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Collaborative path planning and task allocation for multiple mowing
robots in the standard orchards

Jinyan Xiel, Shuteng Liu', Xiaosa Wang!, Lixing Liu', Xu Wang?, Jianping Li**%, Xin Yang“*"

(1. College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding 071000, China;
2. Hebei Province Smart Agriculture Equipment Technology Innovation Center, Baoding 071001, China)

Abstract: Path planning and task allocation are the key technologies of multi-machine collaboration. Current approaches focus
on field operations, but actually orchard operations are also a promising area. In order to improve the efficiency of orchard
mowing, a cooperative operation scheduling method was proposed for multiple mowing robots in the dwarf dense planting
orchards. It aims to optimize the non-working time of the robot in the intra-plot paths and inter-plot routes. Firstly, a genetic
algorithm with multi-mutation and improved circle algorithm (MC-GA) was proposed for path planning. Subsequently, an ant
colony optimization algorithm with mixed operator (Mix-ACQO) was proposed for task allocation. With regard to the shortage of
robots, a local search algorithm was designed to reassign work routes. Simulation experiment results show that MC-GA can
significantly reduce the total turning time and the number of reverses for the robot. Mix-ACO can effectively allocate tasks by
generating multiple work routes and reduce the total transfer time for the robot fleet. When the number of work routes exceeds
the number of mowing robots, the local search algorithm can reasonably reallocate multiple routes to robots, reducing the
difference in task completion time of the robot fleet. Field experiment results indicate that compared with the reciprocating
method, SADG, and GA, MC-GA can reduce fuel consumption rate by 1.55%-8.69% and operation time by 84-776 s.
Compared with ACO, Mix-ACO can reduce the total transfer time by 130 s. The research results provide a more reasonable
scheduling method for the cooperative operation of multiple mowing robots.
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1 Introduction

Orchard grass is a soil management model which involves
planting grass artificially in orchards to avoid soil exposure. It plays
a positive role in improving soil conditions as well as increasing
fruit yields. Thus, the economic benefits of planting grass are
greater than those of clear tillage in orchards!. To take advantage of
grass planting, the techniques of orchard grass and mechanical
mowing are often combined to achieve the cutting and returning of
the grass to the field. However, the traditional mowing methods
often require manual operation, which increases labor costs. It is
time to introduce mowing robots in orchards to replace manual
operations to alleviate the dependence of orchards on human labor
and optimize management costs®*. With the growing maturity of
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computer technology, sensor technology, and automatic control
theory, more research®® has demonstrated the feasibility of orchard
mowing robots. Meanwhile, fruit cultivation in China, such as
apples, citrus, and cherries, is shifting towards the dwarf dense
planting mode, making it easier for robots to operate. This is
because in dwarf dense planting orchards, trees form a fixed
operational structure, which allows robots to repeatedly perform
operations to cover the entire orchard by moving along each row of
trees from one end to another'”.

The comprehensive operational efficiency of robots is the key
to determining whether they are suitable for production®. To
improve the efficiency of orchard mowing, using multiple small
mowing robots working together is more effective and energy-
efficienthan the method of increasing the mower’s power and
weight. In recent years, people have conducted more research on the
collaborative operation of multiple agricultural machines of the
same type, including intra-block multi-machine collaboration as
well as inter-block multi-machine collaboration. Complete coverage
path planning (CCPP) and task allocation, as the core issues for
multi-machine collaboration, have become priorities in recent
research. Effective path planning and task allocation can
significantly improve the operational efficiency of agricultural
machinery".

The objective of CCPP is to achieve low operation costs and
high operation efficiency when it seeks the optimal path to traverse
the entire operation area"". A field is completely covered by a set of
parallel tracks or paths, which is the most commonly used field
coverage mode for agricultural machinery!?. In this case, CCPP can
be regarded as agricultural routing planning (ARP), which
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determines the optimal path for agricultural machinery to travel in
the field"”. It is difficult to obtain an exact solution for the ARP
problem, so metaheuristic algorithms are often used to solve it!".
Different methods have been developed for ARP problems to
realize various objectives in recent years. Bochtis et al.”’ developed
a route planning approach for orchard operations based on B-
patterns to minimize the non-working distance traveled by an
agricultural autonomous vehicle. Seyyedhasani et al.'”! transformed
the agricultural operation path planning problem into a vehicle
routing problem and solved it by using a tabu search algorithm,
reducing the field operation time by 17.3%. For specific agricultural
activities, Conesa-Mufioz et al.' used a simulated annealing
algorithm to solve the path planning problem of site-specific
herbicide spraying by an agricultural vehicle fleet. Evans et al.l'”
developed a genetic algorithm to optimize the harvest route of row
crop harvesters and reduce operational costs. Zhang et al.”
proposed an improved A* algorithm to search optimal paths for
multiple mowing robots in the same plot.

The essence of agricultural machinery task allocation is a
resource scheduling problem with spatial and temporal
characteristics, as well as resource constraints between agricultural
machinery supply and farmland management demand"®. A large
number of studies have shown that this problem can be transformed
into a variant of the vehicle routing problem (VRP) based on the
constraints to solve it. The VRP studies how to arrange vehicles to
transport goods from warehouses to multiple geographically
dispersed customer points or return goods to warehouses under
certain constraints”. Over the last few years, research on multi-
agricultural machinery scheduling based on the VRP has expanded.
Cao et al.” used an ant colony algorithm to optimize the task
sequence of agricultural machinery operation, which effectively
reduced the path cost. Wang et al.”" proposed a multi-machine
collaborative static task allocation method based on a multi-
variation group genetic algorithm to reduce the work cost, including
time, fuel consumption, and distance. He et al.” applied a hybrid
tabu search approach to optimize the scheduling plan for combine-
harvesters of agricultural machinery cooperatives, which could
reduce the wheat harvesting period by approximately 10%.

Research on path planning and task allocation for agricultural
machinery is well-established. However, few studies seem to have
considered the scheduling problem of multi-machine, multi-plot
operations in orchard environments. The goal of this paper is to
propose a multi-constraint scheduling method to solve the problem
of collaborative operation for multiple mowing robots in dwarf
dense planting orchards. The goal is achieved by focusing on intra-
plot complete coverage path planning and inter-plot task allocation,
and by considering several factors, namely, path costs, work
capacity, matching supply and demand, and completion time.

2 Problem description

2.1 Overall research framework

In China, most orchards are located in hilly areas, with
characteristics of highlighting topographic and geomorphic, small
scale, and scattered plots. Therefore, during the mowing season, it is
more convenient and flexible to use compact and lightweight
mowing robots for operation instead of large mowing machines. It
can greatly improve the mowing efficiency to use multiple mowing
robots to work together in fragmented and dispersed plots.
However, during actual orchard operations, the path planning and
task allocation for the robot fleet is an optimization problem
influenced by multiple factors. This paper considers the following

factors in relation to the actual situations:

1) Path cost: The row spacing of fruit trees is about 3.5-4.0 m,
and the working width of the mowing robot is relatively small. So,
each inter-row corridor needs to be operated twice back and forth.
In order to maintain moisture, increase temperature, and suppress
weed growth, a black ground cloth approximately 2 meters wide is
also placed along the row of fruit trees. It will result in uneven track
spacing (here, the term "row" refers to a group of trees parallel to
the direction of robot operation, and "track" refers to the operation
path starting from one end and ending at the other end, with tracks
existing in the row space). Therefore, there are different turning
costs for the mowing robot between intra-row and inter-row.
Similarly, the plots in the orchard are scattered, so the transfer costs
for the mowing robot to operate across the plots are different.

