore,  the  fuel  consumption  during  the  transfer
process is not considered, while the endurance time does not include
transfer  time.  The  objective  of  the  CVRP  is  to  determine  a  set  of
lowest-cost  routes  to  service  all  plots  while  satisfying  constraints.
Assuming  that  K  routes  have  been  determined,  and 

T 2, . . .T k}
T k =

{
T k

1 ,T
k
2 , . . . ,T

k
|T k |

}
yk

i j

lk
i j

  is  the  set  of  these  routes,  then  the  k-th  route  can  be
represented as  , where Ti represents the node
to be visited. Variable    is  equal to 1 if  the mowing robot moves
from  node  i  to  node  j  in  route  k,  and  0  otherwise.  Variable    is
equal  to  1  if  the  mowing  robot  services  node  i  in  route  k,  and  0
otherwise.

The task allocation model can be described as follows:

Minimize
n∑

i=0

n∑
j=0

K∑
k=1

ci jyk
i j (11)

Subject to:
K∑

k=1

n∑
j=1

yk
i j = 1; ∀i ∈ {1, . . . ,n} (12)

K∑
k=1

n∑
i=1

yk
i j = 1; ∀ j ∈ {1, . . . ,n} (13)

n∑
j=1

yk
0 j = 1; ∀k ∈ {1, . . . ,K} (14)

n∑
i=1

yk
i0 = 1; ∀k ∈ {1, . . . ,K} (15)

n∑
i=0

n∑
j=0

ciilk
i j ≤ L; ∀k ∈ {1, . . . ,K} (16)

The  objective  function  [Equation  (11)]  aims  to  minimize  the
total transfer time of the robot fleet when they operate across plots.
Equations (12) and (13) ensure that each plot represented by a node
is visited exactly once. Equations (14) and (15) require all routes to
begin  and  end  at  the  garage.  Equation  (16)  ensures  that  the  total
demand on each  route  does  not  exceed the  endurance  time limit L
of the robot.

(
n∑

i=0

n∑
j=0

K∑
k=1

ci jyk
i j +

n∑
i=1

cii

)
/M

Although the use of CVRP can help solve the multi-robot task
allocation problem, the solution provided by CVRP only involves a
group of robots completing all tasks in one trip, without considering
the situation where there is a shortage of robots. It implies that even
if K  routes  have  been  planned  based  on  capacity  constraints,  the
actual number of robots M may be less than K, so not all tasks can
be completed in one trip. Therefore, a second allocation for the set T
of  work  routes  is  required  based  on  the  actual  number  of  mowing
robots.  Firstly,  the  work  routes  need  to  be  packed,  and  the  time
consumption on the k-th route is expressed as H (k) [Equation (17)].
Then,  the  K  routes  are  assigned  to  M  mowing  robots.  To  avoid
uneven  allocation,  each  mowing  robot  is  assigned  to  P  routes  at
least  [Equation  (18)].  The  completion  time  of  the  m-th  mowing
robot  to  complete  all  tasks  is  indicated  as  t(m)  [Equation  (19)].
Finally,  with  the  objective  of  minimizing  the  difference  in  task
completion  time  of  the  robot  fleet,  the  complete  work  routes  are
determined for each mowing robot to complete all tasks in multiple
trips.  The  difference  in  task  completion  time  of  the  robot  fleet  is
calculated by Equation (20), where the average completion time for

all  mowing  robots  is  given  by  .

The  objective  function  [Equation  (21)]  is  used  to  minimize  the
difference  in  task  completion  time  of  the  robot  fleet.  Constraint
Equation  (22)  guarantees  that  there  is  only  one  mowing  robot  on
each route.
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H(k) =
|T k |∑
i=0

|T k |∑
j=0

ci jyk
i j +

|T k |∑
i=1

cii; ∀k ∈ {1, . . . ,K} (17)

P =
⌊ K

M

⌋
(18)

t(m) =
P∑

i=1

H(k); ∀m ∈ {1, . . . ,M} (19)

α(m) =

(
n∑

i=0

n∑
j=0

K∑
k=1

ci jyk
i j +

n∑
i=1

cii

)
/M− t(m)(

n∑
i=0

n∑
j=0

K∑
k=1

ci jyk
i j +

n∑
i=1

cii

)
/M

(20)

Minimize(max(α)−min(α)) (21)

M∩
m=1

T k = {0}∧
M∪

m=1

T k = T ; ∀k ∈ {1, . . . ,K} (22)
 

