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Abstract: In response to the challenge posed by low recognition accuracy in rugged terrains with diverse topography as well as
feature  recognition  agricultural  settings,  this  paper  presents  an  optimized  version  of  the  YOLOv5  algorithm  alongside  the
development  of  a  specialized  laser  weeding  experimental  platform  designed  for  precise  identification  of  corn  seedlings  and
weeds.  The enhanced YOLOv5 algorithm integrates  the effective channel  attention (CBAM) mechanism while  incorporating
the DeepSort tracking algorithm to reduce parameter count for seamless mobile deployment. Ablation tests validated this model’s
achievement of 96.2% accuracy along with superior mAP values compared to standard YOLOv5 by margins of 3.1% and 0.7%,
respectively. Additionally, three distinct datasets captured different scenarios, and their amalgamation resulted in an impressive
recognition  rate  reaching  up  to  96.13%.  Through  comparative  assessments  against  YOLOv8,  the  model  demonstrated
lightweight performance improvements, including a notable enhancement of 2.1% in recognition rate coupled with a marginal
increase  of  0.2%  in  mAP  value,  thus  ensuring  heightened  precision  and  robustness  during  dynamic  object  detection  within
intricate backgrounds.
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1    Introduction
Weed  management  plays  a  pivotal  role  in  facility-based

agriculture. The introduction of agricultural automation has enabled
precise  and  efficient  autonomous  weeding,  offering  substantial
benefits. Leading up to this study, precision agriculture technology
has  emerged  as  a  transformative  force  in  crop  management  and
weed  control  within  traditional  farming  practices.  Notably,  the
integration  of  computer  vision  technology  into  automated  and
intelligent  agricultural  machinery,  particularly  in  the  advancement
of  crop  identification  and  weeding  robotics,  holds  immense
potential[1].

Liu  et  al.[2]  proposed  a  corn  weed  detection  model  that

integrates  an  attention  mechanism  and  spatial  pyramid  pooling
structure  based  on  YOLOv4-tiny,  demonstrating  real-time  high
efficiency and strong robustness. Meanwhile, Chen et al.[3] presented
an  attention  mechanism  along  with  an  adaptive  spatial  feature
fusion  structure  based  on  YOLOv4  surpassing  other  mainstream
models in weed detection within sesame fields.  However,  practical
application  poses  challenges  for  this  model  due  to  unique
geographic  and  environmental  conditions  encountered  in  mountain
agriculture.  Fatima  et  al.[4]  developed  a  computational  detection
system by adapting YOLOv5 onto  a  stand-alone  device,  achieving
an  FPS  rate  of  27  while  maintaining  compatibility  with  laser
weeding robots. Zhu et al.[5] devised a blue-light laser weeding robot
for  maize  seedling  fields  based  on  YOLOX  technology  and
validated  its  potential  as  a  non-contact  weeding  tool  through
triangulation-based  coordinate  calculation  for  targeted  weed
eradication using monocular ranging. In order to address limitations
related  to  accuracy  and  speed  inherent  in  existing  methods,  many
scholars have opted for YOLOv5 as their  primary model.  Wang et
al.[6]  improved  the  performance  of  the  modified  YOLOv5
architecture  in  detecting  small  objects  by  incorporating  spatial
pyramid pooling and utilizing an attention module within YOLOv5’
s framework.  Jin et  al.[7]  introduced a bidirectional feature pyramid
along  with  GSConv  module  to  enhance  recognition  classification
technique  through  integration  of  attention  mechanism.  Meanwhile,
Ju  et  al.[8]  proposed  a  real-time  rice  seedling  recognition  method
based  on  the  refined  YOLOv5  algorithm,  which  demonstrates
robust  performance  across  diverse  backgrounds  and  growth  stages
for  seedlings.  These  methods  show  potential  in  integrating  the
YOLO  algorithm  with  standalone  equipment.  However,  most
experiments  were  conducted  under  static  conditions  for  object
detection. Dynamic scenarios involving complex lighting conditions
or  occlusion  phenomena  may  lead  to  reduced  accuracy  during
detection as well as increased instances of false positives or missed
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detection.
Numerous  scholars  have  leveraged  target  tracking  technology

in  modern  agriculture  to  enable  the  recognition  and  tracking
detection  of  targets  during  movement,  providing  technical  support
for  unmanned  agricultural  technology.  For  example,  Zhang  et  al.[9]

inserted  SCAE  into  DeepSort  architecture  to  measure  the  spatial
continuous trajectory of the target, and verified its validity through
experiments.  Du  et  al.[10]  combined  YOLOv5  with  an  optimized
DeepSort  algorithm,  resulting  in  an  improved  target  detector  with
enhanced  technical  accuracy  and  robustness  that  addresses  issues
such  as  color  similarity  and  target  overlapping.  Kumar  et  al.[11]

