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Recognition and localization method of maize weeding robot
based on improved YOLOVS
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Abstract: In response to the challenge posed by low recognition accuracy in rugged terrains with diverse topography as well as
feature recognition agricultural settings, this paper presents an optimized version of the YOLOVS algorithm alongside the
development of a specialized laser weeding experimental platform designed for precise identification of corn seedlings and
weeds. The enhanced YOLOVS algorithm integrates the effective channel attention (CBAM) mechanism while incorporating
the DeepSort tracking algorithm to reduce parameter count for seamless mobile deployment. Ablation tests validated this model’s
achievement of 96.2% accuracy along with superior mAP values compared to standard YOLOVS by margins of 3.1% and 0.7%,
respectively. Additionally, three distinct datasets captured different scenarios, and their amalgamation resulted in an impressive
recognition rate reaching up to 96.13%. Through comparative assessments against YOLOVS, the model demonstrated
lightweight performance improvements, including a notable enhancement of 2.1% in recognition rate coupled with a marginal
increase of 0.2% in mAP value, thus ensuring heightened precision and robustness during dynamic object detection within

intricate backgrounds.
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1 Introduction

Weed management plays a pivotal role in facility-based
agriculture. The introduction of agricultural automation has enabled
precise and efficient autonomous weeding, offering substantial
benefits. Leading up to this study, precision agriculture technology
has emerged as a transformative force in crop management and
weed control within traditional farming practices. Notably, the
integration of computer vision technology into automated and
intelligent agricultural machinery, particularly in the advancement
of crop identification and weeding robotics, holds immense
potential'.

Liu et al.” proposed a corn weed detection model that
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integrates an attention mechanism and spatial pyramid pooling
structure based on YOLOv4-tiny, demonstrating real-time high
efficiency and strong robustness. Meanwhile, Chen et al.”’ presented
an attention mechanism along with an adaptive spatial feature
fusion structure based on YOLOvV4 surpassing other mainstream
models in weed detection within sesame fields. However, practical
application poses challenges for this model due to unique
geographic and environmental conditions encountered in mountain
agriculture. Fatima et al.”! developed a computational detection
system by adapting YOLOVS onto a stand-alone device, achieving
an FPS rate of 27 while maintaining compatibility with laser
weeding robots. Zhu et al.’! devised a blue-light laser weeding robot
for maize seedling fields based on YOLOX technology and
validated its potential as a non-contact weeding tool through
triangulation-based coordinate calculation for targeted weed
eradication using monocular ranging. In order to address limitations
related to accuracy and speed inherent in existing methods, many
scholars have opted for YOLOVS as their primary model. Wang et
al. improved the performance of the modified YOLOVS
architecture in detecting small objects by incorporating spatial
pyramid pooling and utilizing an attention module within YOLOVS’
s framework. Jin et al.”! introduced a bidirectional feature pyramid
along with GSConv module to enhance recognition classification
technique through integration of attention mechanism. Meanwhile,
Ju et al.™ proposed a real-time rice seedling recognition method
based on the refined YOLOVS algorithm, which demonstrates
robust performance across diverse backgrounds and growth stages
for seedlings. These methods show potential in integrating the
YOLO algorithm with standalone equipment. However, most
experiments were conducted under static conditions for object
detection. Dynamic scenarios involving complex lighting conditions
or occlusion phenomena may lead to reduced accuracy during
detection as well as increased instances of false positives or missed
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detection.

Numerous scholars have leveraged target tracking technology
in modern agriculture to enable the recognition and tracking
detection of targets during movement, providing technical support
for unmanned agricultural technology. For example, Zhang et al.”)
inserted SCAE into DeepSort architecture to measure the spatial
continuous trajectory of the target, and verified its validity through
experiments. Du et al.'” combined YOLOvS5 with an optimized
DeepSort algorithm, resulting in an improved target detector with
enhanced technical accuracy and robustness that addresses issues
such as color similarity and target overlapping. Kumar et al.l'!
initially detected using YOLOVS, followed by prediction and
tracking using Kalman Filter and Hungarian algorithms within
DeepSort. Meanwhile, Cao et al.'? proposed a fusion concept
involving an enhanced YOLOvV5 model based on ECA with the
DeepSort algorithm, achieving high testing accuracy and minimal
error in dynamic recognition while offering a new theoretical
approach for dynamic tracking recognition. Consequently,
integrating YOLOvS and DeepSort algorithm holds significant
potential for laser weeders to recognize crops and weeds on the go.
Furthermore, incorporating attention mechanisms into the model
can aid in improving data processing and model accuracy. Zhang et
al.'™ integrated the ECA Attention Mechanism Module along with
ASFF Adaptive Feature Fusion into YOLOVS to effectively address
challenges related to small-sized recognition targets and limited
features while enhancing average recognition accuracy. Zhang et
al."! proposed a YOLOX algorithm that integrates the ASFF and
CBAM attention mechanisms, achieving an average recognition
accuracy of 99.4%, thus providing technical support for precise
unmanned agricultural recognition. Meanwhile, Xu et all™
addressed the challenges of small sample size and category
imbalance by incorporating the SE attention mechanism into
ResNet as a generalized feature extractor, demonstrating superior