3.2.2    Algorithm description
1) Ant colony optimization algorithm with mixed operator
During  the  foraging  process,  ants  will  secrete  pheromones

along  their  paths.  The  magnitude  of  the  pheromone  concentration
reflects  the  distance  of  the  path,  and  the  higher  the  pheromone
concentration,  the  shorter  the  corresponding  path  distance.  As  a
result,  the  ant  colony  algorithm  possesses  the  characteristics  of
distributed computing, positive information feedback, and heuristic
search, making it  a probabilistic algorithm that can be used to find
optimal solutions[26]. When using the ant colony algorithm, artificial
ants make probabilistic decisions based on the problem information,
pheromone trails, and heuristic information. Specifically, for CVRP,
each artificial ant builds its complete route by successively selecting
feasible  nodes  through  probability  calculation  and  roulette  wheel
strategy until all nodes have been visited. When all the artificial ants
construct a complete route, each route needs to be converted into a
corresponding  allocation  scheme  by  decoding  it.  In  the  process,
capacity constraints are always adhered to. If the current remaining
capacity  fails  to  meet  the  demand  of  the  next  node,  a  new  work
route  will  be  initiated  from  the  garage.  Thus,  each  artificial  ant
represents  a  solution,  while  each  solution  includes  several  work
routes  due  to  the  capacity  constraints.  Then  by  costing  each
solution,  the  one  with  the  lowest  cost  can  be  selected  as  the  best
solution.

In  fact,  for  the  combinatorial  optimization  problems,  the  ant
colony  algorithm  has  the  best  performance  when  combined  with
local  search  operators[27].  Therefore,  several  classical  permutation
operators  have  been  combined  to  propose  a  mixed  operator,
including Swap, Insertion, Inversion, and Displacement. The mixed
operator  improves  the  best  solution  by  assisting  the  ant  colony
algorithm  in  searching  the  neighborhood.  Table  2  gives  a  brief
introduction  to  these  operators.  The  mixed  operator  combines  the
four operators into one, and simultaneously classifies them into two
categories,  including  single  relocation  (Swap,  Insertion)  and
segment  relocation  (Inversion,  Displacement).  Single  relocation
makes  slight  changes  to  improve  the  solution,  which  is  usually
effective  in  the  last  stages  of  the  search,  while  segment  relocation
makes large changes to widely explore the solution space, which is
effective in the early stages of the search[28]. In summary, the mixed
operator is expressed by Equation (23). Obviously, in the process of

each  algorithm  iteration,  the  mixed  operator  will  choose  which
operator  to  use  by  roulette  wheel  strategy  to  explore  the
neighborhood,  instead of  always  using the  same operator.  In  order
to make better use of the characteristics of the mixed operator,  the
probability of segment relocation being selected is increased in the
early stage of the algorithm iterations. However, it is different from
this in the later stage,  which facilitates the ant colony algorithm to
better escape the current local optimal solution.

mix-opt(x) =



single swap(x), if r ≤
1∑

i=1

p(xi)

single insertion(x), else if r ≤
2∑

i=1

p(xi)

segment inversion(x), else if r ≤
3∑

i=1

p(xi)

segment displacement(x), else if r ≤
4∑

i=1

p(xi)

(23)

where,  r∈ [0,1]  is  a  randomly  generated  number,  and  p(xi)  is  the
probability of each operator being selected.
  

Table 2    Most common permutation operators
Name Description
Swap Interchanges two elements

Insertion Relocates one element to a random position
Inversion Reverses several consecutive elements

Displacement Relocates several consecutive elements to a random position
 

The pheromone trails will be updated after the best solution has
been optimized by the mixed operator,  providing a reference when
planning  the  routes  again.  The  purpose  of  pheromone  update  is  to
make  well-performing  routes  more  popular  in  the  following
iterations,  and  includes  pheromone  evaporation  and  pheromone
deposition. At present, the research on ant colony algorithm mainly
uses  ant-cycle.  That  is,  pheromone update  is  carried  out  only  after
all  ants  have  constructed  their  complete  routes,  and  the  number  of
pheromones deposited by each ant  is  set  as  a  function of  the route
quality[27].  The  better  the  route,  the  higher  the  pheromone
concentration.  In  order  to  improve  the  efficiency  of  the  algorithm,
the  elite  ant  strategy  is  used  to  update  the  pheromones.  Only  the
best-performing ants can evaporate and deposit the pheromones on
the edge (i, j) they pass through, so as to avoid the sub-optimal route
being  overemphasized.  Thus,  pheromone  update  function  can  be
expressed by Equation (24).

τi, j(iter+1) = (1−ρ)τi, j(iter)+Q/T bestR; i, j ∈ bestR (24)

where, τi,j  is  the pheromone concentration on the edge (i,  j);  iter  is
the  current  number  of  iterations;  ρ∈[0,1]  is  the  pheromone
evaporation factor; Q is a constant; and TbestR is the transfer time of
the best route.

The pseudocode of the ant colony optimization algorithm with
mixed operator  (Mix-ACO) is  listed in Table  3.  The specific  steps
are as follows:

(1)  Create  the  cost  matrix,  i.e.,  estimate  transfer  time  using
Manhattan distance and coverage time using MC-GA.

(2)  Set  the  parameters  of  Mix-ACO,  and  initialize  the
pheromone matrix and route record table.