2) Work capacity: The small size of orchard mowing robots
requires that they operate within fuel capacity limits without
exceeding their capacity.

3) Supply and demand matching: If the number of mowing
robots in the orchard garage is not enough to complete all tasks in
one trip, it is necessary to consider the scenario where the fleet
members complete all tasks in multiple trips.

4) Completion time: It is important to consider whether the
workload for each member is balanced when assigning tasks to the
robot fleet. The purpose is to avoid unfair treatment of one mowing
robot that may experience extremely long or short working hours.

To address these constraints, the framework of this paper is
illustrated in Figure 1. Firstly, based on the ARP model”, a genetic
algorithm with multi-mutation and improved circle algorithm (MC-
GA) is proposed to plan the intra-plot complete coverage path. The
algorithm aims to minimize the non-working time of the mowing
robot while working in the plot. Subsequently, based on the
capacitated vehicle routing problem (CVRP) model, an ant colony
optimization algorithm with mixed operator (Mix-ACO) is proposed
for task allocation. The algorithm aims to minimize the non-
working time of the mowing robot while transferring between plots.
Finally, considering the situation where all tasks cannot be
completed in one trip due to the shortage of mowing robots, each
robot needs to operate continuously multiple times to complete the
tasks on multiple routes. A local search algorithm is designed to
perform the second task allocation by reassigning work routes. The
algorithm aims to minimize the difference in task completion time
among the members of the robot fleet, and find the complete work
routes for each mowing robot to complete all tasks in multiple trips.

Multi-mowing robot

cooperation operation

> ‘ The second task
Complete T Workload M\lltl-l'ob?t S Work routes allocation for the
path planning = allocation = shortage of robots

M

Minimizethe difference in task
completion time of robot fleet

Minimize the non-working
time in the plot

l

Figure 1

Minimize the non-working
time between plots

{

Overall framework of the research program

2.2 Complete coverage path planning

The results of path planning determine how a mowing robot
covers a plot. A reasonable path can effectively reduce non-working
time. As shown in Figure 2, a plot can be divided into two parts,
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including working area and non-working area. The working area is
the area that needs to be mowed, while the non-working area
includes the ground cloth coverage area and two field edges. The
headland serves as the turning area for the mowing robot. The upper
headland is labeled UH, and the lower one is labeled LH. The
mowing robot operates twice in each row. If there are n rows of
fruit trees, it must traverse 2n tracks to completely cover them. It is
assumed that (xf ,)’f) represents the horizontal and vertical
coordinates of the first fruit tree in the A-th row, and
(xlé,)"é) represents the horizontal and vertical coordinates of the last
fruit tree in the A-th row, where 1<k<n. The coordinates of the fruit
trees at both ends of each row can be represented by a two-
dimensional matrix. Therefore, based on the Global Navigation
Satellite System, the boundary between the headland and the
working area can be determined.

Intra-row §

%4 The robot’s shuttle path s '_

a. A dwarf dense planting orchard

Upper headland

e

Work area

Track

Lower headland

X

b. Schematic of a mowing robot working scene
Figure 2 Scenario analysis

When an orchard mowing robot drives to the end of the track, it
needs to make a 180° turn at the headland before entering the next
track. According to reference [12], a large portion of the non-
working time for agricultural machinery occurs during turning,
while the non-working time during turning mainly depends on the
driving distance and average speed during turning. As this indicates,
the choice of turning patterns is important. Due to the easy
operation of some turning types, they can be quickly executed by
machine, while others require good driving skills and a large area of
field edge to perform. The most common turning patterns are the
forward-turn (Q-turn), double round corner (U-turn), and switch-

back-turn (T-turn)!"”. Usually, the latter two types of turns will be
initiated only when the U-turn cannot be executed. For example,
when L, <2r, where L,, is the spacing between the current track and
the next track, and 7 is the minimum turning radius of the machine,
the width of the headland and the length of the path occupied by the
Q-turn are much larger than those of the T-turn"!. Based on a
comprehensive comparison, only the U-turn and T-turn are
considered for use in this paper, with their turning principles shown
in Figure 3.

b. T-turn

Note: O, and O, represent the centers of the auxiliary circles; 4, B, C, and D
represent the tangent points of the turning path to circles O, and O,.
Figure 3 Schematic of turning patterns

As shown in Figure 3, when the mowing robot travels to the
end of the track, its driving direction will form an angle 6 with the
boundary of the headland. If the angle 4 is less than 90°, the robot
will use the U-turn or T-turn with an inclination angle 6 in the
process of entering the next track. If the angle 0 is equal to 90°, the
normal U-turn or T-turn will be used. The former turning method is
suitable for irregular plots, while the latter is more suitable for
rectangular plots®. The tracks within the plot are parallel to each
other. Generally speaking, as long as the boundary of the headland
is determined, the angle 6 can be obtained through measurement in
advance. The traditional approach commonly adopts the
reciprocating scheduling strategy for each row, which often needs to
be used with the T-turn. However, the T-turn involves stopping and
reversing, which not only consumes more time but also increases
the wear on the tires due to soil friction. Therefore, it is advisable to
avoid the T-turn as much as possible during actual operations. This
objective can be achieved by optimizing the mowing robot’s
traversal order across the tracks.

2.3 Multi-robot task allocation

Task allocation requires establishing a clear mapping
relationship between multiple agricultural machines and multiple
plots to be operated™. Therefore, firstly, the workload of each plot

needs to be obtained based on the path planning result. Then, the
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path cost is calculated based on the distance between the mowing
robot and each plot. Finally, considering the workload, path cost,
work capacity, and supply and demand matching, a global
scheduling model is established with short paths, high efficiency,
and reasonable configuration.

A batch of mowing robots is parked and scheduled uniformly in
the orchard, allowing multiple robots to complete multiple tasks in
parallel. According to [24], it can be described as the ST-SR-TA
problem (single-task robots, single-robot tasks, time-extended
assignment). Each plot in the orchard is considered as a task unit,
and the information for each task is known. Each task can only be
operated by one mowing robot, while one mowing robot can be
assigned multiple tasks. The objective is to allocate the tasks to each
robot so as to minimize the transfer time taken by a robot to serially
execute its allocated tasks. Furthermore, considering practical
application scenarios, some constraints have been added. The fuel
capacity of each robot determines the number of tasks it can
perform in one trip. When assigning tasks to the robot fleet, it is
necessary to consider the workload of each plot and the current
remaining capacity of the robot. Once the robot’s capacity reaches
the lower limit, it must return to the garage. Of course, it can also
return to the garage after all tasks are completed. As shown in
Figure 4, the fleet of mowing robots departs from the garage at the
same time and serves multiple plots in the orchard in an organized
manner, following a preset work route. Due to fuel capacity
constraints, each mowing robot can only service a limited number
of plots at a time, and when they run out of fuel, they need to return
to the garage for refueling before starting a new trip. Therefore,
plots on the same-colored route in Figure 4 indicate that they are
serviced by the same mower. When there are not enough mowers in
the orchard, one mower is often responsible for plots on multiple
routes.

o Plot No.