Figure 1

The platform is a three-axis servo control system based on PLC
(Programmable Logic Controller), integrated with a depth camera
and utilizing the enhanced YOLOvS5 machine vision algorithm to
accurately identify and localize corn seedlings. The design process
involves selecting and matching servo motor parameters, creating
motion control flowcharts, developing and implementing PLC
programs, as well as visualizing deep learning model features. A
Siemens S7-1200 PLC controller is used for single-axis and multi-
axis control of the three-axis mechanism, in conjunction with a
depth camera to establish TCP/IP communication protocol with
Python, enabling end-effector control through communication
between Python and Matlab. The three-axis coordinated control

performance compared to commonly used methods. These studies
reveal diverse approaches to implementing attention mechanisms,
encompassing spatial attention models, channel attention models,
and hybrid spatial and channel attention models. By extracting key
information from images and suppressing irrelevant details, these
models enhance computational efficiency while improving model
performance and accuracy in computer vision systems.

Despite extensive research on the integration of target tracking
and vision algorithms, there has been limited investigation into corn
seedlings in field conditions and insufficient consideration of the
impact of complex environments during the recognition process.
Therefore, this study aims to develop an efficient small laser weeder
for mountainous areas and proposes an enhanced YOLOVS
algorithm combined with DeepSort to improve the continuity and
stability of the recognition system. This paper enhances the model’s
generalization ability through Mosaic data augmentation and
incorporates an effective channel attention (CBAM) mechanism
into the YOLOVS5-DeepSort model, thereby improving recognition
accuracy in dynamic scenarios and enhancing performance in
complex backgrounds. Finally, ablation tests, comparison tests
across different datasets, and comparisons with classical learning
algorithms validate the performance of the YOLOv5-DeepSort
model, providing technical support for automated weeding
recognition.

2 Materials and methods

2.1 Laser weeding experimental platform

A study was conducted to investigate the application of deep
learning in corn seedling and weed recognition using a laser
weeding experimental platform. The equipment primarily consists
of a three-axis servo control system, a closed-loop stepping motor, a
laser transmitter, a depth camera, and a PLC control system, as
illustrated in Figure 1.

Software

7
1

@ PyCharm

servo
control system

Generrating laser

Laser weeding experimental platform and structural schematic

mode includes absolute motion mode and relative motion mode; the
camera identifies and locates corn seedlings and weeds using data
models, transmitting identified coordinate data to the PLC for
automatic operation towards specified points. Software writing,
execution, and testing are carried out within the PyCharm integrated
development environment. The system’s development environment
operates on Windows 11 OS with an Intel(R) Core(TM) i9
13900HX processor running at 2.70 GHz and 16 GB DDR4
memory. Table 1 lists the PyCharm partial environment.
2.1.1 Serial communication

This research has configured the fundamental parameters of
serial communication, including baud rate, data bits, stop bits, and
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parity bits, to align with the requirements of the system. As a result,
control commands can be transmitted from the central control unit
to individual actuator modules such as laser emitters and mobile
mechanisms via the serial port. Concurrently, real-time transmission
of sensor and camera data back to the central processing unit
facilitates analysis and decision-making processes. Additionally, the
communication system incorporates error detection and recovery
functions to ensure reliable data transmission while mitigating
potential losses or command execution errors. To enhance
communication stability and efficiency, this research has
implemented buffering mechanisms and data encryption measures
that safeguard against interference during transmission while
ensuring accurate command execution. The integration of these
technologies significantly enhances overall system performance and
reliability by reducing reliance on human intervention and thereby
improving agricultural automation efficiency.