initially  detected  using  YOLOv5,  followed  by  prediction  and
tracking  using  Kalman  Filter  and  Hungarian  algorithms  within
DeepSort.  Meanwhile,  Cao  et  al.[12]  proposed  a  fusion  concept
involving  an  enhanced  YOLOv5  model  based  on  ECA  with  the
DeepSort  algorithm,  achieving  high  testing  accuracy  and  minimal
error  in  dynamic  recognition  while  offering  a  new  theoretical
approach  for  dynamic  tracking  recognition.  Consequently,
integrating  YOLOv5  and  DeepSort  algorithm  holds  significant
potential for laser weeders to recognize crops and weeds on the go.
Furthermore,  incorporating  attention  mechanisms  into  the  model
can aid in improving data processing and model accuracy. Zhang et
al.[13]  integrated  the  ECA Attention  Mechanism Module  along with
ASFF Adaptive Feature Fusion into YOLOv5 to effectively address
challenges  related  to  small-sized  recognition  targets  and  limited
features  while  enhancing  average  recognition  accuracy.  Zhang  et
al.[14]  proposed  a  YOLOX  algorithm  that  integrates  the  ASFF  and
CBAM  attention  mechanisms,  achieving  an  average  recognition
accuracy  of  99.4%,  thus  providing  technical  support  for  precise
unmanned  agricultural  recognition.  Meanwhile,  Xu  et  al.[15]

addressed  the  challenges  of  small  sample  size  and  category
imbalance  by  incorporating  the  SE  attention  mechanism  into
ResNet  as  a  generalized  feature  extractor,  demonstrating  superior

performance  compared  to  commonly  used  methods.  These  studies
reveal  diverse  approaches  to  implementing  attention  mechanisms,
encompassing  spatial  attention  models,  channel  attention  models,
and hybrid spatial and channel attention models. By extracting key
information  from  images  and  suppressing  irrelevant  details,  these
models  enhance  computational  efficiency  while  improving  model
performance and accuracy in computer vision systems.

Despite extensive research on the integration of target tracking
and vision algorithms, there has been limited investigation into corn
seedlings  in  field  conditions  and  insufficient  consideration  of  the
impact  of  complex  environments  during  the  recognition  process.
Therefore, this study aims to develop an efficient small laser weeder
for  mountainous  areas  and  proposes  an  enhanced  YOLOv5
algorithm  combined  with  DeepSort  to  improve  the  continuity  and
stability of the recognition system. This paper enhances the model’s
generalization  ability  through  Mosaic  data  augmentation  and
incorporates  an  effective  channel  attention  (CBAM)  mechanism
into  the  YOLOv5-DeepSort  model,  thereby  improving  recognition
accuracy  in  dynamic  scenarios  and  enhancing  performance  in
complex  backgrounds.  Finally,  ablation  tests,  comparison  tests
across  different  datasets,  and  comparisons  with  classical  learning
algorithms  validate  the  performance  of  the  YOLOv5-DeepSort
model,  providing  technical  support  for  automated  weeding
recognition. 

2    Materials and methods
 

2.1    Laser weeding experimental platform
A  study  was  conducted  to  investigate  the  application  of  deep

learning  in  corn  seedling  and  weed  recognition  using  a  laser
weeding  experimental  platform.  The  equipment  primarily  consists
of a three-axis servo control system, a closed-loop stepping motor, a
laser  transmitter,  a  depth  camera,  and  a  PLC  control  system,  as
illustrated in Figure 1.
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Figure 1    Laser weeding experimental platform and structural schematic
 

The platform is a three-axis servo control system based on PLC
(Programmable  Logic  Controller),  integrated  with  a  depth  camera
and  utilizing  the  enhanced  YOLOv5  machine  vision  algorithm  to
accurately identify and localize corn seedlings.  The design process
involves  selecting  and  matching  servo  motor  parameters,  creating
motion  control  flowcharts,  developing  and  implementing  PLC
programs,  as  well  as  visualizing  deep  learning  model  features.  A
Siemens S7-1200 PLC controller is used for single-axis and multi-
axis  control  of  the  three-axis  mechanism,  in  conjunction  with  a
depth  camera  to  establish  TCP/IP  communication  protocol  with
Python,  enabling  end-effector  control  through  communication
between  Python  and  Matlab.  The  three-axis  coordinated  control

mode includes absolute motion mode and relative motion mode; the
camera  identifies  and  locates  corn  seedlings  and  weeds  using  data
models,  transmitting  identified  coordinate  data  to  the  PLC  for
automatic  operation  towards  specified  points.  Software  writing,
execution, and testing are carried out within the PyCharm integrated
development environment.  The system’s development environment
operates  on  Windows  11  OS  with  an  Intel(R)  Core(TM)  i9
13900HX  processor  running  at  2.70  GHz  and  16  GB  DDR4
memory. Table 1 lists the PyCharm partial environment. 

2.1.1    Serial communication
This  research  has  configured  the  fundamental  parameters  of

serial  communication,  including baud rate,  data  bits,  stop bits,  and
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parity bits, to align with the requirements of the system. As a result,
control  commands can be transmitted from the central  control  unit
to  individual  actuator  modules  such  as  laser  emitters  and  mobile
mechanisms via the serial port. Concurrently, real-time transmission
of  sensor  and  camera  data  back  to  the  central  processing  unit
facilitates analysis and decision-making processes. Additionally, the
communication  system  incorporates  error  detection  and  recovery
functions  to  ensure  reliable  data  transmission  while  mitigating
potential  losses  or  command  execution  errors.  To  enhance
communication  stability  and  efficiency,  this  research  has
implemented  buffering  mechanisms  and  data  encryption  measures
that  safeguard  against  interference  during  transmission  while
ensuring  accurate  command  execution.  The  integration  of  these
technologies significantly enhances overall system performance and
reliability  by  reducing  reliance  on  human intervention  and  thereby
improving agricultural automation efficiency.
  