—— Routes of mowing
robot 1
Routes of mowing

YV G 0 robot 2
e Routes of mowing

robot 3

Figure 4 Schematic of the collaborative operation scenario for
multiple mowing robots

In summary, in order to simplify the problem to facilitate
model calculation, the following assumptions are proposed:

1) In task allocation, each plot can only be mowed by one
robot, but one robot can serve multiple plots.

2) An orchard has only one garage, and all the mowing robots
depart from the garage at the same time, returning to it after
completing their assigned tasks.

3) There are no obstacles in the plots and roads of the orchard.
During the operation, the parameters of the robot fleet are the same
and not affected by external factors, without experiencing
malfunctions.

4) All roads are wide enough to be used by multiple mowing
robots simultaneously to avoid collisions during the transfer
process.

5) The plots are not interconnected. The mowing robot can only
enter and exit the plots through the designated entrance/exit.

6) The plot can only be allocated when the remaining fuel of
the mowing robot is sufficient to complete the task. If there is no
suitable plot, the mowing robot needs to return to the garage to
replenish fuel.

3 Methods and materials

3.1 Complete coverage path planning within the plot
3.1.1 Mathematical model

The parallel tracks in the plot are regarded as the nodes to be
traversed by the mowing robot. When the robot visits the node, it
also completes the operation of the track at the same time. Let N be
the set of nodes and £ be the set of edges connecting the nodes. The
cost matrix C is associated with each edge, where c; represents the
time cost of the mowing robot to travel from node i to node j, V i, j
€N. x;; is a decision variable, with x; =1 if and only if the mowing
robot transfers from node i to node j, and x;=0 otherwise. The
solution to the ARP problem is to determine the shortest path for the
mowing robot to traverse all tracks. R = {R,,R,,...,Ry} is assumed
as a path for the mowing robot, where R, is the node to be traversed.
The path optimization model can be described as follows:

Minimize Z Z X,y 9]

ieN  jeN
Subject to:
Y x,=1; vieR 2
JEN

Ry =Ry = 1,and {R],R27~-~7R|N\} cN (3)
SOY w<ISI- 1 VS CNIS|> | @

ieN  jeN
3, €{0,1); ViojeN )

The time for a mowing robot to cover a plot consists of two
parts, namely, the working time on the tracks and the turning time
between the tracks. When the environment is determined, the
working time is constant, so the main focus needs to be on the
turning time. The objective function [Equation (1)] aims to
minimize the total turning time when the robot covers the plot.
Equation (2) ensures that each track represented by a node is
traversed only once. The first track near the entrance/exit of the plot
is regarded as node 1. To simplify operations and avoid adding new
nodes, Equation (3) specifies that the mowing robot starts at node 1
and returns to node 1 after completing the task. Equation (4)
excludes disjoint sub-loops from a feasible solution. Finally,
Equation (5) specifies that the decision variables only use binary
values.

The time cost matrix C is composed of the working time and
the turning time. When i=j, ¢;; represents the working time required
for the mowing robot on the track. When i#j, c; represents the
turning time required for the mowing robot to transfer from node i
to node j. At this point, there are two possibilities: 1) the mowing
robot turns at the headland UH; 2) the mowing robot turns at the
headland LH. In the rectangular plots, fruit trees are symmetrically
distributed on both sides of the headland, so ¢/ =c{". In the
irregular plots, fruit trees are asymmetrically distributed on both
sides of the headland, so ¢} # c}/". Thus, the time cost matrix C is
expressed as follows:
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The calculation of ¢} or cj" is related to the turning strategy
employed. When L,> 2r, the U-turn is used; otherwise, the T-turn is
used. In this context, Equation (7) or (8) is used to calculate the
turning time required for the robot at the headland. It is worth
noting that the angle 8 is set based on the specific characteristics of
the plot.

_nr+ /(dw+ 2L = 2r) + (d,w+zL,) cotd

U, )
Vi
7+ ) (2r—dw—zL) + (dw+ 2Ly cord
Tij = v (8)

where, Uj; is the U-turn time, (s); 7}, is the T-turn time, (s); d;; is the
span between the two tracks during turning, d; =[i—jl, i#; w is the
working width of the mowing robot, (m); z is the number of ground
cloths crossed by the mowing robot during turning; Lq is the width
of the ground cloth, (m); v, is the turning speed of the mowing robot
without reversing, (m/s); v, is the average turning speed of the
mowing robot when it is in reverse, (m/s); 0 is the angle between
the driving direction of the robot and the boundary of headland, (°).

Next follow the calculation formulas for the time cost f,y
(from node 1 to the first track) and the time cost #,,., (back to node 1
from the end of the last track).

Lot = c?:, (9)

Cigy» turning at the UH
tback = (10)

C;;‘l +c¢,;, turning at the LH

3.1.2 Algorithm description

The genetic algorithm is the most popular algorithm for solving
the agricultural routing planning (ARP) problem™, and is adopted
in this paper. The genetic algorithm is the search algorithm based on
population optimization that imitates the genetic evolution process
of natural organisms™!. Inspired by biology, chromosomes are
represented as the solutions to the problem in the genetic algorithm,
which are evaluated with the fitness value. Then, the genetic
algorithm regards the population as the solution set, updating it
through the process of selection, crossover, and mutation in order to
ultimately select the individual with the best fitness in the
population.

The track sequence in route R is encoded using natural number
codes as the genes of the chromosome. Therefore, a chromosome
can be represented by the set R = {RI,RZ,...,R,M} as shown in
Figure 5. After the formation of the population, the fitness function
is defined as the total turning time when the mowing robot covers
the plot. The chromosomes with smaller fitness values indicate
better path optimization effects, and the chromosome with the
lowest fitness value represents the best path solution.

The selection operator determines whether the chromosomes
are involved in the next generation reproduction or not. Usually, the
genetic algorithm selects the parent based on the fitness value of
each chromosome. Tournament selection is used to select the parent

chromosomes in this paper. Compared with other selection
strategies, tournament selection is more suitable for solving
minimization problems and simple to implement. After using the
tournament selection strategy to select a group of chromosomes as
the group of parents, a mutation operator is still required to generate
offspring. Traditional genetic algorithms select different mutation
operators by mutation probability. In this paper, a variety of
mutation operators (Swap, Insertion, Inversion) are used to generate
multiple offspring instead of choosing one operator, which increases
the population diversity while updating the population. Figure 6
describes the process of mutation.

Track sequence

A
[ 1

R - [ [ [ o[ [ ]

Figure 5 Schematic of track coding

a Randomly selecte b
locations a and b

!
B [ ] |

Swap: swap the path code positions at a and b

sfi]afe]o]

Mutation operators 1 Insertion: insert the path code a after b

Invesion: invert the path code between a and b

[Compiner ] - [a] - [ ]
(NS - [ [ o[ [ [ BN [
on

Figure 6 The process of chromosome mutation

10

7

To enhance the algorithm’s ability to quickly find the optimal
solution, the improved circle algorithm is employed to optimize the
parent chromosomes. The improved circle algorithm is a heuristic
algorithm. Its principle involves modifying the path node order in a
Hamiltonian cycle once, resulting in a Hamiltonian cycle with a
shorter path length. By repeatedly modifying it, an approximately
optimal operating path is obtained. Therefore, if the parent
chromosome is optimized by the improved circle algorithm, its
fitness value must be inevitably better than that before optimization.

Table 1 lists the pseudocode of the genetic algorithm based on
multi-mutation and improved circle algorithm (MC-GA). The
details are indicated as follows:

1) Input the information of the plots and the mowing robot to
generate time cost matrix.

