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Abstract: Tea shoot segmentation is crucial for the automation of high-quality tea plucking. However, accurate segmentation
of tea shoots in unstructured and complex environments presents significant challenges due to the small size of the targets and
the similarity in color between the shoots and their background. To address these challenges and achieve accurate recognition
of tea shoots in complex settings, an advanced tea shoot segmentation network model is proposed based on You Only Look
Once version 8 segmentation (YOLOv8-seg) network model. Firstly, to enhance the model’s segmentation capability for small
targets, this study designed a feature fusion network that incorporates shallow, large-scale features extracted by the backbone
network. Subsequently, the features extracted at different scales by the backbone network are fused to obtain both global and
local features, thereby enhancing the overall information representation capability of the features. Furthermore, the Efficient
Channel Attention mechanism was integrated into the feature fusion process and combined with a reparameterization technique
to refine and improve the efficiency of the fusion process. Finally, Wise-IoU with a dynamic non-monotonic aggregation
mechanism was employed to assign varying gradient gains to anchor boxes of differing qualities. Experimental results
demonstrate that the improved network model increases the AP50 of box and mask by 4.33% and 4.55%, respectively, while
maintaining a smaller parameter count and reduced computational demand. Compared to other classical segmentation
algorithms models, the proposed model excels in tea shoot segmentation. Overall, the advancements proposed in this study
effectively segment tea shoots in complex environments, offering significant theoretical and practical contributions to the
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1 Introduction

Tea holds substantial economic and cultural value worldwide'",
and tea harvesting is a crucial aspect of the tea industry. However,
labor shortages and short harvesting cycles pose significant
challenges for tea harvesting, necessitating the demand for
automated tea harvesting solutions”. Due to its high economic
value, high-quality tea requires stringent standards for plucking tea
shoots, which are generally classified into three categories: single
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bud, one bud with one leaf, and one bud with two leaves¥.
Therefore, the harvesting of high-quality tea necessitates selective
plucking methods, requiring the harvesting machines to possess a
certain level of intelligence. The detection and segmentation of tea
shoots are crucial for realizing intelligent picking. Consequently,
research on tea shoot detection and segmentation is of great value
and significance to the development of the tea industry.

Current crop segmentation primarily relies on traditional image
processing and deep learning. Traditional methods segment targets
based on local features, geometry, and pixel-level processing, but
their reliance on manual feature design limits accuracy in complex
tea shoot segmentation**. Deep learning has achieved remarkable
success in computer vision, driving advancements in crop
segmentation”. Kang et al¥ combined instance and semantic
segmentation in a first-order detection network, achieving high
efficiency in apple detection. Liao et al.”’ employed background
transfer learning and a color attention module to improve dandelion
segmentation. For tea shoot detection, Xu et al.'”! proposed a two-
level fusion network integrating YOLOV3!'" and DenseNet201,
balancing speed and accuracy. Gui et al.'” enhanced detection by
introducing Ghost convolution” and a bottleneck attention module,
reducing computational costs while improving precision. Li et al.!'*
applied a pruned YOLOv3 model for real-time tea shoot picking. In
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the field of small target crop detection, Wu et al."” expanded the
receptive field and fused multi-scale features via a multi-branch
structure, improving weed detection. Xu et al.'”) designed a feature
extraction module with grid resampling to enhance detection of
inconspicuous small targets. Liu et al.'” integrated a multi-scale
extraction module and a dedicated small target detection layer,
boosting accuracy for unopened cotton Dbolls. Research
demonstrates that multi-scale feature extraction and fusion enhance
small object segmentation in agriculture. However, tea bud images
captured by picking robots present challenges: their small pixel
proportion and color similarity to old leaves increase missed and
false detections. Limited small-target features are further weakened
or lost in deep network layers. While multi-scale fusion improves
detection, cross-scale integration often fails to preserve fine-grained
details, exacerbating spatial information loss. Additionally, the high
color similarity between tea buds and background demands robust
shape and texture discrimination, yet traditional feature weighting
struggles to differentiate noise from true signals, increasing false
positives. Thus, optimizing shallow feature utilization and
minimizing information loss during multi-scale fusion is critical to
improving small tea bud detection in complex environments.

Early target segmentation algorithms relied only on final
feature maps for predictions, neglecting feature fusion in neck
networks. Shallow features provide positional accuracy but lack
semantics, while deep features offer rich semantics but poor
localization—creating challenges for small target segmentation. To
address this, Lin et al."® proposed Feature Pyramid Network (FPN),
enabling unidirectional fusion by upsampling deep features and
merging them with shallow ones. This balances high-level
semantics and low-level details, improving small-target detection
efficiently. Liu et al."! enhanced FPN with path aggregation
network, adding bottom-up fusion to strengthen multi-scale
representation. Tan et al.”?” advanced bidirectional fusion further via
a weighted feature pyramid network, pruning low-contribution
nodes and iterating layers for adaptive feature weighting. Zhang et
al.?" introduced TopFormer, using multi-scale tokens as inputs to
generate perceptive features, which are injected back into original
tokens. This token-based design enhances cross-scale perception.
Wang et al.” refined TopFormer with Gather-and-Distribute (GD)
modules for granular feature fusion across scales. Qian et al.””!
expanded feature pyramids by adding five layers and introducing
max pooling and up-sampling pooling modules. These enable
flexible multi-scale fusion while preserving critical spatial
information. The development of feature fusion techniques has
progressed from top-down fusion to simple bidirectional fusion,
then to complex bidirectional fusion, and finally to the use of
specialized modules to aid in fusion. Top-down fusion often results
in the continuous dilution of information from the topmost layers as
it progresses downward. In contrast, bidirectional fusion, while
more effective, does not fully utilize secondary information for
cross-layer information fusion, especially across multiple layers.
Moreover, the introduction of specially designed complex modules,
despite improving fusion capabilities, can lead to a reduction in
efficiency.