(3)  Determine whether  the maximum number of  iterations has
been  exceeded.  If  so,  proceed  to  step  (4);  otherwise,  perform  the
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following actions:
(a).  Construct  and  record  the  route  of  each  ant,  and  calculate

the  total  transfer  time  of  each  scheme  by  decoding  the  route  of
each ant;

(b).  Select  the  task  allocation  scheme  with  the  lowest  cost  as
the best one and optimize it using the mixed operator;

(c). Update the pheromone matrix by updating the pheromones
on the best route;

(d). Record the best task allocation scheme;
(e).  Reset  the  route  record  table  and  increment  the  iteration

count.
(4) Output the optimal task allocation scheme.

  
Table 3    The pseudocode of Mix-ACO

Algorithm 2 Mix-ACO
1: Input the information of the nodes and the mowing robot
2: Initialize the algorithm parameters
3: globest=Inf
4: while iter<=iter_max do

5:　for i=1: antSize do
6:　　Construct and record the route for each ant
7:　end for
8:　for i=1: antSize do
9:　　corresponding allocation scheme←Decode(route)
10:　　cost←CostFun(scheme)
11:　end for
12:　curbest←Min(cost)
13:　curbest_route ← Min(cost)_route
14:　if curbest<globest then
15:　　globest← curbest
16:　　globest_route← curbest_route
17:　end if
18:　globest_route←Mix-opt(globest_route)
19:　Tau←UpdateTau (globest_route)
20:　iter=iter+1
21: end while
22: best_scheme←Decode(globest_route)
23: Output the best_scheme
 

2) Local search
Local  search  (LS)  is  a  heuristic  algorithm  for  solving

optimization  problems,  which  is  simple,  flexible,  and  easy  to
implement.  Therefore,  this  algorithm  is  used  to  reassign  the  work
routes.  Local  search  starts  with  a  complete  initial  solution  and
attempts to find a better solution in an appropriate neighborhood of
the  current  solution[29].  Based  on  the  first  task  allocation  results, K
work routes are randomly assigned to M mowing robots by using a
separator  operator,  so  as  to  generate  the  initial  solution  of  the
algorithm. Then the initial solution is assigned to the global optimal
solution. Next, a swap operator is used to generate a new solution. If
the  new  solution  is  better  than  the  current  solution,  the  current
solution will be replaced with the new solution, updating the global
optimal solution. Then, the operation is repeated until the algorithm
terminates. Finally, the global optimal solution is output. 

3.3    Case study
In this section, a case study is presented to verify the feasibility

of  the  proposed  methods.  The  tests  include  both  simulation
experiments and field experiments. 

3.3.1    Study location and equipment
The experiments were conducted in the Modern Science and Te-

chnology Agricultural Park (38°58′17.0436′′N, 114°54′31.6116′′E),

which  is  located  in  Shunping  County,  Baoding  City,  Hebei
Province,  China.  The  information  of  the  experimental  site  was
provided  by  ArcGIS  Earth  software.  Sixteen  relatively  flat  regular
or  irregular  plots  were  selected  in  the  orchard  as  the  experimental
objects.  The  plots  were  numbered  (Figure  7),  with  the  red  area
indicating  the  coverage  area  of  the  plots,  the  blue  solid  line
representing the plot boundaries, and circular markers indicating the
entrances/exits  of  the  plots.  The  position  of  each  node  was  in  the
WGS-84  coordinate  system  (Table  4),  and  the  distance  between
nodes  was  calculated  by  longitude,  latitude,  and  elevation
coordinates.  Due  to  terrain  constraints,  the  distance  between  two
nodes  cannot  be  represented  by  linear  distance.  Therefore,
Manhattan  distance  was  used  to  calculate  the  distance  between
nodes,  which  needs  to  be  converted  from  the  WGS-84  coordinate
system to the Cartesian coordinate system before calculation.
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Figure 7    Schematic map of study area
 

  
Table 4    Longitude, latitude, and elevation coordinates of all

nodes in the orchard
Node number Coordinate (X-axis/long.-E, Y-axis/lat.-N, Z-axis/ele.)

0 (114.908 415, 38.971 661, 278.98)
1 (114.908 948, 38.972 666, 281.16)
2 (114.909 036, 38.972 249, 278.85)
3 (114.909 019, 38.971 582, 273.59)
4 (114.909 232, 38.971 253, 270.85)
5 (114.909 044, 38.971 211, 272.68)
6 (114.909 659, 38.970 736, 264.93)
7 (114.909 555, 38.971 052, 266.02)
8 (114.909 776, 38.971 225, 267.45)
9 (114.910 019, 38.970 942, 261.98)
10 (114.910 381, 38.970 563, 259.96)
11 (114.911 615, 38.970 093, 253.63)
12 (114.911 732, 38.970 113, 253.42)
13 (114.912 468, 38.970 053, 250.35)
14 (114.912 329, 38.970 546, 255.64)
15 (114.912 686, 38.970 625, 251.56)
16 (114.912 350, 38.970 814, 256.51)

 

The  simulation  experiments  were  conducted  on  a  computer
with the Windows 11 operating system, an AMD Ryzen 7-5800H at
3.20  GHz,  16  GB  of  RAM,  and  an  NVIDIA  GeForce  GTX  3050
GPU. MATLAB (R2023a, MathWorks, USA) was used to conduct
the algorithm simulations.