2) Set the algorithm parameters and initialize the population.

3) Determine whether the maximum number of iterations has
been exceeded. If so, proceed to step (9); otherwise, perform steps
®-@®).

4) Calculate the fitness value of each individual in the current
population and retain the best individual of the population.

5) Based on the tournament selection method, randomly select
four chromosomes to form a group for comparison, retain the
individual with the lowest fitness value as the parent, and then use
the improved circle algorithm to optimize the parent chromosome.

6) Use multiple mutation operators to mutate the optimized
parent chromosome multiple times to generate multiple offspring.

7) Repeat steps (5)-(6) until a new population is formed.

8) Increment the iteration count and skip to step (3).

9) Output the path of the best individual.
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Table 1 The pseudocode of MC-GA
Algorithm 1 MC-GA

: Input the information of the plots and the mowing robot
: Set the parameters

: pop=zeros (popSize, :)

: globest=Inf

1

2

3

4

5: offspring=zeros (4, :)
6: newpop=zeros (popSize, :)

7: pop=randperm (popSize, :)

8: while iter<=iter_max do

9: Calculate the path cost of each individual in pop

10:  curbest«—Min(cost)

11:  curbest_path < Min(cost)_path

12:  if crnbest< globest then

13: globest«— curbest

14: globest_path«— curbest path

15: endif

16: randomorder=randperm(popSize)

17:  for i= 4:4: popSize do

18: bestparent«—Tournament_Selection (pop (randomorder (i-3: i)))
19: optparent«—Improved Circle Algorithms(bestparent)
20: offspring (1, :)«— optparent

21: offspring (2, :)«—Swap (optparent)

22: offspring (3, :)«Insertion (optparent)

23: offspring (4, :)«<—Inversion (optparent)

24: newpop (i-3: i, :) =offspring

25: end for

26: pop=newpop

27:  iter=iter+1

28: end while

29: Output the globest and globest path

3.2 Multi-robot task allocation among the plots
3.2.1 Mathematical model

In the orchard, multiple mowing robots with limited fuel
capacity depart from the garage simultaneously to service multiple
scattered plots in turn. If the plots are regarded as customers and the
fuel as goods, this scheduling problem can be transformed into the
famous capacitated vehicle routing problem (CVRP), which is also
a combinatorial optimization problem in essence. Therefore, the
assumptions made in the previous section are continued, but
expanded to include the entire orchard, not just a specific plot.

In mathematical terms, CVRP is represented as a weighted
graph G={N, E}, where N={0, 1, 2, ..., n} is the set of nodes, and
E={(i, j)li, j €N} is the set of arcs. In this context, the garage is
represented as the node 0, and the n plots to be served are
represented by other nodes. The cost matrix C is associated with
each edge; when i#j, c; represents the time cost for the mowing
robot to travel from node i to node ;, and when i=j, ¢; represents the
time for the mowing robot to cover each plot. The demand at the
garage is set to zero. Ideally, the single working time of the mowing
robot is only determined by its fuel tank capacity. So, a common
endurance time limit L for each robot was given. The power system
of the mowing robot can be divided into the working power system
(driven by an engine) and the traveling power system (driven by a
battery pack). Therefore, the fuel consumption during the transfer
process is not considered, while the endurance time does not include
transfer time. The objective of the CVRP is to determine a set of
lowest-cost routes to service all plots while satisfying constraints.
Assuming that K routes have been determined, and T =({T"',

T2,...T*} is the set of these routes, then the k-th route can be
represented as T* = {T{‘ Ts,....,Th, } , where T; represents the node
to be visited. Variable y}; is equal to 1 if the mowing robot moves
from node i to node j in route &, and O otherwise. Variable lfj is
equal to 1 if the mowing robot services node i in route k, and 0
otherwise.

The task allocation model can be described as follows:

Minimize z”: z”: EK: Y (11)

=0 j=0 k=1

Subject to:

ZK:Zn:yf,:l; Vie(l,...,n) (12)

k=1 j=1
Znyjzl; Vie(l,...,n) (13)
k=1 i=1

D =15 Vke(l,....K) (14)
j=1
Zyﬁnzl; Vkell,...,K} (15)

iicﬁlgsu Vkell,....K} (16)

=0 j=0

The objective function [Equation (11)] aims to minimize the
total transfer time of the robot fleet when they operate across plots.
Equations (12) and (13) ensure that each plot represented by a node
is visited exactly once. Equations (14) and (15) require all routes to
begin and end at the garage. Equation (16) ensures that the total
demand on each route does not exceed the endurance time limit L
of the robot.

Although the use of CVRP can help solve the multi-robot task
allocation problem, the solution provided by CVRP only involves a
group of robots completing all tasks in one trip, without considering
the situation where there is a shortage of robots. It implies that even
if K routes have been planned based on capacity constraints, the
actual number of robots M may be less than K, so not all tasks can
be completed in one trip. Therefore, a second allocation for the set '
of work routes is required based on the actual number of mowing
robots. Firstly, the work routes need to be packed, and the time
consumption on the A-th route is expressed as H (k) [Equation (17)].
Then, the K routes are assigned to M mowing robots. To avoid
uneven allocation, each mowing robot is assigned to P routes at
least [Equation (18)]. The completion time of the m-th mowing
robot to complete all tasks is indicated as #(m) [Equation (19)].
Finally, with the objective of minimizing the difference in task
completion time of the robot fleet, the complete work routes are
determined for each mowing robot to complete all tasks in multiple
trips. The difference in task completion time of the robot fleet is
calculated by Equation (20), where the average completion time for

n n K n
all mowing robots is given by ZZZCU}’?)"'Z% /M.

The objective function [Equation (E(i)]’_gs :u_sled to m‘i_tiimize the
difference in task completion time of the robot fleet. Constraint
Equation (22) guarantees that there is only one mowing robot on
each route.
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HK) =Y > eph+ Y e Vke(l ... K] (17
=0 j=0 i=1
K

|5 e

.
tm)=">_ H(k); Yme(l,...,M) (19)

i=1

"o K n
Zzzcwyfﬁzcn /M —t(m)
i=1

a(m) =~ — (20)
ZZZCU}’;"'ZC‘H /M

Minimize(max(a) — min(@)) (21)

(=1l 1" =75 vkel,....K) (22)

m=1 m=1

3.2.2  Algorithm description

1) Ant colony optimization algorithm with mixed operator

During the foraging process, ants will secrete pheromones
along their paths. The magnitude of the pheromone concentration
reflects the distance of the path, and the higher the pheromone
concentration, the shorter the corresponding path distance. As a
result, the ant colony algorithm possesses the characteristics of
distributed computing, positive information feedback, and heuristic
search, making it a probabilistic algorithm that can be used to find
optimal solutions. When using the ant colony algorithm, artificial
ants make probabilistic decisions based on the problem information,
pheromone trails, and heuristic information. Specifically, for CVRP,
each artificial ant builds its complete route by successively selecting
feasible nodes through probability calculation and roulette wheel
strategy until all nodes have been visited. When all the artificial ants
construct a complete route, each route needs to be converted into a
corresponding allocation scheme by decoding it. In the process,
capacity constraints are always adhered to. If the current remaining
capacity fails to meet the demand of the next node, a new work
route will be initiated from the garage. Thus, each artificial ant
represents a solution, while each solution includes several work
routes due to the capacity constraints. Then by costing each
solution, the one with the lowest cost can be selected as the best
solution.