Table 1    PyCharm partial environment
Condition Version Purpose
NumPy 1.18.5 Functional arithmetic

Opencv-python 3.8.0 Image video analysis
Torch 1.5.1 Building and training neural networks

PyYAML 5.3 Common data serialization format
Torch-vision 0.6 Processing image data

  

2.1.2    Camera calibration and spatial coordinate conversion
In  the  corn  seedling  and  weed  recognition  experiment  in  this

study,  camera  calibration  and  spatial  coordinate  conversion  are
crucial  procedures  for  ensuring  precise  alignment  between  image
data  and  actual  physical  dimensions,  thereby  enhancing  the
accuracy  and  reliability  of  the  recognition  system.  This  process
involves the following key steps:

Camera  calibration  was  performed  to  correct  perspective
distortion  and  determine  the  intrinsic.  By  using  a  standard
calibration  plate,  multiple  sets  of  images  were  captured  from
various angles to calculate the camera’s focal length, optical center,
aberration coefficient, and other intrinsic parameter information.

The experiment  utilized  a  Homography Matrix  to  execute  this
spatial  coordinate  transformation.  The  Homography  Matrix  is
derived  by  selecting  several  points  in  the  image  and  their
corresponding  actual  physical  position  points,  then  optimizing  the
calculation using the least squares method. The establishment of the
coordinate  system  in  the  camera  imaging  process  is  illustrated  in
Figure 2.
  

P(XW,YW,ZW)

CornWorld

coordinate

system

Zw

Ow

Xw

Yw

U

P(x,y)

Image pixel

coordinate

system

V

X

Y
Zc

Yc

Photocentric O

Xc

Camera

coordinate

system

Figure 2    Coordinate system establishment during
camera imaging

The  XWYWZW  framework  delineates  an  accurate  three-
dimensional  spatial  reference  frame  for  precisely  defining  spatial
element  positions  and  their  interconnections.  The  camera’s
coordination  follows  a  defined  XCYCZC  scheme  based  on  an  XY
plane  with  its  perpendicular  Z-axis  orientation.  Furthermore,
ensuring  orthogonality  with  respect  to  image  planes,  this  setup
guarantees  that  all  camera  coordinates  remain  orthogonal.  Both
global and local coordination systems manifest as three-dimensional
structures  within  3D  space;  they  can  undergo  transformation  via
translation or rotational operations, and the calculation is shown in
Equation (1). 

xc

yc

zc

1

 = ï R t
0⃗ 1

ò xw

yw

zw

1

 (1)

In  the  provided  equation,  R  denotes  the  rotation  matrix  and  t
represents  the  translation  matrix,  collectively  constituting  the
external  parameters  of  the  camera  to  be  determined.  These
parameters  define  the  transformation  process  from  the  camera’s
coordinate  system  to  the  image  coordinate  system.  The  Realsense
depth  camera  at  a  resolution  of  640x480  was  used  for  data
acquisition  and  subsequently  calibrated  using  the  Camera
Calibration  Toolbox  in  MATLAB.  The  right  focal  length  was  set,
and the camera’s optical axis coordinates were set at (u0, ν0) in the
image  coordinate  system.  A  suitable  photograph  was  selected  for
extracting  the  external  parameter  matrices  and  obtaining  details  of
the rotation matrix.

As  the  aforementioned  data  utilized,  it  is  possible  to  convert
pixel  coordinates  into  world  coordinates  using  a  MATLAB
program. By computing the Euclidean distance between two world
coordinate points, precise measurements can be obtained. 

2.2    Laser weeding principle
As  illustrated  in  Figure  3,  the  laser  weeding  process  begins

with  capturing images  of  corn  seedlings  and weeds  using the  Intel
RealSense depth camera. Subsequently, these images are input into
the  model  to  extract  the  coordinates  of  the  corn  seedlings  and
weeds.  The  PLC  then  automatically  moves  to  the  corresponding
points based on this coordinate data. Following this, precise control
is  exerted  over  the  laser  transmitter  to  target  and  eliminate
the weeds. 

2.3    Dataset construction 

2.3.1    Dataset acquisition
This  study entailed  the  collection of  maize  seedling data  from

diverse environmental settings, resulting in a total of four thousand
photos.  The  image  collection  site  was  located  within  Yongchuan
District,  Chongqing  Municipality  (105°38 ′-106°05 ′E  longitude;
28°56′-29°34′N latitude),  with images captured between June 15th
and August 10th, 2024. The dataset encompasses Pearl Glutinous 8
maize grown under controlled laboratory conditions as well as those
subjected  to  August  mulching  or  natural  outdoor  environments
during June. These varied conditions facilitated the construction of
distinct  maize  identification  datasets  focusing  on  three-to-five  leaf
stage  seedlings.  To  enable  comparative  analysis,  three  separate
datasets  were  established,  one  for  each  environmental  condition—
constant  temperature  lab  setting,  August  mulching  scenario,  and
integrated  experimental  setup,  respectively—leading  to  the
development  of  individual  recognition  models  whose  performance
was  compared  for  selection  purposes.  A  subset  of  these  seedling
maize  datasets  is  illustrated  in Figure  4,  which  served  as  input  for
real-time detection algorithms.
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2.3.2    Dataset labeling
In  this  investigation,  maize  labeling  was  conducted  manually