The  equipment  used  in  the  field  experiments  was  the  G33
remote-controlled  mower  manufactured  by  Qiangshi  (Shanghai,
China) Technology Co., Ltd. So in the field experiments, scheduling
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of  the  mower  was  achieved  by  manual  remote  control.  The
parameters of the mower were obtained by taking the average value
of several measurements in the field: the endurance time is L=3.5 h,
the  working  width  is w=1.0  m,  the  minimum  turning  radius  is  r=
2.0  m,  the  driving  speed  on  the  road  is v=1.1  m/s,  the  operational
speed is vw=0.7 m/s, the turning speed without reverse is vt=0.4 m/s,
and  the  average  turning  speed  with  reverse  is  va=  0.24  m/s.  The
working scene of the G33 mower is shown in Figure 8.
 
 

Ground cloth

Intra-row

G33 mower

Track number

Figure 8    Actual working scene of G33 mower in the orchard
  

3.3.2    MC-GA simulation experiments
The  reciprocating  method  is  a  conventional  path  planning

method, where the robot executes adjacent track sequence to cover
the entire area[10]. However, this method is not optimal in an orchard
with  limited  operational  space.  Firstly,  the  MC-GA was  compared
with  the  reciprocating  method  to  verify  its  effectiveness.  The  path
planning  experiments  were  conducted  on  the  randomly  selected
plots No.1, No.5, No.10, No.14, and No.16. The parameters of MC-
GA were set as follows: the population size is 40 while the number
of iterations is 500. The parameters of the mowing robot were set as
follows: the working width is w=1.0 m, the minimum turning radius
is r= 0.8 m, 0.9 m, and 1.0 m, the operational speed is vw=1.35 m/s,
the  turning  speed  without  reverse  is  vt=1.1  m/s,  and  the  average
turning speed with reverse is va=0.6 m/s.

Secondly,  in  order  to  verify  the  superiority  of  MC-GA,  the
algorithms SADG, IPSO (as proposed in the literature [30, 31]), and
basic GA were used for comparison with MC-GA proposed in this
paper.  Similarly,  plots  No.1,  No.5,  No.10,  No.14,  and  No.16  were
selected. The algorithm parameters were set as follows: for SADG,
the initial  temperature is  100°C, and the cooling factor is  0.95; for
IPSO,  the  maximum  value  of  inertia  weight  is  1;  for  GA,  the
selection probability is 0.5, the crossover probability is 0.9, and the
mutation  probability  is  0.1.  The  size  of  each  algorithm  is  40  with
500 iterations. The average result of 10 runs of each algorithm was
taken as the final result. 

3.3.3    Mix-ACO simulation experiments
In order to evaluate the workload of each plot, the MC-GA was

utilized  to  calculate  the  total  turning  time  for  each  node.
Subsequently,  the  time  for  the  mowing  robot  to  cover  each  node
was  further  estimated  based  on  the  area  of  the  plot,  as  shown  in
Table 5.

In  theory,  task  allocation  can  be  achieved  based  on  the
corresponding  node  sequence  after  inputting  the  acquired  node
information  into  the  Mix-ACO.  There  are  two  cases  which  were
considered for simulation experiment validation:

1)  Scenario  1:  Number  of  work  routes  less  than  number  of
mowing robots

The number of tasks were randomly set to 4, 7, 10, 13, and 16,
respectively. The working parameters of the mowing robot were set
as follows: the endurance time is 1.2/1.5 h, and the driving speed on
the  road  is  v=1.35  m/s.  The  parameters  of  Mix-ACO  were  set  as
follows:  the  importance  factor  of  pheromones  is  1,  the  importance
factor  of  the  heuristic  function  is  3,  the  evaporation  factor  of
pheromones  is  0.15,  the  constant  to  update  the  pheromone
concentration  is  5,  the  number  of  ants  is  50,  and  the  number  of
iterations is 100. When the number of iterations is less than 75, the
probability  of  each  operator  being  selected  is p(x1)=0.1, p(x2)=0.1,
p(x3)=0.4,  and  p(x4)=0.4.  When  the  number  of  iterations  is  more
than 75, the probability of each operator being selected is p(x1)=0.3,
p(x2)=0.3, p(x3)=0.2, and p(x4)=0.2.