In fact, for the combinatorial optimization problems, the ant
colony algorithm has the best performance when combined with
local search operators””. Therefore, several classical permutation
operators have been combined to propose a mixed operator,
including Swap, Insertion, Inversion, and Displacement. The mixed
operator improves the best solution by assisting the ant colony
algorithm in searching the neighborhood. Table 2 gives a brief
introduction to these operators. The mixed operator combines the
four operators into one, and simultaneously classifies them into two
categories, including single relocation (Swap, Insertion) and
segment relocation (Inversion, Displacement). Single relocation
makes slight changes to improve the solution, which is usually
effective in the last stages of the search, while segment relocation
makes large changes to widely explore the solution space, which is
effective in the early stages of the search™. In summary, the mixed
operator is expressed by Equation (23). Obviously, in the process of

each algorithm iteration, the mixed operator will choose which
operator to use by roulette wheel strategy to explore the
neighborhood, instead of always using the same operator. In order
to make better use of the characteristics of the mixed operator, the
probability of segment relocation being selected is increased in the
early stage of the algorithm iterations. However, it is different from
this in the later stage, which facilitates the ant colony algorithm to
better escape the current local optimal solution.

single swap(x), if r < Zp(xf)

i=1

single insertion(x), else if r < Z p(x:)
mix-opt(x) = - \
segment inversion(x), else if r < Z p(x)

i=1

4
segment displacement(x), else if r < Z p(x)

i=1

(23)

where, r€ [0,1] is a randomly generated number, and p(xi) is the
probability of each operator being selected.

Table 2 Most common permutation operators

Name Description
Swap Interchanges two elements
Insertion Relocates one element to a random position

Inversion  Reverses several consecutive elements

Displacement Relocates several consecutive elements to a random position

The pheromone trails will be updated after the best solution has
been optimized by the mixed operator, providing a reference when
planning the routes again. The purpose of pheromone update is to
make well-performing routes more popular in the following
iterations, and includes pheromone evaporation and pheromone
deposition. At present, the research on ant colony algorithm mainly
uses ant-cycle. That is, pheromone update is carried out only after
all ants have constructed their complete routes, and the number of
pheromones deposited by each ant is set as a function of the route
quality?. The better the route, the higher the pheromone
concentration. In order to improve the efficiency of the algorithm,
the elite ant strategy is used to update the pheromones. Only the
best-performing ants can evaporate and deposit the pheromones on
the edge (i, ) they pass through, so as to avoid the sub-optimal route
being overemphasized. Thus, pheromone update function can be
expressed by Equation (24).

7, ,(iter + 1) = (1 = p)7, (iter) + Q/ T 1, j € bestR (24)

where, 7;; is the pheromone concentration on the edge (i, j); iter is
the current number of iterations; p&[0,1] is the pheromone
evaporation factor; Q is a constant; and 7Ty is the transfer time of
the best route.

The pseudocode of the ant colony optimization algorithm with
mixed operator (Mix-ACO) is listed in Table 3. The specific steps
are as follows:

(1) Create the cost matrix, i.e., estimate transfer time using
Manhattan distance and coverage time using MC-GA.

(2) Set the parameters of Mix-ACO, and initialize the
pheromone matrix and route record table.

(3) Determine whether the maximum number of iterations has
been exceeded. If so, proceed to step (4); otherwise, perform the
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following actions:

(a). Construct and record the route of each ant, and calculate
the total transfer time of each scheme by decoding the route of
each ant;

(b). Select the task allocation scheme with the lowest cost as
the best one and optimize it using the mixed operator;

(c). Update the pheromone matrix by updating the pheromones
on the best route;

(d). Record the best task allocation scheme;

(e). Reset the route record table and increment the iteration
count.

(4) Output the optimal task allocation scheme.

Table 3 The pseudocode of Mix-ACO
Algorithm 2 Mix-ACO

1: Input the information of the nodes and the mowing robot

2: Initialize the algorithm parameters

3: globest=Inf

4: while iter<=iter_max do

5:  for i=1: antSize do

6: Construct and record the route for each ant
7:  end for

8: for i=1: antSize do

9: corresponding allocation scheme«—Decode(route)
10: coste—CostFun(scheme)
11:  end for

12:  curbest«—Min(cost)
13:  curbest_route «— Min(cost) route
14:  if curbest<globest then

15: globest«— curbest
16: globest_route« curbest_route
17: end if

18: globest_route«—Mix-opt(globest_route)
19: Tau«UpdateTau (globest_route)

20: iter=iter+1

21: end while

22: best_scheme«—Decode(globest route)
23: Output the best_scheme

2) Local search

Local search (LS) is a heuristic algorithm for solving
optimization problems, which is simple, flexible, and easy to
implement. Therefore, this algorithm is used to reassign the work
routes. Local search starts with a complete initial solution and
attempts to find a better solution in an appropriate neighborhood of
the current solution™. Based on the first task allocation results, K
work routes are randomly assigned to M mowing robots by using a
separator operator, so as to generate the initial solution of the
algorithm. Then the initial solution is assigned to the global optimal
solution. Next, a swap operator is used to generate a new solution. If
the new solution is better than the current solution, the current
solution will be replaced with the new solution, updating the global
optimal solution. Then, the operation is repeated until the algorithm
terminates. Finally, the global optimal solution is output.
3.3 Case study

In this section, a case study is presented to verify the feasibility
of the proposed methods. The tests include both simulation
experiments and field experiments.
3.3.1 Study location and equipment

The experiments were conducted in the Modern Science and Te-
chnology Agricultural Park (38°58'17.0436''N, 114°54'31.6116"E),

which is located in Shunping County, Baoding City, Hebei
Province, China. The information of the experimental site was
provided by ArcGIS Earth software. Sixteen relatively flat regular
or irregular plots were selected in the orchard as the experimental
objects. The plots were numbered (Figure 7), with the red area
indicating the coverage area of the plots, the blue solid line
representing the plot boundaries, and circular markers indicating the
entrances/exits of the plots. The position of each node was in the
WGS-84 coordinate system (Table 4), and the distance between
nodes was calculated by longitude, latitude, and elevation
coordinates. Due to terrain constraints, the distance between two
nodes cannot be represented by linear distance. Therefore,
Manhattan distance was used to calculate the distance between
nodes, which needs to be converted from the WGS-84 coordinate
system to the Cartesian coordinate system before calculation.

200 Meters

Figure 7 Schematic map of study area

Table 4 Longitude, latitude, and elevation coordinates of all
nodes in the orchard

Node number Coordinate (X-axis/long.-E, Y-axis/lat.-N, Z-axis/ele.)
0 (114.908 415, 38.971 661, 278.98)

(114.908 948, 38.972 666, 281.16)

2 (114.909 036, 38.972 249, 278.85)
3 (114.909 019, 38.971 582, 273.59)
4 (114.909 232, 38.971 253, 270.85)
5 (114.909 044, 38.971 211, 272.68)
6 (114.909 659, 38.970 736, 264.93)
7 (114.909 555, 38.971 052, 266.02)
8 (114.909 776, 38.971 225, 267.45)
9 (114.910 019, 38.970 942, 261.98)
10 (114.910 381, 38.970 563, 259.96)
11 (114.911 615, 38.970 093, 253.63)
12 (114.911 732, 38.970 113, 253.42)
13 (114.912 468, 38.970 053, 250.35)
14 (114.912 329, 38.970 546, 255.64)
15 (114.912 686, 38.970 625, 251.56)
16 (114.912 350, 38.970 814, 256.51)

The simulation experiments were conducted on a computer
with the Windows 11 operating system, an AMD Ryzen 7-5800H at
3.20 GHz, 16 GB of RAM, and an NVIDIA GeForce GTX 3050
GPU. MATLAB (R2023a, MathWorks, USA) was used to conduct
the algorithm simulations.