Table1 PyCharm partial environment

Condition Version Purpose
NumPy 1.18.5 Functional arithmetic
Opencv-python 3.8.0 Image video analysis
Torch 1.5.1 Building and training neural networks
PyYAML 53 Common data serialization format
Torch-vision 0.6 Processing image data

2.1.2  Camera calibration and spatial coordinate conversion

In the corn seedling and weed recognition experiment in this
study, camera calibration and spatial coordinate conversion are
crucial procedures for ensuring precise alignment between image
data and actual physical dimensions, thereby enhancing the
accuracy and reliability of the recognition system. This process
involves the following key steps:

Camera calibration was performed to correct perspective
distortion and determine the intrinsic. By using a standard
calibration plate, multiple sets of images were captured from
various angles to calculate the camera’s focal length, optical center,
aberration coefficient, and other intrinsic parameter information.

The experiment utilized a Homography Matrix to execute this
spatial coordinate transformation. The Homography Matrix is
derived by selecting several points in the image and their
corresponding actual physical position points, then optimizing the
calculation using the least squares method. The establishment of the
coordinate system in the camera imaging process is illustrated in

Figure 2.
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Figure 2 Coordinate system establishment during
camera imaging

The XyYpZy, framework delineates an accurate three-
dimensional spatial reference frame for precisely defining spatial
element positions and their interconnections. The camera’s
coordination follows a defined X-Y.Z. scheme based on an XY
plane with its perpendicular Z-axis orientation. Furthermore,
ensuring orthogonality with respect to image planes, this setup
guarantees that all camera coordinates remain orthogonal. Both
global and local coordination systems manifest as three-dimensional
structures within 3D space; they can undergo transformation via
translation or rotational operations, and the calculation is shown in
Equation (1).

X, X,
e | _[R ¢ } Yo !
. |- { 0 1 Zw (1)

In the provided equation, R denotes the rotation matrix and t
represents the translation matrix, collectively constituting the
external parameters of the camera to be determined. These
parameters define the transformation process from the camera’s
coordinate system to the image coordinate system. The Realsense
depth camera at a resolution of 640x480 was used for data
acquisition and subsequently calibrated using the Camera
Calibration Toolbox in MATLAB. The right focal length was set,
and the camera’s optical axis coordinates were set at (u, v,) in the
image coordinate system. A suitable photograph was selected for
extracting the external parameter matrices and obtaining details of
the rotation matrix.

As the aforementioned data utilized, it is possible to convert
pixel coordinates into world coordinates using a MATLAB
program. By computing the Euclidean distance between two world
coordinate points, precise measurements can be obtained.

2.2 Laser weeding principle

As illustrated in Figure 3, the laser weeding process begins
with capturing images of corn seedlings and weeds using the Intel
RealSense depth camera. Subsequently, these images are input into
the model to extract the coordinates of the corn seedlings and
weeds. The PLC then automatically moves to the corresponding
points based on this coordinate data. Following this, precise control
is exerted over the laser transmitter to target and eliminate
the weeds.

2.3 Dataset construction
2.3.1 Dataset acquisition

This study entailed the collection of maize seedling data from
diverse environmental settings, resulting in a total of four thousand
photos. The image collection site was located within Yongchuan
District, Chongqing Municipality (105°38 '-106°05 'E longitude;
28°56'-29°34'N latitude), with images captured between June 15th
and August 10th, 2024. The dataset encompasses Pearl Glutinous 8
maize grown under controlled laboratory conditions as well as those
subjected to August mulching or natural outdoor environments
during June. These varied conditions facilitated the construction of
distinct maize identification datasets focusing on three-to-five leaf
stage seedlings. To enable comparative analysis, three separate
datasets were established, one for each environmental condition—
constant temperature lab setting, August mulching scenario, and
integrated experimental setup, respectively—leading to the
development of individual recognition models whose performance
was compared for selection purposes. A subset of these seedling
maize datasets is illustrated in Figure 4, which served as input for
real-time detection algorithms.
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Figure 4 Seedling maize dataset