2)  Scenario  2:  Number  of  work  routes  more  than  number  of
mowing robots

Generally, the more the number of tasks, the more the number
of  work  routes  planned  by  the  algorithm.  One  should  consider  the
situation  in  which  there  is  a  shortage  of  mowing  robots  and  they
cannot  complete  all  the  tasks  in  one  trip.  So,  it  is  necessary  to
require a second allocation of work routes. It is assumed that there
are  three  mowing  robots  in  the  garage,  and  the  endurance  time  of
each  mowing  robot  is  set  to  1.2  h.  Different  methods  have  been
used to assign work routes to the three mowing robots in the hope
that  they can jointly  complete  the  mowing tasks  of  16 plots  in  the
orchard  in  multiple  trips.  The  tested  methods  consist  of  random
allocation and the local search algorithm designed in this paper.
 
 

Table 5    Coverage time of all nodes
Node number Coverage time/h Node number Coverage time/h

1 1.08 9 0.06

2 0.51 10 0.04

3 0.60 11 0.17

4 0.12 12 0.31

5 0.34 13 0.70

6 0.18 14 0.35

7 0.06 15 0.36

8 0.17 16 0.41
  

3.3.4    Field experiment validation
To validate the practicability of the proposed algorithms (MC-

GA and Mix-ACO) in solving the path planning and task allocation
problems,  the  field  experiments  were  conducted  in  the  Modern
Science and Technology Agricultural Park.

Experimental Site: Plot No.5 was selected for the path planning
experiments. Its environmental parameters were obtained by taking
the average value of several measurements in the field: the number
of tracks is 32, the spacing between rows is 3.8 m, the width of the
ground  cloth  is  Ld=2.0  m,  and  the  angles  between  the  driving
direction  of  the  mower  and  the  boundary  of  the  UH  and  LH
headland are α=83°, β=90°. Plots No.1, 2, 3, 4, 5, 6, 7, 10, 14, and
16  were  selected  for  the  task  allocation  experiments.  The  main
purpose  of  task  allocation  in  this  paper  is  to  minimize  the  total
transfer time of mowers when they operate across plots. Therefore,
only the transfer time of the mower was to be measured during the
experiment,  and  no  additional  operations  were  required.  To  save
resources, this study only used one mower for the experiments.

Experimental  indicators:  The  experimental  process  is  affected
by  a  number  of  factors,  so  the  operating  time  (t)  and  fuel
consumption rate (g) of the mower are used as evaluation indicators.
The t is timed by a timer, and g is calculated as follows:
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g =
H1 −H2

H3
×100% (25)

where, H1  is  the  height  of  the  fuel  tank  of  the  mower  before  the
experiment; H2 is the height of the fuel tank of the mower after the
experiment; H3 is the height of the fuel tank of the mower when it is
full of fuel, which is measured to be 0.32 m.

Experimental  process:  The  experiments  were  divided  into  two
parts,  including  the  path  planning  experiments  and  the  task
allocation experiments.

The  path  planning  experimental  process  was  as  follows:
(1)  measure  and  record H1;  (2)  control  the  G33  mower  to  execute
adjacent  track  sequence  to  cover  the  entire  plot,  recording  its
operational time  t;  (3) measure and record H2;  (4) repeat steps (1)-
(3)  to  test  the  operation  paths  generated  by  SADG,  GA,  and  MC-
GA sequentially.

The  task  allocation  experimental  process  was  as  follows:  (1)
confirm  entrances/exits  of  the  selected  plots;  (2)  control  the  G33
mower to start from the garage to execute the work routes generated
by the  ACO sequentially,  recording its  operation time  t;  (3)  repeat
step (2) to test the work routes generated by Mix-ACO. 

4    Results and discussion
 

4.1    MC-GA simulation experiment results
The  path  experiment  results  of  the  reciprocating  method  and

MC-GA are listed in Table 6. The total turning time of the two path
planning methods was positively correlated with both the plot area
and  the  robot’s  turning  radius.  When  the  mowing  robot  used  the
path planned by the MC-GA, both the total turning time and number
of  reverses  were  less  compared  with  executing  the  reciprocating
method. Specifically, the total turning time was reduced by 18.33%-
31.85%, while the number of reverses was reduced by 60%-96.43%.
This  shows  that  using  the  MC-GA  to  optimize  the  path  is  very
effective.  The  mowing robot  chooses  more  U-turns  after  using  the
MC-GA to optimize the track sequence.
  