The equipment used in the field experiments was the G33
remote-controlled mower manufactured by Qiangshi (Shanghai,
China) Technology Co., Ltd. So in the field experiments, scheduling
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of the mower was achieved by manual remote control. The
parameters of the mower were obtained by taking the average value
of several measurements in the field: the endurance time is L=3.5 h,
the working width is w=1.0 m, the minimum turning radius is =
2.0 m, the driving speed on the road is v=1.1 m/s, the operational
speed is v,=0.7 m/s, the turning speed without reverse is v=0.4 m/s,
and the average turning speed with reverse is v,= 0.24 m/s. The
working scene of the G33 mower is shown in Figure 8.

b, i a7

Figure 8 Actual working scene of G33 mower in the orchard

3.3.2 MC-GA simulation experiments

The reciprocating method is a conventional path planning
method, where the robot executes adjacent track sequence to cover
the entire area"”. However, this method is not optimal in an orchard
with limited operational space. Firstly, the MC-GA was compared
with the reciprocating method to verify its effectiveness. The path
planning experiments were conducted on the randomly selected
plots No.1, No.5, No.10, No.14, and No.16. The parameters of MC-
GA were set as follows: the population size is 40 while the number
of iterations is 500. The parameters of the mowing robot were set as
follows: the working width is w=1.0 m, the minimum turning radius
is = 0.8 m, 0.9 m, and 1.0 m, the operational speed is v,=1.35 m/s,
the turning speed without reverse is v=1.1 m/s, and the average
turning speed with reverse is v,=0.6 m/s.

Secondly, in order to verify the superiority of MC-GA, the
algorithms SADG, IPSO (as proposed in the literature [30, 31]), and
basic GA were used for comparison with MC-GA proposed in this
paper. Similarly, plots No.1, No.5, No.10, No.14, and No.16 were
selected. The algorithm parameters were set as follows: for SADG,
the initial temperature is 100°C, and the cooling factor is 0.95; for
IPSO, the maximum value of inertia weight is 1; for GA, the
selection probability is 0.5, the crossover probability is 0.9, and the
mutation probability is 0.1. The size of each algorithm is 40 with
500 iterations. The average result of 10 runs of each algorithm was
taken as the final result.

3.3.3 Mix-ACO simulation experiments

In order to evaluate the workload of each plot, the MC-GA was
utilized to calculate the total turning time for each node.
Subsequently, the time for the mowing robot to cover each node
was further estimated based on the area of the plot, as shown in
Table 5.

In theory, task allocation can be achieved based on the
corresponding node sequence after inputting the acquired node
information into the Mix-ACO. There are two cases which were
considered for simulation experiment validation:

1) Scenario 1: Number of work routes less than number of
mowing robots

The number of tasks were randomly set to 4, 7, 10, 13, and 16,
respectively. The working parameters of the mowing robot were set
as follows: the endurance time is 1.2/1.5 h, and the driving speed on
the road is v=1.35 m/s. The parameters of Mix-ACO were set as
follows: the importance factor of pheromones is 1, the importance
factor of the heuristic function is 3, the evaporation factor of
pheromones is 0.15, the constant to update the pheromone
concentration is 5, the number of ants is 50, and the number of
iterations is 100. When the number of iterations is less than 75, the
probability of each operator being selected is p(x;)=0.1, p(x,)=0.1,
p(x3)=0.4, and p(x;)=0.4. When the number of iterations is more
than 75, the probability of each operator being selected is p(x;)=0.3,
P(x,)=0.3, p(x3)=0.2, and p(x,4)=0.2.

2) Scenario 2: Number of work routes more than number of
mowing robots

Generally, the more the number of tasks, the more the number
of work routes planned by the algorithm. One should consider the
situation in which there is a shortage of mowing robots and they
cannot complete all the tasks in one trip. So, it is necessary to
require a second allocation of work routes. It is assumed that there
are three mowing robots in the garage, and the endurance time of
each mowing robot is set to 1.2 h. Different methods have been
used to assign work routes to the three mowing robots in the hope
that they can jointly complete the mowing tasks of 16 plots in the
orchard in multiple trips. The tested methods consist of random
allocation and the local search algorithm designed in this paper.

Table 5 Coverage time of all nodes

Node number Coverage time/h Node number Coverage time/h
1 1.08 9 0.06
2 0.51 10 0.04
3 0.60 11 0.17
4 0.12 12 0.31
5 0.34 13 0.70
6 0.18 14 0.35
7 0.06 15 0.36
8 0.17 16 0.41

3.3.4 Field experiment validation

To validate the practicability of the proposed algorithms (MC-
GA and Mix-ACO) in solving the path planning and task allocation
problems, the field experiments were conducted in the Modern
Science and Technology Agricultural Park.

Experimental Site: Plot No.5 was selected for the path planning
experiments. Its environmental parameters were obtained by taking
the average value of several measurements in the field: the number
of tracks is 32, the spacing between rows is 3.8 m, the width of the
ground cloth is Lg=2.0 m, and the angles between the driving
direction of the mower and the boundary of the UH and LH
headland are a=83°, f=90°. Plots No.l, 2, 3, 4, 5, 6, 7, 10, 14, and
16 were selected for the task allocation experiments. The main
purpose of task allocation in this paper is to minimize the total
transfer time of mowers when they operate across plots. Therefore,
only the transfer time of the mower was to be measured during the
experiment, and no additional operations were required. To save
resources, this study only used one mower for the experiments.

Experimental indicators: The experimental process is affected
by a number of factors, so the operating time (f) and fuel
consumption rate (g) of the mower are used as evaluation indicators.
The 7 is timed by a timer, and g is calculated as follows:
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g= 7 60% (25)
H,
where, H, is the height of the fuel tank of the mower before the
experiment; H, is the height of the fuel tank of the mower after the
experiment; H; is the height of the fuel tank of the mower when it is
full of fuel, which is measured to be 0.32 m.

Experimental process: The experiments were divided into two
parts, including the path planning experiments and the task
allocation experiments.

The path planning experimental process was as follows:
(1) measure and record H; (2) control the G33 mower to execute
adjacent track sequence to cover the entire plot, recording its
operational time #; (3) measure and record H,; (4) repeat steps (1)-
(3) to test the operation paths generated by SADG, GA, and MC-
GA sequentially.

The task allocation experimental process was as follows: (1)
confirm entrances/exits of the selected plots; (2) control the G33
mower to start from the garage to execute the work routes generated
by the ACO sequentially, recording its operation time #; (3) repeat
step (2) to test the work routes generated by Mix-ACO.

4 Results and discussion

4.1 MC-GA simulation experiment results

The path experiment results of the reciprocating method and
MC-GA are listed in Table 6. The total turning time of the two path
planning methods was positively correlated with both the plot area
and the robot’s turning radius. When the mowing robot used the
path planned by the MC-GA, both the total turning time and number
of reverses were less compared with executing the reciprocating
method. Specifically, the total turning time was reduced by 18.33%-
31.85%, while the number of reverses was reduced by 60%-96.43%.
This shows that using the MC-GA to optimize the path is very
effective. The mowing robot chooses more U-turns after using the
MC-GA to optimize the track sequence.