2.3.2 Dataset labeling

In this investigation, maize labeling was conducted manually
using the Labelimg tool to establish two distinct cohorts: a training
cohort (train) and a validation cohort (val) for data annotation and
label preservation, respectively. Specifically, 80% of the images
from the current dataset were assigned to the training cohort folder,
while the remaining 20% were designated to the validation cohort
folder. This allocation ensures comprehensive data coverage and
enhances model training effectiveness.
2.3.3 Data enhancement

In the process of identifying seedling maize, conventional
single image inputs may result in insufficient model learning due to
the morphological similarities between weeds and maize seedlings
in their early growth stages. By utilizing Mosaic data augmentation,
the model is compelled to focus on features from various regions of
the image during training, thereby enhancing its sensitivity to local
features. For example, even when corn seedlings are partially
obscured or entangled with weeds, the model can effectively
distinguish and identify targets'’. Moreover, Mosaic data
augmentation also promotes the model’s adaptation to diverse
lighting and environmental conditions, which is crucial for practical
field applications. Traditional data augmentation methods such as
random rotation, scaling, or color transformation may not be
comprehensive enough to address all scenarios. The Mosaic method
enhances the robustness of the model in rapidly changing
environments by incorporating multiple background and lighting
conditions within a single training sample!'”. The Mosaic data
enhancement picture is shown in Figure 5.
2.4 Lightweight YOLOVS target detection model
2.4.1 YOLOVS network model

In this study, YOLOvS5s was chosen as the primary recognition
framework due to its optimal balance between speed and accuracy,
as well as its suitability for deployment in resource-constrained
embedded systems. Among the YOLOvS family, YOLOVSs stands

out as the lightest model and offers comparable performance to
YOLOv5m, YOLOVS], and YOLOvSx. While it may demonstrate
slightly lower recognition accuracy, its rapid processing speed and
reduced computational requirements are particularly crucial for real-
time image data processing in complex and dynamic external
environments such as small laser weeders in mountainous areas [,
Considering the practical considerations of mountain operations,
device portability and energy consumption are key design factors.
The utilization of YOLOVSs ensures high recognition rates while
maintaining system efficiency and enabling prolonged operation.
Furthermore, through custom optimization and fine-tuning of the
YOLOv5s model, we have enhanced its performance for specific
tasks to better align with the needs of seedling maize and weed
recognition!'”).

Figure 5 Mosaic data enhancement picture

2.4.2  Recognition model fusing CBAM-YOLOvVS

The CBAM (Convolutional Block Attention Module) attention
mechanism integrates both channel attention and spatial attention.
As illustrated in Figure 6, the CBAM implementation process
initially adjusts the input feature layer using channel attention and
subsequently applies spatial attention processing. This combination
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ensures that the model not only emphasizes critical channel features
but also optimizes their essential regions in the spatial dimension,
thereby significantly enhancing feature representation™.

In the channel attention mechanism depicted in Figure 7, initial
operations entail global average pooling and global maximum
pooling on the input feature layers. Subsequently, the results of
average pooling and maximum pooling are integrated with the
output of the shared connectivity layer, and weights for the feature
layers are computed using a sigmoid function. These weights are
then element-wise multiplied with the original input feature layer to
modulate its significance.

As depicted in Figure 8, this strategy involves applying an
attention mechanism to two pivotal feature layers derived from a
backbone network and integrating it during up-sampling procedures
with the objective of enhancing both feature processing and

Channel attention module
MaxPool
a—
I

Input feature F

AvgPool

——=

Spatial attention module
Conv layer

Channel refined
feature F

[MaxPool, AvgPool]

recognition efficiency. This arrangement aims to fortify model
capabilities by concentrating on extracting crucial features while
preserving the structural integrity of pre-trained models.

Spatial attention
module

Refined feature

Input feature

Channel
attention
module
Figure 6 Convolutional attention module
implementation process

I =o =
Channel attention

Shared MLP

P=0— —8

Spatial attention

Figure 7 Diagram of composition of channel attention mechanism and spatial attention mechanism