To address these issues, this study proposes an enhanced tea
shoot segmentation model based on the YOLOVS target
segmentation algorithm. The model is targeted to a series of
improvements on YOLOvV8 according to the complex environment
of the actual growth of tea. The modified model enhances the
segmentation accuracy of tea shoots in the field, thereby facilitating
precise plucking by tea plucking robots. The key contributions of

this study are as follows:

1) Designed a neck fusion network for small targets. The use of
large feature maps of the backbone network was added to the neck
fusion network. The features are divided into global and local
features for multi-scale fusion.

2) Adding ECA attention mechanism and combining with
reparameterization technique in the feature fusion process to capture
key features and improve the computational efficiency. Realize the
efficient and fine fusion of features.

3) Use Wise-IoU instead of CloU. Reduce the competitiveness
of high-quality anchor boxes while reducing the harmful gradient
generated by low-quality examples. The new loss function focuses
on average-quality anchor boxes, thus improving the overall
performance of segmentation.

2 Materials and methods

2.1 Data preparation
2.1.1 Data acquisition

The tea data utilized in this study were collected in August
2023 from Songyang County, Lishui City, Zhejiang Province,
China. The tea variety is Longjing. During the collection process,
the center of the camera lens is positioned at a vertical distance of
0.25-0.30 m from the surface of the tea plant. This distance ensures
that a single frame image fully covers the target tea buds within the
standard tea row width range and maintains the tea buds within an
ideal size range in the image. The camera’s optical axis was
oriented at an angle of 55°+2° relative to the ground plane. This
angle maximizes the visible surface area of the tea buds to minimize
leaf obstruction while effectively suppressing distant, unclear
interference targets. Data collection was conducted in two sessions,
morning and afternoon, systematically covering typical tea garden
lighting scenarios, including direct sunlight, diffuse reflection, and
leaf transmission. This ensured diversity in the lighting conditions
of the dataset. A total of 850 target images were collected.
2.1.2  Data generation

Using the data clarity feature of the Baidu Machine Learning
(BML) platform, 850 images from the initial dataset were screened.
The screening criteria were to remove images with low clarity due
to environmental disturbances and those with excessive similarity.
The annotation criteria followed the “one bud, one leaf” standard
for premium tea picking, annotating all areas above the node and
5 cm below the node. All images in the dataset were annotated
using the instance segmentation annotation tool on the BML
platform, and the annotation results were manually reviewed to
verify the accuracy of the annotation of bud and leaf morphological
features. Following the annotation process, offline data
augmentation was performed on these images. The augmentation
techniques employed were autocontrast and brightness adjustments,
each of which effectively doubled the original dataset with labels.
This augmentation process culminated in a total of 2340 labeled tea
shoots images. AutoContrast enhances the contrast of images,
thereby increasing the distinction between tea shoots and the
background, which is particularly beneficial for differentiating tea
shoots from older leaves. Brightness adjustment modifies the image
brightness, simulating the varying lighting conditions encountered
in real outdoor environments from morning to night. This
adjustment is essential for increasing the dataset’s diversity with
respect to light intensity. The visual comparison of images before
and after augmentation is depicted in Figure 1.

After completing the augmentation, the dataset was divided,
resulting in a tea segmentation dataset comprising 2100 training
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images and 240 validation images. Although the dataset size is
relatively modest, the tea targets are notably small and densely
packed, with each image containing between 20 to 40 targets. The
statistics show that there are 62 985 labeled targets in the dataset.
These tea buds exhibit significant diversity in terms of growth

posture, spatial arrangement, and lighting conditions, demonstrating
a certain degree of broad applicability. Most of these targets are
between 5%-10% of the height of the picture, and the width is
between 2%-5% of the width of the picture, which is typical of
small targets.