Table 6    Results of path experiments using the reciprocating
method and MC-GA

Number
Turning
radius
r/m

Average total turning time/s Number of reverses

MC-
GA

Recipro-
cating

Reduction
rate of total
turning
time/%

MC-
GA

Recipro-
cating

Reduction
rate of

number of
reverses/%

No.1
0.8 251.74 341.43 26.27 2 28 92.86
0.9 259.07 368.33 29.66 1 28 96.43
1.0 266.91 395.24 32.47 1 28 96.43

No.5
0.8 145.85 194.16 24.88 1 16 93.75
0.9 150.80 209.55 28.04 2 16 87.50
1.0 155.77 225.03 30.78 1 16 93.75

No.10
0.8 46.11 56.46 18.33 2 5 60.00
0.9 48.65 61.26 20.58 1 5 80.00
1.0 51.20 66.07 22.80 2 5 60.00

No.14
0.8 107.21 139.25 23.01 2 10 80.00
0.9 111.55 148.80 25.03 1 10 90.00
1.0 116.01 158.66 26.88 2 10 80.00

No.16
0.8 189.53 255.08 25.70 1 2 95.24
0.9 195.44 275.27 29.00 1 21 95.24
1.0 201.35 295.47 31.85 2 21 90.48

 

The  total  turning  time  under  different  turning  radius  for  the
same  plot  was  compared,  revealing  that  the  optimization  effect
tends  to  increase  as  the  turning  radius  becomes  larger.  Based  on
further analysis,  this may be because the path planned by the MC-

GA often involves the U-turn, while the path length of the U-turn is
less affected by changes in the turning radius. In order to verify this
idea,  a  simulation  experiment  was  conducted  on  plot  No.5,  which
set  the  turning  radius  to  range  from 0.7  to  1.2  m with  intervals  of
0.1  m.  The  turning  speed  was  set  to  va=vt=1.1  m/s  to  ensure  the
unicity of variables. The experiment results are listed in Table 7. It
can  be  seen  that  the  results  were  as  expected.  When  the  turning
radius gradually increased from 0.7 m to 1.2 m, the average increase
in  the  total  turning  time  of  the  path  planned  by  the  reciprocating
method  was  larger.  This  indicates  that  the  T-turn  is  more  affected
by changes in the turning radius than the U-turn.
 
 

Table 7    Results of the total turning time (s) with different
turning radius

Turning radius
r/m 0.7 0.8 0.9 1.0 1.1 1.2

Average
increase of
total turning

time/sMethod

MC-GA 136.97 141.12 145.29 149.48 153.71 157.98 4.20
Reciprocating 147.13 156.26 165.47 174.73 184.06 193.53 9.28

 

The path experiment results of SADG, IPSO, GA, and MC-GA
are  listed  in  Table  8.  Compared  with  other  algorithms,  MC-GA
consistently obtained the shortest total turning time in all problems,
reducing the total turning time by 11.6%-23.39% and the number of
reverses  by  66.67%-83.33%.  When  the  problem  size  was  small,
such  as  in  the  plots  No.10  and  No.14,  both  SADG  and  MC-GA
could obtain optimal solutions. However, as the size of the problem
increased,  this  phenomenon  gradually  disappeared.  Meanwhile,
IPSO had the worst  solution among all  the  algorithms.  The results
of  10  simulation  experiments  for  SADG,  IPSO,  GA,  and  MC-GA
are  shown  in  Figure  9  ,  with  standard  deviations  of  5.423,  5.404,
1.609,  and  0.000,  respectively.  In  the  process  of  10  simulation
experiments, MC-GA always obtained the optimal solution, and its
results  were  more  stable  compared  with  the  other  algorithms.  The
iteration  process  of  each  algorithm  is  demonstrated  in  Figure  10,
and it can be seen that MC-GA has a faster convergence speed and
higher optimization efficiency.
 
 

Table 8    Results of MC-GA and other algorithms in
solving CCPP

Number Number
of tracks

Average total turning time/s Number of reverses
SADG IPSO GA MC-GA

No.1 56 328.63 8 358.74 11 333.41 7 259.07 1

No.5 32 155.00 3 192.77 5 185.68 4 150.80 2

No.10 10 48.65 2 48.65 1 48.65 1 48.65 1

No.14 20 111.55 2 137.63 6 130.60 2 111.55 1

No.16 42 217.86 6 261.5 12 247.60 4 195.44 1
Reduction rate
of MC-GA/% 11.16 71.43 23.39 83.33 19.18 66.67 - -

 
 

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10

T
o
al

 t
u

rn
in

g
 t

im
e/

s

Number of simulations

SADG IPSO GA MC-GA

Figure 9    Results of 10 simulation experiments for SADG, IPSO,
GA, and MC-GA
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4.2    Mix-ACO simulation experiment results
The  results  of  the  total  transfer  time  between  ACO allocation

and  Mix-ACO  allocation  under  different  numbers  of  tasks  and
different endurance times of the robot are listed in Table 9. As seen