Table 6 Results of path experiments using the reciprocating
method and MC-GA

Average total turning time/s

Number of reverses

GA often involves the U-turn, while the path length of the U-turn is
less affected by changes in the turning radius. In order to verify this
idea, a simulation experiment was conducted on plot No.5, which
set the turning radius to range from 0.7 to 1.2 m with intervals of
0.1 m. The turning speed was set to v,=v=1.1 m/s to ensure the
unicity of variables. The experiment results are listed in Table 7. It
can be seen that the results were as expected. When the turning
radius gradually increased from 0.7 m to 1.2 m, the average increase
in the total turning time of the path planned by the reciprocating
method was larger. This indicates that the T-turn is more affected
by changes in the turning radius than the U-turn.

Table 7 Results of the total turning time (s) with different
turning radius

Turning radius Average
r/m 07 08 09 10 11 1 nereaseof
hod total turning
Metho time/s
MC-GA 136.97 141.12 145.29 149.48 153.71 157.98 4.20

Reciprocating 147.13 156.26 165.47 174.73 184.06 193.53 9.28

The path experiment results of SADG, IPSO, GA, and MC-GA
are listed in Table 8. Compared with other algorithms, MC-GA
consistently obtained the shortest total turning time in all problems,
reducing the total turning time by 11.6%-23.39% and the number of
reverses by 66.67%-83.33%. When the problem size was small,
such as in the plots No.10 and No.14, both SADG and MC-GA
could obtain optimal solutions. However, as the size of the problem
increased, this phenomenon gradually disappeared. Meanwhile,
IPSO had the worst solution among all the algorithms. The results
of 10 simulation experiments for SADG, IPSO, GA, and MC-GA
are shown in Figure 9 , with standard deviations of 5.423, 5.404,
1.609, and 0.000, respectively. In the process of 10 simulation
experiments, MC-GA always obtained the optimal solution, and its
results were more stable compared with the other algorithms. The
iteration process of each algorithm is demonstrated in Figure 10,
and it can be seen that MC-GA has a faster convergence speed and
higher optimization efficiency.

Table 8 Results of MC-GA and other algorithms in

Turqing Reduction Reduction
Number ra(/hus MC-  Recipro- rate of total MC- Recipro- rate of solving CCPP
m GA cating turning GA  cating number of R
time/% reverses/% Number (ijli?;:irs Average total turning time/s Number of reverses
0.8 25174 34143 2627 2 28 9286 SADG IPSO GA MC-GA
No.1 0.9 259.07 368.33 29.66 1 28 96.43 No.1 56 328.63 8 358.74 11 33341 7 259.07 1
1.0 26691 39524 32.47 1 28 96.43 No.5 32 155.00 3 19277 5 185.68 4 150.80 2
0.8 145.85 194.16 24.88 1 16 93.75 No.10 10 48.65 2 48.65 1 48.65 1 48.65 1
No.5 0.9 150.80  209.55 28.04 2 16 87.50 No.14 20 111.55 2 137.63 6 130.60 2 111.55 1
1.0 155.77  225.03 30.78 1 16 93.75 No.16 42 217.86 6 261.5 12 247.60 4 19544 1
08 4611 5646 1833 2 3 60.00 Redueion®i 1116 7143 2339 8333 1918 6667 - -
No.10 0.9 48.65 61.26 20.58 1 5 80.00 - °
1.0 51.20 66.07 22.80 2 5 60.00
08 10721 13925  23.01 2 10 80.00 400 r * SADG = IPSO = GA = MC-GA
No.14 0.9 111.55 148.80 25.03 1 10 90.00 Té ggg :
1.0 116.01  158.66 26.88 2 10 80.00 = o501k
g
0.8 189.53  255.08 25.70 1 2 95.24 e 200 H
No.l6 09 19544 27527  29.00 1 21 95.24 2 }(5)8 I
= L
1.0 201.35 295.47 31.85 2 21 90.48 e 50 -
0
1 2 3 4 5 6 7 8 9 10

The total turning time under different turning radius for the
same plot was compared, revealing that the optimization effect
tends to increase as the turning radius becomes larger. Based on
further analysis, this may be because the path planned by the MC-

Number of simulations

Figure 9 Results of 10 simulation experiments for SADG, IPSO,
GA, and MC-GA
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Figure 10  Path optimization efficiency comparison

4.2 Mix-ACO simulation experiment results

The results of the total transfer time between ACO allocation
and Mix-ACO allocation under different numbers of tasks and
different endurance times of the robot are listed in Table 9. As seen

in Table 9, Mix-ACO can effectively allocate tasks by generating
multiple work routes and reduce the non-working time. Mix-ACO
planned 2, 2, 4, 5, and 5 work routes, respectively, when the task
quantities were set to 4, 7, 10, 13, and 16, and the endurance time of
the mowing robot was set to 1.2 h. Compared with ACO allocation,
the total transfer time was reduced by 0.00%, 0.32%, 5.72%, 5.38%,
and 1.90%, respectively. If the endurance time was set to 1.5 h, Mix-
ACO planned 2, 2, 4, 4, and 4 work routes, respectively. The total
transfer time was reduced by 0.00%, 0.32%, 3.23%, 2.01%, and
5.37%, respectively. The results of 10 simulation experiments for
Mix-ACO and ACO are listed in Figure 11, with standard
deviations of 0.011 and 0.010, respectively. From Figure 11 , it can
be seen that the overall results of Mix-ACO were smaller than those
of ACO. The iterative process of Mix-ACO and ACO is shown in
Figure 12. It can be seen that ACO was prone to premature
convergence, whereas Mix-ACO could search the neighborhood
well and find a better solution.

Table 9 Results of ACO allocation and Mix-ACO allocation

Endurance Tasl'< Node number Number of ' Average total transfer Avergge total transfey time Reduction rate of
/h quantity work routes time of ACO allocation/h of Mix-ACO allocation/h total transfer time/%
4 (1,6,9,14) 2 0.296 0.296 0.00
7 (2,4,6,8,10,12,15) 2 0.317 0.316 0.32
12 10 (1,3,5,7,11,12,13,14,15,16) 4 0.647 0.610 5.72
13 (1,2,3,4,7,8,9,10,12,13,14,15,16) 5 0.744 0.704 5.38
16 All nodes 5 0.789 0.774 1.90
4 (1,6,9,14) 2 0.296 0.296 0.00
7 (2,4,6,8,10,12,15) 2 0.317 0.316 0.32
1.5 10 (1,3,5,7,11,12,13,14,15,16) 4 0.619 0.599 323
13 (1,2,3,4,7,8,9,10,12,13,14,15,16) 4 0.646 0.633 2.01
16 All nodes 4 0.707 0.669 5.37
. 0.81 r = Mix-ACO = ACO 081  ACO —— Mix-ACO
E) 0.80 '_\
§ g 0.79 F
E % 0.78 1
12 3 4 5 6 7 8 9 10 ER
Number of simulations 076k
Figure 11 Results of 10 simulation experiments for
Mix-ACO and ACO O AT 21 31 41 51 61l 71 81 o1 101
Iterations