using the Labelimg tool to establish two distinct cohorts: a training
cohort  (train)  and a  validation cohort  (val)  for  data  annotation and
label  preservation,  respectively.  Specifically,  80%  of  the  images
from the current dataset were assigned to the training cohort folder,
while  the  remaining  20% were  designated  to  the  validation  cohort
folder.  This  allocation  ensures  comprehensive  data  coverage  and
enhances model training effectiveness. 

2.3.3    Data enhancement
In  the  process  of  identifying  seedling  maize,  conventional

single image inputs may result in insufficient model learning due to
the  morphological  similarities  between  weeds  and  maize  seedlings
in their early growth stages. By utilizing Mosaic data augmentation,
the model is compelled to focus on features from various regions of
the image during training, thereby enhancing its sensitivity to local
features.  For  example,  even  when  corn  seedlings  are  partially
obscured  or  entangled  with  weeds,  the  model  can  effectively
distinguish  and  identify  targets[16].  Moreover,  Mosaic  data
augmentation  also  promotes  the  model’s  adaptation  to  diverse
lighting and environmental conditions, which is crucial for practical
field  applications.  Traditional  data  augmentation  methods  such  as
random  rotation,  scaling,  or  color  transformation  may  not  be
comprehensive enough to address all scenarios. The Mosaic method
enhances  the  robustness  of  the  model  in  rapidly  changing
environments  by  incorporating  multiple  background  and  lighting
conditions  within  a  single  training  sample[17].  The  Mosaic  data
enhancement picture is shown in Figure 5. 

2.4    Lightweight YOLOv5 target detection model 

2.4.1    YOLOv5 network model
In this study, YOLOv5s was chosen as the primary recognition

framework due to its optimal balance between speed and accuracy,
as  well  as  its  suitability  for  deployment  in  resource-constrained
embedded systems. Among the YOLOv5 family, YOLOv5s stands

out  as  the  lightest  model  and  offers  comparable  performance  to
YOLOv5m,  YOLOv5l,  and  YOLOv5x.  While  it  may  demonstrate
slightly  lower recognition accuracy,  its  rapid processing speed and
reduced computational requirements are particularly crucial for real-
time  image  data  processing  in  complex  and  dynamic  external
environments such as small laser weeders in mountainous areas  [18].
Considering  the  practical  considerations  of  mountain  operations,
device  portability  and  energy  consumption  are  key  design  factors.
The  utilization  of  YOLOv5s  ensures  high  recognition  rates  while
maintaining  system  efficiency  and  enabling  prolonged  operation.
Furthermore,  through  custom  optimization  and  fine-tuning  of  the
YOLOv5s  model,  we  have  enhanced  its  performance  for  specific
tasks  to  better  align  with  the  needs  of  seedling  maize  and  weed
recognition[19].
  

Figure 5    Mosaic data enhancement picture
  

2.4.2    Recognition model fusing CBAM-YOLOv5
The CBAM (Convolutional Block Attention Module) attention

mechanism  integrates  both  channel  attention  and  spatial  attention.
As  illustrated  in  Figure  6,  the  CBAM  implementation  process
initially  adjusts  the  input  feature  layer  using  channel  attention  and
subsequently applies spatial attention processing. This combination
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ensures that the model not only emphasizes critical channel features
but  also  optimizes  their  essential  regions  in  the  spatial  dimension,
thereby significantly enhancing feature representation[20].

In the channel attention mechanism depicted in Figure 7, initial
operations  entail  global  average  pooling  and  global  maximum
pooling  on  the  input  feature  layers.  Subsequently,  the  results  of
average  pooling  and  maximum  pooling  are  integrated  with  the
output of the shared connectivity layer, and weights for the feature
layers  are  computed  using  a  sigmoid  function.  These  weights  are
then element-wise multiplied with the original input feature layer to
modulate its significance.

As  depicted  in  Figure  8,  this  strategy  involves  applying  an
attention  mechanism  to  two  pivotal  feature  layers  derived  from  a
backbone network and integrating it during up-sampling procedures
with  the  objective  of  enhancing  both  feature  processing  and

recognition  efficiency.  This  arrangement  aims  to  fortify  model
capabilities  by  concentrating  on  extracting  crucial  features  while
preserving the structural integrity of pre-trained models.
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2.4.3    Integration  of  DeepSort_YOLOv5  for  corn  and  weed
recognition