in Table  9,  Mix-ACO  can  effectively  allocate  tasks  by  generating
multiple  work  routes  and  reduce  the  non-working  time.  Mix-ACO
planned  2,  2,  4,  5,  and  5  work  routes,  respectively,  when  the  task
quantities were set to 4, 7, 10, 13, and 16, and the endurance time of
the mowing robot was set to 1.2 h. Compared with ACO allocation,
the total transfer time was reduced by 0.00%, 0.32%, 5.72%, 5.38%,
and 1.90%, respectively. If the endurance time was set to 1.5 h, Mix-
ACO planned 2, 2,  4,  4,  and 4 work routes,  respectively. The total
transfer  time  was  reduced  by  0.00%,  0.32%,  3.23%,  2.01%,  and
5.37%,  respectively.  The  results  of  10  simulation  experiments  for
Mix-ACO  and  ACO  are  listed  in  Figure  11,  with  standard
deviations of 0.011 and 0.010, respectively. From Figure 11 , it can
be seen that the overall results of Mix-ACO were smaller than those
of  ACO. The iterative process  of  Mix-ACO and ACO is  shown in
Figure  12.  It  can  be  seen  that  ACO  was  prone  to  premature
convergence,  whereas  Mix-ACO  could  search  the  neighborhood
well and find a better solution.

 
 

Table 9    Results of ACO allocation and Mix-ACO allocation
Endurance

/h
Task

quantity Node number Number of
work routes

Average total transfer
time of ACO allocation/h

Average total transfer time
of Mix-ACO allocation/h

Reduction rate of
total transfer time/%

1.2

4 (1,6,9,14) 2 0.296 0.296 0.00

7 (2,4,6,8,10,12,15) 2 0.317 0.316 0.32

10 (1,3,5,7,11,12,13,14,15,16) 4 0.647 0.610 5.72

13 (1,2,3,4,7,8,9,10,12,13,14,15,16) 5 0.744 0.704 5.38

16 All nodes 5 0.789 0.774 1.90

1.5

4 (1,6,9,14) 2 0.296 0.296 0.00

7 (2,4,6,8,10,12,15) 2 0.317 0.316 0.32

10 (1,3,5,7,11,12,13,14,15,16) 4 0.619 0.599 3.23

13 (1,2,3,4,7,8,9,10,12,13,14,15,16) 4 0.646 0.633 2.01

16 All nodes 4 0.707 0.669 5.37
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Figure 11    Results of 10 simulation experiments for
Mix-ACO and ACO

 

The  experimental  results  of  random  allocation  and  the  local
search algorithm are listed in Table 10.  In the first  task allocation,
Mix-ACO  planned  five  work  routes,  which  exceeded  the  actual
number  of  mowing  robots.  Therefore,  the  local  search  algorithm
was  used  for  the  second  task  allocation,  i.e.,  five  routes  were
reasonably assigned to three mowers so that the three mowers could
complete  all  tasks  in  multiple  trips.  The  mowing  robot  No.1  was
responsible for three plots, working with the sequence of plots No.3,
2,  and  1,  and  the  task  completion  time  was  2.335  h.  The  mowing
robot No.2 was responsible for ten plots, working with the sequence
of  plots  No.14,  15,  16,  10,  5,  8,  9,  6,  7,  and  4,  and  the  task
completion  time  was  2.450  h.  The  mowing  robot  No.3  was
responsible  for  three  plots,  working  with  the  sequence  of  plots
No.11, 12, and 13, and the task completion time was 1.423 h. Node
0 in the work route represents the garage. Therefore, node 0 at both
ends of the route respectively means that the robot fleet starts from
the garage simultaneously to work and needs to return to the garage
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after completing all tasks. On the other hand, when node 0 appears
in  the  route,  it  means  that  the  mowing  robot  must  return  to  the
garage to refuel before continuing its work. The work routes of the
robot  fleet  include  the  work  content  and  work  sequence,  which
realizes  the  task  allocation  of  collaborative  operation  of  multiple
mowing robots.  The results  of  10 simulation experiments  for  Mix-
ACO&Random  and  Mix-ACO&LS  are  shown  in  Figure  13,  with
standard deviations of 0.092 and 0.004, respectively. In the process
of  10  simulation  experiments,  the  results  of  the  local  search

algorithm  were  better  and  more  stable  compared  with  random
allocation. As shown in Figure 14, whether Mix-ACO or ACO was
used for the first task allocation, the random allocation results were
worse  compared  with  the  local  search  algorithm.  Therefore,  the
mathematical  models  and  algorithms  proposed  in  this  paper  are
effective in reducing the difference in fleet completion time, which
is  of  great  help  to  shorten  the  overall  duration  of  the  robot  fleet.
This is because the overall duration is determined by the operating
time of the mowing robot that is the last one to complete its tasks.