243 Integration of DeepSort YOLOvS for corn and weed
recognition

This study integrates the DeepSort algorithm into the YOLOVS5-
based maize and weed recognition model to enhance target tracking
accuracy and continuity (as depicted in Figure 9). The DeepSort
(Deep Learning Object Sorting) algorithm expands upon the SORT
algorithm by incorporating a deep learning network’s feature
extraction sub-network, thereby significantly improving targeted
object
characterized by frequent occlusions and interactions. Leveraging a
convolutional neural network within the feature extraction process
generates high-dimensional vectors describing individual targets’

discrimination—particularly in  complex scenarios

appearance information. During tracking procedures, after initial
identification via YOLOVS, DeepSort employs predictive updating
utilizing Kalman filtering for position-velocity estimation while
leveraging these high-dimensional vectors for precise data
correlation. Furthermore, effective management of target lifecycles
through track creation policies reduces identity switching issues
during lost track terminations—resulting in more stable tracking
outcomes. This amalgamation of advanced feature acquisition
alongside precise state estimation facilitates enhanced accuracy as
well as reliability when dynamically monitoring corn seedlings and
weeds?!

In a specific application context, this algorithm is well-suited
for effectively managing the movement of corn and weeds in
intricate farmland environments, where the appearance of the target
may be influenced by changing weather or lighting conditions.
DeepSort achieves efficient target tracking through a fusion of the
Kalman filter and the Hungarian algorithm. The Kalman filter

predicts the position of the target between video frames, while the
Hungarian algorithm matches the expected position with new
detections. This combination not only enhances tracking accuracy
but also improves the system’s capability to handle occluded and
interacting dynamic targets. Figure 10 illustrates a flowchart
depicting multi-target tracking using YOLOVS.

The specific process is as follows:

Step 1: YOLOVS performs target detection on the first frame of
the video sequence;

Step 2: Initialize the Kalman filter, set the initial state vector
and covariance matrix;

Step 3: Detect the target in the current frame;

Step 4: Using the prediction equation of the filter, combined
with the previous information, predict the new position of the target
in the current frame;

Step 5: Implement the Hungarian algorithm for data
association, match the detection results in the current frame with the
predicted results, and ensure the correct tracking of the target;

Step 6: According to the number of matches, make the next
decision;

Step 7: If no match is found, or if the match does not meet the
conditions, the system will re-initialize the Kalman filter;

Step 8: Check whether the number of matching times exceeds
30. If the number of matching times exceeds the threshold, the
tracking is successful. If the number of mismatch times exceeds the
threshold, proceed to the next step.

Step 9: If the match is successful, the process will point to the
Track Success node. If more than 30 matches are detected, delete
the match, indicating that the target is no longer being tracked.
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3.1 Evaluation indicators

In order to comprehensively and objectively evaluate the
performance of both the original model and the improved model in
weed detection, this research conducted a comparative analysis of
their detection results under identical conditions. This research
employed metrics such as Recall (R), Precision (P), Average
Precision (4P), mean Average Precision (mAP), and F score™ to
offer a quantitative overview of weed target detection. The
calculation is shown in Equation (2):

Precision quantified the performance of the model in terms of
false positives, and the calculation is shown in Equation (3):
TP

Recall= m

(€))

As a balance between recall and accuracy achieved, the F score
is employed as the harmonic mean of precision and recall, where 7P
denotes the number of true positives and FP denotes the number of
false positives, and the calculation is shown in Equation (4):
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F=2x Precision X Recall )

Precision+ Recall

The average of the mean accuracies of all classes mAP can be
calculated by Equation (5):

l N
mAP=~ ZAP,. (5)
i=1

where, AP; is the average precision of the i class and N is the total
number of classes.
3.2 Ablation test

To evaluate the performance of the different modules of the
proposed DeepSort YOLOVS network, ablation experiments were
conducted and the results are listed in Table 2. The components
compared include the introduced DeepSort algorithm, CBAM, and
the WloU loss function. YOLOVS integrates the DeepSort algorithm
and achieves an accuracy, recall, and mAP value of 93%, 96.8%,
and 97.8%, respectively, with a mAP value of 0.1% less than the
baseline YOLOvS. Afterward, the CBAM attention network is
added to the backbone network. The corresponding YOLOvV5
achieved 96.2%, 95.8%, and 98.6% in accuracy, recall, and mAP
values, respectively. Compared to Method 2, the accuracy and mAP
values increased by 3.2% and 0.8%, respectively, and decreased by
1% in recall. The results show that fusing the CBAM hybrid
attention module into the DeepSort_ YOLOVS5 network significantly
improves the accuracy and robustness of model detection. In
addition, the WIoU loss function was replaced with Method 3 to
form Method 4. Method 4 achieved 95%, 96.1%, and 98.2% on the
accuracy, recall, and mAP values, respectively. Compared with
Method 3, the accuracy and mAP values of Method 4 decreased by
1.2% and 0.4%, respectively, and only the recall increased by 0.3%.
The results show that fusing the CBAM module into the network is

the key to improve the model precision, while replacing the loss
function with WIoU only improves the prediction rate of positive
samples, and performs poorly in terms of recognition precision and
stability. The ablation experiment verified the effectiveness of the
improved components in improving the performance of maize
seedlings and weed detection.