This study integrates the DeepSort algorithm into the YOLOv5-
based maize and weed recognition model to enhance target tracking
accuracy  and  continuity  (as  depicted  in  Figure  9).  The  DeepSort
(Deep Learning Object Sorting) algorithm expands upon the SORT
algorithm  by  incorporating  a  deep  learning  network’s  feature
extraction  sub-network,  thereby  significantly  improving  targeted
object  discrimination—particularly  in  complex  scenarios
characterized by frequent occlusions and interactions. Leveraging a
convolutional  neural  network  within  the  feature  extraction  process
generates  high-dimensional  vectors  describing  individual  targets’
appearance  information.  During  tracking  procedures,  after  initial
identification  via  YOLOv5,  DeepSort  employs  predictive  updating
utilizing  Kalman  filtering  for  position-velocity  estimation  while
leveraging  these  high-dimensional  vectors  for  precise  data
correlation.  Furthermore,  effective management of target  lifecycles
through  track  creation  policies  reduces  identity  switching  issues
during  lost  track  terminations—resulting  in  more  stable  tracking
outcomes.  This  amalgamation  of  advanced  feature  acquisition
alongside  precise  state  estimation  facilitates  enhanced  accuracy  as
well as reliability when dynamically monitoring corn seedlings and
weeds[21].

In  a  specific  application  context,  this  algorithm  is  well-suited
for  effectively  managing  the  movement  of  corn  and  weeds  in
intricate farmland environments, where the appearance of the target
may  be  influenced  by  changing  weather  or  lighting  conditions.
DeepSort  achieves  efficient  target  tracking through a  fusion  of  the
Kalman  filter  and  the  Hungarian  algorithm.  The  Kalman  filter

predicts  the  position of  the  target  between video frames,  while  the
Hungarian  algorithm  matches  the  expected  position  with  new
detections.  This  combination  not  only  enhances  tracking  accuracy
but  also  improves  the  system’s  capability  to  handle  occluded  and
interacting  dynamic  targets.  Figure  10  illustrates  a  flowchart
depicting multi-target tracking using YOLOv5.

The specific process is as follows:
Step 1: YOLOv5 performs target detection on the first frame of

the video sequence;
Step  2:  Initialize  the  Kalman  filter,  set  the  initial  state  vector

and covariance matrix;
Step 3: Detect the target in the current frame;
Step  4:  Using  the  prediction  equation  of  the  filter,  combined

with the previous information, predict the new position of the target
in the current frame;

Step  5:  Implement  the  Hungarian  algorithm  for  data
association, match the detection results in the current frame with the
predicted results, and ensure the correct tracking of the target;

Step  6:  According  to  the  number  of  matches,  make  the  next
decision;

Step 7: If no match is found, or if the match does not meet the
conditions, the system will re-initialize the Kalman filter;

Step 8:  Check whether  the number of  matching times exceeds
30.  If  the  number  of  matching  times  exceeds  the  threshold,  the
tracking is successful. If the number of mismatch times exceeds the
threshold, proceed to the next step.

Step 9: If the match is successful, the process will point to the
Track  Success  node.  If  more  than  30  matches  are  detected,  delete
the match, indicating that the target is no longer being tracked.
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3    Results
 

3.1    Evaluation indicators
In  order  to  comprehensively  and  objectively  evaluate  the

performance of both the original model and the improved model in
weed  detection,  this  research  conducted  a  comparative  analysis  of
their  detection  results  under  identical  conditions.  This  research
employed  metrics  such  as  Recall  (R),  Precision  (P),  Average
Precision  (AP),  mean  Average  Precision  (mAP),  and F1  score[22]  to
offer  a  quantitative  overview  of  weed  target  detection.  The
calculation is shown in Equation (2):

Recall= T P
T P+FN

(2)

Precision quantified  the  performance of  the  model  in  terms of
false positives, and the calculation is shown in Equation (3):

Recall= T P
T P+FP

(3)

As a balance between recall and accuracy achieved, the F1 score
is employed as the harmonic mean of precision and recall, where TP
denotes the number of true positives and FP denotes the number of
false positives, and the calculation is shown in Equation (4):
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F1=2×
Precision×Recall
Precision+Recall

(4)

The average of the mean accuracies of all  classes mAP can be
calculated by Equation (5):

mAP= 1
N

N∑
i=1

APi (5)

where, APi is the average precision of the ith class and N is the total
number of classes. 

3.2    Ablation test
To  evaluate  the  performance  of  the  different  modules  of  the

proposed  DeepSort_YOLOv5  network,  ablation  experiments  were
conducted  and  the  results  are  listed  in  Table  2.  The  components
compared include the  introduced DeepSort  algorithm,  CBAM, and
the WIoU loss function. YOLOv5 integrates the DeepSort algorithm
and  achieves  an  accuracy,  recall,  and  mAP  value  of  93%,  96.8%,
and  97.8%,  respectively,  with  a  mAP  value  of  0.1%  less  than  the
baseline  YOLOv5.  Afterward,  the  CBAM  attention  network  is
added  to  the  backbone  network.  The  corresponding  YOLOv5
achieved  96.2%,  95.8%,  and  98.6%  in  accuracy,  recall,  and  mAP
values, respectively. Compared to Method 2, the accuracy and mAP
values increased by 3.2% and 0.8%, respectively, and decreased by
1%  in  recall.  The  results  show  that  fusing  the  CBAM  hybrid
attention module into the DeepSort_YOLOv5 network significantly
improves  the  accuracy  and  robustness  of  model  detection.  In
addition,  the  WIoU  loss  function  was  replaced  with  Method  3  to
form Method 4. Method 4 achieved 95%, 96.1%, and 98.2% on the
accuracy,  recall,  and  mAP  values,  respectively.  Compared  with
Method 3, the accuracy and mAP values of Method 4 decreased by
1.2% and 0.4%, respectively, and only the recall increased by 0.3%.
The results show that fusing the CBAM module into the network is