 
 

Table 10    Allocation results of the work routes for the three mowing robots
Method First task allocation Second task allocation

Mix-ACO&LS

Work route1: 0-11-12-13-0
Work route2: 0-14-15-16-10-0
Work route3: 0-5-8-9-6-7-4-0
Work route4: 0-3-2-0
Work route5: 0-1-0

Whole work route for robot 1: 0-3-2-0-1-0
Whole work route for robot 2: 0-14-15-16-10-0-5-8-9-6-7-4-0

Whole work route for robot 3: 0-11-12-13-0

Mix-ACO& Random

Work route1: 0-15-14-16-10-0
Work route2: 0-11-12-13-0
Work route3:0-5-4-7-8-9-6-0
Work route4: 0-3-2-0
Work route5: 0-1-0

Whole work route for robot 1:0-3-2-0-5-4-7-8-9-6-0-1-0
Whole work route for robot 2: 0-11-12-13-0

Whole work route for robot 3: 0-15-14-16-10-0

ACO&LS

Work route1: 0-5-4-7-8-9-10-11-6-0
Work route2: 0-13-12-0
Work route3:0-14-15-16-0
Work route4: 0-3-2-0
Work route5: 0-1-0

Whole work route for robot 1:0-3-2-0-5-4-7-8-9-10-11-6-0
Whole work route for robot 2: 0-1-0-13-12-0

Whole work route for robot 3: 0-14-15-16-0

ACO&Random

Work route1: 0-3-8-4-6-7-9-0
Work route2: 0-10-14-15-16-0
Work route3: 0-13-12-11-0
Work route4: 0-2-5-0
Work route5: 0-1-0

Whole work route for robot 1: 0-2-5-0
Whole work route for robot 2: 0-1-0-13-12-11-0-3-8-4-6-7-9-0

Whole work route for robot 3: 0-10-14-15-16-0
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Figure 13    Results of 10 simulation experiments for Mix-
ACO&Random and Mix-ACO&LS
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Figure 14    Comparison of task completion time for the three
mowing robots

  
4.3    Field experiment results

The results of the path planning field experiments are listed in
Table  11.  The  G33  mower  consumed  more  fuel  and  time  when
using  the  reciprocating  method  compared  with  the  algorithms.
Among the  methods used,  MC-GA had the  least  fuel  consumption

and operation time. Compared with the reciprocating method, MC-
GA reduced the fuel consumption rate by 8.69% and operation time
by  776  s.  Compared  with  GA,  MC-GA  reduced  the  fuel
consumption rate by 2.64% and operation time by 175 s. Compared
with SADG, MC-GA still had an advantage. The results of the task
allocation  field  experiments  are  listed  in  Table  12.  Mix-ACO  can
effectively  plan  work  routes  based  on  the  plots  to  be  operated,
reducing  transfer  time  by  130  s  compared  with  ACO.  The  field
experiment  results  validate  the  practicality  of  MC-GA  and  Mix-
ACO, which can help to reduce the non-working time of the mower.
  

Table 11    Results of the path planning field experiments
Method Track sequence g/% t/s

Reciprocating 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-8-
19-20-21-22-23-24-25-26-27-28-29-30-31-32 27.27 3511

SADG 1-3-5-7-9-12-10-13-16-14-17-19-22-24-26-27-30-
32-29-31-28-25-23-21-20-18-15-11-8-6-2-4 20.13 2819

GA 1-3-5-2-4-6-8-9-7-10-13-15-12-14-16-17-19-22-
20-18-21-24-27-25-28-30-32-29-31-26-23-11 21.22 2910

MC-GA 3-6-8-10-12-14-16-18-20-22-24-26-28-31-29-32-
30-27-25-23-21-19-17-15-13-11-9-7-5-2-4-1 18.58 2735

 
  

Table 12    Results of the task allocation field experiments
Method Work routes t/s

ACO
0-1-5-0
0-2-3-0

0-4-7-6-10-16-14-0
1480

Mix-ACO
0-1-0

0-4-3-2-0
0-7-10-14-16-6-5-0

1350

  

5    Conclusions
This paper proposes a cooperative operation model and method

for  multiple  mowing  robots,  carrying  out  path  planning  and  task
allocation  for  the  robot  fleet.  A  genetic  algorithm  with  multi-
mutation  and  improved  circle  algorithm  (MC-GA)  is  proposed  to
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plan  paths.  Simulation  and  field  experiments  demonstrate  the
effectiveness  of  MC-GA.  Compared  with  other  path  planning
methods (reciprocating, SADG, IPSO, GA), MC-GA can effectively
reduce  the  total  turning  time  and  fuel  consumption  of  the  orchard
mower. An ant colony optimization algorithm with mixed operator
(Mix-ACO)  is  proposed  for  task  allocation.  Similarly,  after
experiment  verification,  compared  with  ACO,  Mix-ACO  can
allocate tasks reasonably by generating multiple work routes, with a
shorter  total  transfer  time  of  the  robot  fleet.  When  the  number  of
work  routes  exceeds  the  number  of  mowing  robots,  a  local  search
algorithm is  proposed to  reassign multiple  work routes  to  multiple
mowing  robots,  reducing  the  difference  in  fleet  completion  time.
However,  this  represents  only  an  ideal  scenario  for  multi-machine
collaboration, which requires further exploration and improvement.
In the next step, unexpected situations arising from the cooperative
operation  of  multiple  mowers  will  be  addressed  by  studying
dynamic task allocation methods. 
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