Table 2 Results of ablation experiments
Method DeepSort CBAM WIoU Precision/% Recall/% mAP@0.5/%

1 93.1 96.3 97.9
2 \ 93.0 96.8 97.8
3 \ \ 96.2 95.8 98.6
4 \ \ \ 95.0 96.1 98.2

Figure 11 shows the mAP of the improved YOLOVS model in
detecting maize seedlings and weeds. Overall, these models show
good training performance in distal convergence and high detection
accuracy, achieving over 94% mAP in 20 training cycles. The
training curves show that the accuracies of all models are stable
above 100 calendar elements, which confirms that 200 calendar
elements of training is sufficient in this study. In Figure 12, the
improved YOLOvVS model outperforms YOLOvS5, Method 2, and
Method 4 in terms of performance in addition to recall, validating
the effectiveness of the enhanced DeepSort YOLOvVS network for
corn seedling and weed identification.

1.0

WO
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099 F
0.7 H 0.98 A2
097 L 1 1 1 1
E 0671 185190 195200
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Epoch
Figure 11 Training curves of mAP for improved

YOLOVS5 models

3.3 Comparison experiments

To comprehensively evaluate the effectiveness of the
DeepSort YOLOvVS5 model, this study conducts a comparative
analysis with other classical deep learning models, including Faster
R-CNN, Cascade R-CNN, YOLOv3, YOLOv4, YOLOVO,
YOLOv7, and YOLOvS. While Faster R-CNN represents a two-
stage deep learning model category, the rest belong to the one-stage
models in the YOLO series. All models are trained and tested on
identical datasets under consistent environmental and parameter
settings. The comparative results are presented in Table 3. The two-
stage model category represented by Faster Cascade R-CNN
achieves accuracy, recall, and mAP values of 92.3%, 91.5%, and
96.5%, respectively; however, single-stage models outperform it
significantly. For instance,YOLOVS attains accuracy, recall, and
mAP values of 94.1%, 96.7%, and 98.4%, marking an improvement
of 1.8%, 5.2%, and 1.9% over Faster Cascade R-CNN’s
performance metrics. In addition, the DeepSort YOLOvVS5 model
surpasses other one-stage models, as indicated in Table3, where it
demonstrates improvements in accuracy by 2.1% and 0.2%
compared to YOLOvS, and by 2.2% and 0.4% compared to
YOLOV7. Based on the experimental results presented in Table 3, it
is evident that the R-CNN network model exhibits a significantly
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e. Enhanced YOLOVS

Note: Yellow circles represent false detections, duplicate detections, and missed detections.

Figure 12 Detection results of models

larger number of parameters. This observation leads to the analysis
that the two-stage target detection model may not be well-suited for
this dataset. In contrast, the YOLOvV5 network model demonstrates
a lower parameter count compared to Faster R-CNN and Cascade R-
CNN, resulting in an increased mAP of 97.9%. This finding
suggests that for this dataset, the structure of the one-stage target
detection model outperforms that of the two-stage model.
Furthermore, the higher number of parameters contributes to
improved accuracy and mAP for YOLOv7. On the other hand, both
YOLOv3 and YOLOv4 network models possess a significant
number of parameters, requiring high computational effort while
delivering poor accuracy, thus rendering them unsuitable for maize
seedling and weed identification. The more recent algorithms
proposed by the YOLO family—namely YOLOv7 and
YOLOv8—demonstrate

promising performance with fewer

parameters and reduced computational effort requirements. It is
worth noting that compared with the optimized version that meets
the lightweight requirements for mobile detection, the DeepSort
YOLOVS model proposed by us has 7.01M parameter and 15.8
GFlops, which are 8.6 and 7.6 higher than YOLOvVS and YOLOVS,
respectively, and has faster detection speed. Although the detection
speed is lower than other algorithms such as YOLOV7, the network
structure is more lightweight. Additionally, the proposed
DeepSort YOLOvVS model achieves an F; value identical to those
of YOLOV7, YOLOVS, and YOLOVS at 95%, thereby validating its
exceptional detection performance.