the  key  to  improve  the  model  precision,  while  replacing  the  loss
function  with  WIoU  only  improves  the  prediction  rate  of  positive
samples, and performs poorly in terms of recognition precision and
stability.  The  ablation  experiment  verified  the  effectiveness  of  the
improved  components  in  improving  the  performance  of  maize
seedlings and weed detection.
  

Table 2    Results of ablation experiments
Method DeepSort CBAM WIoU Precision/% Recall/% mAP@0.5/%

1 93.1 96.3 97.9
2 √ 93.0 96.8 97.8
3 √ √ 96.2 95.8 98.6
4 √ √ √ 95.0 96.1 98.2

 

Figure 11 shows the mAP of the improved YOLOv5 model in
detecting  maize  seedlings  and  weeds.  Overall,  these  models  show
good training performance in distal convergence and high detection
accuracy,  achieving  over  94%  mAP  in  20  training  cycles.  The
training  curves  show  that  the  accuracies  of  all  models  are  stable
above  100  calendar  elements,  which  confirms  that  200  calendar
elements  of  training  is  sufficient  in  this  study.  In  Figure  12,  the
improved  YOLOv5  model  outperforms  YOLOv5,  Method  2,  and
Method  4  in  terms  of  performance  in  addition  to  recall,  validating
the  effectiveness  of  the  enhanced  DeepSort_YOLOv5  network  for
corn seedling and weed identification.
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Figure 11    Training curves of mAP for improved
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3.3    Comparison experiments
To  comprehensively  evaluate  the  effectiveness  of  the

DeepSort_YOLOv5  model,  this  study  conducts  a  comparative
analysis with other classical deep learning models, including Faster
R-CNN,  Cascade  R-CNN,  YOLOv3,  YOLOv4,  YOLOv6,
YOLOv7,  and  YOLOv8.  While  Faster  R-CNN  represents  a  two-
stage deep learning model category, the rest belong to the one-stage
models  in  the  YOLO  series.  All  models  are  trained  and  tested  on
identical  datasets  under  consistent  environmental  and  parameter
settings. The comparative results are presented in Table 3. The two-
stage  model  category  represented  by  Faster  Cascade  R-CNN
achieves  accuracy,  recall,  and  mAP  values  of  92.3%,  91.5%,  and
96.5%,  respectively;  however,  single-stage  models  outperform  it
significantly.  For  instance,YOLOv8  attains  accuracy,  recall,  and
mAP values of 94.1%, 96.7%, and 98.4%, marking an improvement
of  1.8%,  5.2%,  and  1.9%  over  Faster  Cascade  R-CNN’s
performance  metrics.  In  addition,  the  DeepSort_YOLOv5  model
surpasses  other  one-stage  models,  as  indicated  in Table3,  where  it
demonstrates  improvements  in  accuracy  by  2.1%  and  0.2%
compared  to  YOLOv8,  and  by  2.2%  and  0.4%  compared  to
YOLOv7. Based on the experimental results presented in Table 3, it
is  evident  that  the  R-CNN  network  model  exhibits  a  significantly
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larger number of parameters. This observation leads to the analysis
that the two-stage target detection model may not be well-suited for
this dataset. In contrast,  the YOLOv5 network model demonstrates
a lower parameter count compared to Faster R-CNN and Cascade R-
CNN,  resulting  in  an  increased  mAP  of  97.9%.  This  finding
suggests  that  for  this  dataset,  the  structure  of  the  one-stage  target
detection  model  outperforms  that  of  the  two-stage  model.
Furthermore,  the  higher  number  of  parameters  contributes  to
improved accuracy and mAP for YOLOv7. On the other hand, both
YOLOv3  and  YOLOv4  network  models  possess  a  significant
number  of  parameters,  requiring  high  computational  effort  while
delivering poor accuracy, thus rendering them unsuitable for maize
seedling  and  weed  identification.  The  more  recent  algorithms
proposed  by  the  YOLO  family—namely  YOLOv7  and
YOLOv8—demonstrate  promising  performance  with  fewer

parameters  and  reduced  computational  effort  requirements.  It  is
worth  noting  that  compared  with  the  optimized  version  that  meets
the  lightweight  requirements  for  mobile  detection,  the  DeepSort_
YOLOv5  model  proposed  by  us  has  7.01M  parameter  and  15.8
GFlops, which are 8.6 and 7.6 higher than YOLOv5 and YOLOv8,
respectively, and has faster detection speed. Although the detection
speed is lower than other algorithms such as YOLOv7, the network
structure  is  more  lightweight.  Additionally,  the  proposed
DeepSort_YOLOv5  model  achieves  an F1  value  identical  to  those
of YOLOv7, YOLOv8, and YOLOv5 at 95%, thereby validating its
exceptional detection performance.