The experimental results of random allocation and the local
search algorithm are listed in Table 10. In the first task allocation,
Mix-ACO planned five work routes, which exceeded the actual
number of mowing robots. Therefore, the local search algorithm
was used for the second task allocation, i.e., five routes were
reasonably assigned to three mowers so that the three mowers could
complete all tasks in multiple trips. The mowing robot No.l was
responsible for three plots, working with the sequence of plots No.3,
2, and 1, and the task completion time was 2.335 h. The mowing
robot No.2 was responsible for ten plots, working with the sequence
of plots No.14, 15, 16, 10, 5, 8, 9, 6, 7, and 4, and the task
completion time was 2.450 h. The mowing robot No.3 was
responsible for three plots, working with the sequence of plots
No.11, 12, and 13, and the task completion time was 1.423 h. Node
0 in the work route represents the garage. Therefore, node 0 at both
ends of the route respectively means that the robot fleet starts from
the garage simultaneously to work and needs to return to the garage

a. The endurance time is 1.2 h

0.74r —— ACO —— Mix-ACO

0.72

0.70 1

0.68

0.66

Toal transfer time/h

0.64

0.62 . . . . . . . . . .
1 11 21 31 41 51 61 71 81 91 101
Tterations

b. The endurance time is 1.5 h

Figure 12 Comparison of optimization process between ACO
and Mix-ACO
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after completing all tasks. On the other hand, when node 0 appears
in the route, it means that the mowing robot must return to the
garage to refuel before continuing its work. The work routes of the
robot fleet include the work content and work sequence, which
realizes the task allocation of collaborative operation of multiple
mowing robots. The results of 10 simulation experiments for Mix-
ACO&Random and Mix-ACO&LS are shown in Figure 13, with
standard deviations of 0.092 and 0.004, respectively. In the process
of 10 simulation experiments, the results of the local search

algorithm were better and more stable compared with random
allocation. As shown in Figure 14, whether Mix-ACO or ACO was
used for the first task allocation, the random allocation results were
worse compared with the local search algorithm. Therefore, the
mathematical models and algorithms proposed in this paper are
effective in reducing the difference in fleet completion time, which
is of great help to shorten the overall duration of the robot fleet.
This is because the overall duration is determined by the operating
time of the mowing robot that is the last one to complete its tasks.

Table 10 Allocation results of the work routes for the three mowing robots

Method First task allocation Second task allocation
Work routel: 0-11-12-13-0 Whole work route for robot 1: 0-3-2-0-1-0
Work route2: 0-14-15-16-10-0
Mix-ACO&LS Work route3: 0-5-8-9-6-7-4-0 Whole work route for robot 2: 0-14-15-16-10-0-5-8-9-6-7-4-0

Work route4: 0-3-2-0

Work route5: 0-1-0

Work routel: 0-15-14-16-10-0
Work route2: 0-11-12-13-0

Work route3:0-5-4-7-8-9-6-0

Work route4: 0-3-2-0

Work route5: 0-1-0

Work routel: 0-5-4-7-8-9-10-11-6-0
Work route2: 0-13-12-0

Mix-ACO& Random

Whole work route for robot 3: 0-11-12-13-0

Whole work route for robot 1:0-3-2-0-5-4-7-8-9-6-0-1-0
Whole work route for robot 2: 0-11-12-13-0

Whole work route for robot 3: 0-15-14-16-10-0

Whole work route for robot 1:0-3-2-0-5-4-7-8-9-10-11-6-0
Whole work route for robot 2: 0-1-0-13-12-0

Whole work route for robot 3: 0-14-15-16-0

Whole work route for robot 1: 0-2-5-0
Whole work route for robot 2: 0-1-0-13-12-11-0-3-8-4-6-7-9-0

Whole work route for robot 3: 0-10-14-15-16-0

ACO&LS Work route3:0-14-15-16-0
Work route4: 0-3-2-0
Work route5: 0-1-0
Work routel: 0-3-8-4-6-7-9-0
Work route2: 0-10-14-15-16-0
ACO&Random Work route3: 0-13-12-11-0
Work route4: 0-2-5-0
Work route5: 0-1-0
- 0.50 Mix-ACO&Random = Mix-ACO&LS
é‘ﬁ o 045
0.40
£ E 03
8 g 030
s = 0.
S E 015
> o 0.10
= 0.0(5)
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Number of simulations

Figure 13 Results of 10 simulation experiments for Mix-
ACO&Random and Mix-ACO&LS
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Figure 14 Comparison of task completion time for the three
mowing robots

4.3 Field experiment results

The results of the path planning field experiments are listed in
Table 11. The G33 mower consumed more fuel and time when
using the reciprocating method compared with the algorithms.
Among the methods used, MC-GA had the least fuel consumption

and operation time. Compared with the reciprocating method, MC-
GA reduced the fuel consumption rate by 8.69% and operation time
by 776 s. Compared with GA, MC-GA reduced the fuel
consumption rate by 2.64% and operation time by 175 s. Compared
with SADG, MC-GA still had an advantage. The results of the task
allocation field experiments are listed in Table 12. Mix-ACO can
effectively plan work routes based on the plots to be operated,
reducing transfer time by 130 s compared with ACO. The field
experiment results validate the practicality of MC-GA and Mix-
ACO, which can help to reduce the non-working time of the mower.

Table 11 Results of the path planning field experiments
Method

Track sequence % t/s

 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-8-
Reciprocating 19 50.51.20-23-24-25-26-27-28-29-30-31-32 2127 3311

1-3-5-7-0-12-10-13-16-14-17-19-22-24-26-27-30-
SADG 3 99.31-28-25-23-21-20-18-15-11-8-6:2-4 2013 2819

1-3-5-2-4-6-8-9-7-10-13-15-12-14-16-17-19-22-
GA 20-18-21-24-27-25-28-30-32-29-31-26-23-11 21222910

3-6-8-10-12-14-16-18-20-22-24-26-28-31-29-32-
MC-GA 30-27-25-23-21-19-17-15-13-11-9-7-5-2-4-1 18.58 2735

Table 12 Results of the task allocation field experiments
Method Work routes t/s
0-1-5-0
ACO 0-2-3-0 1480
0-4-7-6-10-16-14-0
0-1-0
Mix-ACO 0-4-3-2-0 1350

0-7-10-14-16-6-5-0

5 Conclusions

This paper proposes a cooperative operation model and method
for multiple mowing robots, carrying out path planning and task
allocation for the robot fleet. A genetic algorithm with multi-
mutation and improved circle algorithm (MC-GA) is proposed to
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plan paths. Simulation and field experiments demonstrate the
effectiveness of MC-GA. Compared with other path planning
methods (reciprocating, SADG, IPSO, GA), MC-GA can effectively
reduce the total turning time and fuel consumption of the orchard
mower. An ant colony optimization algorithm with mixed operator
(Mix-ACO) is proposed for task allocation. Similarly, after
experiment verification, compared with ACO, Mix-ACO can
allocate tasks reasonably by generating multiple work routes, with a
shorter total transfer time of the robot fleet. When the number of
work routes exceeds the number of mowing robots, a local search
algorithm is proposed to reassign multiple work routes to multiple
mowing robots, reducing the difference in fleet completion time.
However, this represents only an ideal scenario for multi-machine
collaboration, which requires further exploration and improvement.
In the next step, unexpected situations arising from the cooperative
operation of multiple mowers will be addressed by studying
dynamic task allocation methods.
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