Due to the relative regularity of the laboratory environment and
crop cultivation in the mulched corn field, four images were
selected from the natural environment in order to demonstrate the
superiority of the proposed model in detecting weeds in complex
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natural environments and to confirm the effectiveness of the
improved DeepSort YOLOVS network model. Comparisons were
made with four classical models—Faster R-CNN, Cascade R-CNN,
YOLOVS5, and YOLOv8—and the detection results are shown in
Figure 12. For both Faster R-CNN and Cascade R-CNN, a large
number of miss-detections were observed, which suggests that both
target detection models are not applicable to this study. YOLOv8
and YOLOVS also had the problem of slight missed detections and
performed poorly in terms of accuracy compared to YOLOvVS and
YOLOvV8. YOLOVS also showed duplicate detections, which may
affect accuracy and increase detection time, making it impractical
for real-world applications.

Table 3 Performance comparison of DeepSort_YOLOVS and
other deep learning models

Models Precision/ Recall/ F- Param GFlops mAP@0.5/
% %  Score/% (106)  (109) %

Faster R-CNN 90.2 89.4 91.0 42.5 156.2 93.8
Cascade R-CNN 923 91.5 92.0 642 2375 96.5
YOLOV3 91.8 90.6 91.0 103.6  283.0 95.7
YOLOv4 93.6 92.5 93.0 545 1194 96.7
YOLOvV5 93.1 96.3 95.0 2.5 7.2 97.9
YOLOv6 93.9 94.0 94.0 42 11.9 97.7
YOLOvV7 94.0 95.8 95.0 372 1052 98.2
YOLOV8 94.1 96.7 95.0 10.0 8.2 98.4
Ours 96.2 95.8 95.0 7.01 15.8 98.6

Overall, DeepSort YOLOv5 was beneficial for reducing
common problems in agricultural production applications, such as
corn seedlings and weed shading, and significantly improved
identification and localization accuracy.

3.4 Experimental results on different datasets

During phase three, this research employed an advanced
attention mechanism integrated with DeepSort YOLOVS5 for object
recognition purposes. The model underwent rigorous training using
four diverse datasets, including controlled laboratory conditions
featuring glutinous maize 8 cultivation; outdoor environments with
mulched fields observed during August; natural outdoor settings
documented in June; as well as a comprehensive combined dataset
analysis which is detailed in Table 4 alongside specific training
outcomes. The laboratory-based dataset for glutinous corn 8
demonstrated an impressive accuracy rate of 93.64%, showcasing
the model’s proficiency in identifying targets within controlled

I\
i

eron 0.9

Pg \
cron 0.9

N

{ Q
~ gillic

a. Laboratory glutinous
Corn 8

b. August
field environment

settings characterized by consistent lighting and background
conditions conducive to feature recognition, thereby yielding high
precision levels. Notably, the model achieved higher accuracy
(95.27%) when tested under challenging conditions within outdoor
environments in August, where factors like light reflections and
shadow effects from mulching could potentially disrupt
performance, indicating its robustness against environmental
complexities. Conversely, performance dipped slightly to an
accuracy of 87.90% when operating within natural outdoor settings
in June. This could be attributed to the multitude of variables
present in this setting, including fluctuating light conditions,
changes in weather, and potential obstructions, all of which
contribute to heightened recognition challenges. This finding
suggests that further refinement of the model or adjustment of the
training approach may be necessary to improve recognition
accuracy in natural settings. Moreover, the self-constructed fusion
datasets exhibit a peak recognition rate of 96.13%, indicating that
training the model on integrated datasets containing diverse
environmental factors can enhance its capacity for generalization
and adaptation across varied scenarios, thereby bolstering overall
resilience and adaptability.

Table 4 Experimental results of different datasets

Dataset Precision/%  Recall/% mAP@0.5/%
Laboratory glutinous corn 8 93.64 93.01 96.06
August mulching field conditions 95.27 94.79 96.38
June natural environment 87.90 86.52 89.45
Self-built fusion datasets 96.13 95.11 98.41

Additionally, these findings demonstrate that the DeepSort
YOLOvV5 model, when integrated with the enhanced attention
mechanism, exhibits robust adaptability and recognition capabilities
across diverse environments. However, the diminished performance
in natural settings observed in June suggests potential challenges for
real-world applications, necessitating further adaptation and
optimization.