Due to the relative regularity of the laboratory environment and
crop  cultivation  in  the  mulched  corn  field,  four  images  were
selected  from  the  natural  environment  in  order  to  demonstrate  the
superiority  of  the  proposed  model  in  detecting  weeds  in  complex

 

a. FasterR-CNN

b. Cascade R-CNN

c. YOLOv5

d. YOLOv8

e. Enhanced YOLOv5

Note: Yellow circles represent false detections, duplicate detections, and missed detections.

Figure 12    Detection results of models
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natural  environments  and  to  confirm  the  effectiveness  of  the
improved  DeepSort_YOLOv5  network  model.  Comparisons  were
made with four classical models—Faster R-CNN, Cascade R-CNN,
YOLOv5,  and  YOLOv8—and  the  detection  results  are  shown  in
Figure  12.  For  both  Faster  R-CNN  and  Cascade  R-CNN,  a  large
number of miss-detections were observed, which suggests that both
target  detection  models  are  not  applicable  to  this  study.  YOLOv8
and YOLOv5 also had the problem of slight missed detections and
performed  poorly  in  terms  of  accuracy  compared  to  YOLOv5 and
YOLOv8.  YOLOv8  also  showed  duplicate  detections,  which  may
affect  accuracy  and  increase  detection  time,  making  it  impractical
for real-world applications.
 
 

Table 3    Performance comparison of DeepSort_YOLOv5 and
other deep learning models

Models Precision/
%

Recall/
%

F1-
Score/%

Param
(106)

GFlops
(109)

mAP@0.5/
%

Faster R-CNN 90.2 89.4 91.0 42.5 156.2 93.8
Cascade R-CNN 92.3 91.5 92.0 64.2 237.5 96.5

YOLOv3 91.8 90.6 91.0 103.6 283.0 95.7
YOLOv4 93.6 92.5 93.0 54.5 119.4 96.7
YOLOv5 93.1 96.3 95.0 2.5 7.2 97.9
YOLOv6 93.9 94.0 94.0 4.2 11.9 97.7
YOLOv7 94.0 95.8 95.0 37.2 105.2 98.2
YOLOv8 94.1 96.7 95.0 10.0 8.2 98.4
Ours 96.2 95.8 95.0 7.01 15.8 98.6

 

Overall,  DeepSort_YOLOv5  was  beneficial  for  reducing
common  problems  in  agricultural  production  applications,  such  as
corn  seedlings  and  weed  shading,  and  significantly  improved
identification and localization accuracy. 

3.4    Experimental results on different datasets
During  phase  three,  this  research  employed  an  advanced

attention mechanism integrated with DeepSort_YOLOv5 for object
recognition purposes. The model underwent rigorous training using
four  diverse  datasets,  including  controlled  laboratory  conditions
featuring glutinous maize 8 cultivation; outdoor environments with
mulched  fields  observed  during  August;  natural  outdoor  settings
documented in June; as well  as a comprehensive combined dataset
analysis  which  is  detailed  in  Table  4  alongside  specific  training
outcomes.  The  laboratory-based  dataset  for  glutinous  corn  8
demonstrated  an  impressive  accuracy  rate  of  93.64%,  showcasing
the  model’s  proficiency  in  identifying  targets  within  controlled

settings  characterized  by  consistent  lighting  and  background
conditions  conducive  to  feature  recognition,  thereby  yielding  high
precision  levels.  Notably,  the  model  achieved  higher  accuracy
(95.27%) when tested under challenging conditions within outdoor
environments  in  August,  where  factors  like  light  reflections  and
shadow  effects  from  mulching  could  potentially  disrupt
performance,  indicating  its  robustness  against  environmental
complexities.  Conversely,  performance  dipped  slightly  to  an
accuracy of 87.90% when operating within natural outdoor settings
in  June.  This  could  be  attributed  to  the  multitude  of  variables
present  in  this  setting,  including  fluctuating  light  conditions,
changes  in  weather,  and  potential  obstructions,  all  of  which
contribute  to  heightened  recognition  challenges.  This  finding
suggests  that  further  refinement  of  the  model  or  adjustment  of  the
training  approach  may  be  necessary  to  improve  recognition
accuracy  in  natural  settings.  Moreover,  the  self-constructed  fusion
datasets  exhibit  a  peak  recognition  rate  of  96.13%,  indicating  that
training  the  model  on  integrated  datasets  containing  diverse
environmental  factors  can  enhance  its  capacity  for  generalization
and  adaptation  across  varied  scenarios,  thereby  bolstering  overall
resilience and adaptability.
  

Table 4    Experimental results of different datasets
Dataset Precision/% Recall/% mAP@0.5/%

Laboratory glutinous corn 8 93.64 93.01 96.06
August mulching field conditions 95.27 94.79 96.38
June natural environment 87.90 86.52 89.45
Self-built fusion datasets 96.13 95.11 98.41

 

Additionally,  these  findings  demonstrate  that  the  DeepSort_
YOLOv5  model,  when  integrated  with  the  enhanced  attention
mechanism, exhibits robust adaptability and recognition capabilities
across diverse environments. However, the diminished performance
in natural settings observed in June suggests potential challenges for
real-world  applications,  necessitating  further  adaptation  and
optimization.