The combined datasets experiment demonstrated an impressive
recognition rate of 96.13%. These integrated datasets were
employed as the primary data source for input into the DeepSort
YOLOVS5 network recognition model, which incorporates a refined
attention mechanism for real-time corn seedling detection. The
findings of the detection are depicted in Figurel3, highlighting the
effectiveness and precision of this approach in practical scenarios.
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¢. June natural
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Figure 13 Schematic representation of recognition of different datasets under the improved network
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4 Discussion

In this study, an improved maize seedling and weed detection
method based on DeepSort YOLOvVS was proposed. PLC and depth
camera were integrated to establish an experimental platform of
three-axis servo control system. At present, many researchers are
also conducting research in the field of deep learning. Li et al.”
proposed an improved YOLOVS algorithm based on shallow feature
layer to solve the problem of gradient disappearance in training
process by introducing CBAM attention mechanism. The improved
algorithm has a mAP value of 94.3% and a p-value of 88.5%. Lin et
al.” proposed a citrus fruit number counting method based on the
combination of improved YOLOvS5 algorithm and DeepSort
tracking algorithm. CBAM and Contextual Transformer attention
mechanisms were incorporated, and SIoU loss function was used to
replace GIoU, with a tracking accuracy of 90.83%. However, the
real-time performance of the improved algorithm is reduced. Garcia-
Navarrete et al.” implemented an artificial vision system based on
the YOLOVS model to distinguish corn from four kinds of weeds,
which played a certain role in promoting the construction of an
accurate weeding system. The recognition p-value of corn was 97%,
and the mAP value was 97.5%. After introducing the CBAM
attention mechanism and integrating the DeepSort algorithm, the
new method proposed in this study can identify datasets under three
different scenarios, with a p-value of 96.13% and a mAP value of
98.41%, which can provide technical support for the development
of precision agriculture technology to adapt to the diversified and
challenging agricultural environment in the future. However, the
enhanced YOLOVS algorithm still faces challenges in accurately
identifying small targets against complex backgrounds, as well as
being affected by light, rainfall, and overlapping of recognized
objects. Li et al.” proposed a fusion design of MCD-YOLOVS, and
also established an unmanned aerial vehicle (UAV) for crop pest
detection, providing ideas for identification stability and accuracy.
Therefore, in the subsequent stage, more images of corn seedlings
and weeds will be collected, the algorithm structure will be further
improved, and low-altitude drones will be combined with airborne
cameras to improve the recognition accuracy and stability under
complex terrain.

5 Conclusions

This study faced challenges in achieving precise results using
existing detection methods due to the complexities associated with
variations in weed density within diverse environmental
backgrounds. In response, this research proposed an improved
approach for maize seedling and weed detection based on
DeepSort YOLOVS to enhance both precision and resilience within
an improved algorithm framework. The refined methodology
resulted in the following:

1) Four distinct datasets were curated, while model resilience
was enhanced through data augmentation techniques capable of
accommodating varied image scales under intricate environmental
scenarios. Notably, our enhanced DeepSort YOLOV5 achieved an
impressive accuracy rate of 96.13% on internally constructed
datasets—outperforming all other sets—validating its effectiveness
across practical applications amidst challenging environmental
conditions.

2) The CBAM attention mechanism was incorporated alongside
integrating DeepSort into the YOLOVS architecture. This research
observed a significant improvement, with a 3.1% increase in both
accuracy rates and mean Average Precision (mAP) values during

ablation testing when compared against the standard YOLOv5
setup, an essential capability for effectively distinguishing between
corn seedlings and weeds. In comparative assessments against
traditional target-detection models, the DeepSort YOLOVS
demonstrated outstanding performance metrics, an impressive
96.2% accuracy rate coupled with a high mAP value at 98%.
Furthermore, its compact parameter count of just 7.01 M makes it
suitable for mobile deployment.

3) A PLC-based three-axis servo control system was developed
and integrated with a depth camera, and an enhanced YOLOVS5
algorithm was utilized to achieve precise positioning of corn
seedlings. The effectiveness of the experimental platform was
validated through practical experiments.
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