The combined datasets experiment demonstrated an impressive
recognition  rate  of  96.13%.  These  integrated  datasets  were
employed  as  the  primary  data  source  for  input  into  the  DeepSort_
YOLOv5 network recognition model,  which incorporates a refined
attention  mechanism  for  real-time  corn  seedling  detection.  The
findings of the detection are depicted in Figure13, highlighting the
effectiveness and precision of this approach in practical scenarios.

 
 

a. Laboratory glutinous

Corn 8

b. August mulching

field environment

c. June natural

environment

Figure 13    Schematic representation of recognition of different datasets under the improved network
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4    Discussion
In  this  study,  an  improved maize  seedling  and weed detection

method based on DeepSort_YOLOv5 was proposed. PLC and depth
camera  were  integrated  to  establish  an  experimental  platform  of
three-axis  servo  control  system.  At  present,  many  researchers  are
also  conducting  research  in  the  field  of  deep  learning.  Li  et  al.[23]

proposed an improved YOLOv5 algorithm based on shallow feature
layer  to  solve  the  problem  of  gradient  disappearance  in  training
process by introducing CBAM attention mechanism. The improved
algorithm has a mAP value of 94.3% and a p-value of 88.5%. Lin et
al.[24] proposed a  citrus  fruit  number  counting method based on the
combination  of  improved  YOLOv5  algorithm  and  DeepSort
tracking  algorithm.  CBAM  and  Contextual  Transformer  attention
mechanisms were incorporated, and SIoU loss function was used to
replace  GIoU,  with  a  tracking  accuracy  of  90.83%.  However,  the
real-time performance of the improved algorithm is reduced. Garcia-
Navarrete et al.[25] implemented an artificial vision system based on
the  YOLOv5 model  to  distinguish  corn  from four  kinds  of  weeds,
which  played  a  certain  role  in  promoting  the  construction  of  an
accurate weeding system. The recognition p-value of corn was 97%,
and  the  mAP  value  was  97.5%.  After  introducing  the  CBAM
attention  mechanism  and  integrating  the  DeepSort  algorithm,  the
new method proposed in this study can identify datasets under three
different  scenarios,  with  a p-value  of  96.13% and a  mAP value  of
98.41%,  which  can  provide  technical  support  for  the  development
of  precision  agriculture  technology  to  adapt  to  the  diversified  and
challenging  agricultural  environment  in  the  future.  However,  the
enhanced  YOLOv5  algorithm  still  faces  challenges  in  accurately
identifying  small  targets  against  complex  backgrounds,  as  well  as
being  affected  by  light,  rainfall,  and  overlapping  of  recognized
objects. Li et al.[26] proposed a fusion design of MCD-YOLOv5, and
also  established  an  unmanned  aerial  vehicle  (UAV)  for  crop  pest
detection,  providing  ideas  for  identification  stability  and  accuracy.
Therefore,  in  the  subsequent  stage,  more  images  of  corn  seedlings
and weeds will be collected, the algorithm structure will be further
improved,  and low-altitude  drones  will  be  combined with  airborne
cameras  to  improve  the  recognition  accuracy  and  stability  under
complex terrain. 

5    Conclusions
This  study  faced  challenges  in  achieving  precise  results  using

existing detection methods due to the complexities  associated with
variations  in  weed  density  within  diverse  environmental
backgrounds.  In  response,  this  research  proposed  an  improved
approach  for  maize  seedling  and  weed  detection  based  on
DeepSort_YOLOv5 to enhance both precision and resilience within
an  improved  algorithm  framework.  The  refined  methodology
resulted in the following:

1)  Four  distinct  datasets  were  curated,  while  model  resilience
was  enhanced  through  data  augmentation  techniques  capable  of
accommodating  varied  image  scales  under  intricate  environmental
scenarios.  Notably,  our  enhanced  DeepSort_YOLOv5  achieved  an
impressive  accuracy  rate  of  96.13%  on  internally  constructed
datasets—outperforming all  other  sets—validating its  effectiveness
across  practical  applications  amidst  challenging  environmental
conditions.

2) The CBAM attention mechanism was incorporated alongside
integrating  DeepSort  into  the  YOLOv5  architecture.  This  research
observed  a  significant  improvement,  with  a  3.1%  increase  in  both
accuracy  rates  and  mean  Average  Precision  (mAP)  values  during

ablation  testing  when  compared  against  the  standard  YOLOv5
setup, an essential capability for effectively distinguishing between
corn  seedlings  and  weeds.  In  comparative  assessments  against
traditional  target-detection  models,  the  DeepSort_YOLOv5
demonstrated  outstanding  performance  metrics,  an  impressive
96.2%  accuracy  rate  coupled  with  a  high  mAP  value  at  98%.
Furthermore,  its  compact  parameter  count  of  just  7.01  M makes  it
suitable for mobile deployment.

3) A PLC-based three-axis servo control system was developed
and  integrated  with  a  depth  camera,  and  an  enhanced  YOLOv5
algorithm  was  utilized  to  achieve  precise  positioning  of  corn
seedlings.  The  effectiveness  of  the  experimental  platform  was
validated through practical experiments. 
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