c. The labeling figure after autocontrast enlargement

Figure 1

2.2  YOLOvS8-seg model introduction

YOLOV8, developed by Ultralytics in January 2023, represents
a significant enhancement and optimization over previous YOLO
versions, delivering notable improvements in image classification,
object detection, and instance segmentation®. The backbone
network employs the CSPDarknet architecture™, designed to
extract feature information at various scales. The neck network
incorporates the Path Aggregation Network (PAFPN) structure, an
extension of the FPN. PAFPN adds a bottom-up pathway to the
traditional FPN, addressing the issue of insufficient detail in deeper
features extracted from shallow features. Consequently, PAFPN can
capture richer feature information. Within the neck network, the C2f
module facilitates feature fusion and enhancement, improving
feature expression capability and network efficiency through cross-
stage local connections. The head of YOLOVS utilizes a decoupled
head structure, which separates target location and category
information into distinct output layers. For its loss function,
YOLOvV8 employs the Complete Intersection over Union (CloU)>
as the regression loss. CloU improves regression accuracy by
considering the relative proportions of detection boxes and
incorporating aspect ratios. Overall, the YOLOv8 algorithm
demonstrates exceptional performance across various tasks,
achieving state-of-the-art accuracy on multiple datasets with rapid
detection speeds. Consequently, this model was selected as a
benchmark for tea shoot detection.
2.3 Tea segmentation model
2.3.1 Model improvement and optimization methods

Based on the superior performance of the YOLOVS algorithm,
this study chose YOLOVS as the baseline model for the tea shoot
segmentation algorithm, as shown in Figure 2. The backbone of this
algorithm follows the structure of the baseline model, utilizing the
CBS module and the C2f module to extract features. The backbone

d. The labeling figure after brightness enlargement

Figure enlargement and labeling

network extracts four types of feature maps: 160x160, 80%80,
40x%40, and 20x20. The 160x160 feature map has a small receptive
field and high resolution, excelling at capturing low-level
information such as the fine textures and blurred edges of tea buds,
but it has weak semantic discrimination capabilities and may
confuse tea buds with similar-shaped old leaves. The 80x80 feature
combines both detail and structural information, -effectively
distinguishing tea buds from interfering objects such as leaves and
branches. The 40x40 feature possesses strong semantic
representation capabilities, enhancing target discrimination in
complex backgrounds, but at the cost of some detail loss. The
20x20 feature, though weakened in small target detection due to its
large receptive field, provides critical supplementary contextual
information for higher-level semantic understanding through multi-
scale fusion. Since this segmentation target, tea buds, are mostly
small objects in the actual environment, the shallow large features
extracted by the main network are very helpful for the segmentation
of small objects. Therefore, compared with the baseline model, this
study increased the use of feature maps with a size of 160x160. This
study input all four feature maps into the neck multi-scale feature
fusion network for feature fusion. A novel multi-scale feature fusion
structure is introduced to facilitate the effective fusion of the four
sizes of feature maps. This structure incorporates the fusion of
global features, local features, and their combination. Initially, the
feature maps extracted from the backbone network are fused to
generate global features, which encapsulate both shallow and deep
information. Subsequently, feature maps of the same scale as the
output header are fused with their neighboring feature maps to
obtain local features. To optimize the fusion of global and local
features, a  parameter-free  attention = mechanism  and
reparameterization technique was employed®”. Finally, the fused
features are passed to the detection head using a bottom-up
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approach, maintaining the same structure as the segmentation head
of YOLOv8 without any modifications. This comprehensive

approach ensures the effective segmentation of tea shoots while
leveraging the strengths of the YOLOv8 framework.
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Figure 2 Improvement of model network structure

2.3.2 Multi-scale feature fusion

The specific acquisition of global features is illustrated in
Figure 3. Prior to the acquisition of global features, it is necessary to
select the scale of the global features. In this case, 40x40 was
chosen as the scale for feature fusion. However, if 20x20 had been
selected, a significant amount of underlying information would have
been lost, which would have been disadvantageous for the detection
of small targets. The use of scales such as 8080 or even 160x160
would necessitate the allocation of greater computational resources
when processing subsequent modules. light of the
aforementioned considerations, it can be posited that a fusion scale
of 40x40 is optimal in terms of both accuracy and speed. Once the
fusion scale has been established, the feature maps of the remaining
scales are aligned. The 160%160 and 40x40 feature maps are then
downsampled using average pooling, while the 20%20 feature maps
are upsampled using bilinear interpolation. Finally, the four aligned
features are fused by the CBS module. The formula for obtaining
global features is as follows:

in In

X, = AvgPool(X,,output_size = (H, W)) (1)

Avgpool

160x160

80%80 ﬂ;

(= 1
40x40 @41
[

Figure 3  Structure of global feature fusion module
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X,, = AvgPool(X,,,output_size = (H, W)) @)
X, = Linear(X,,output_size = (H, W)) 3)
Xy = CBS (Concat(X,, X, X, X,) € R™™)  (4)

where, X, X,,, X,, X,, are four different feature scales from largest to
smallest, H and W are the height and width of the features, AvgPool
is average pooling, Linear is linear interpolation, and Xyo, is the
global feature.

With regard to the acquisition of local features, the fusion
method employed is analogous to that used for global features. The
scale of the local features determines the final output to the
detection head of the feature map scale. The processing of 160%160
size features requires a significant amount of computational
resources, which is why the choice of 80x80, 40x40, 20x20 as the
scale of the three local features was made. The selected scales are
employed as a benchmark for aligning features of varying sizes.
Following alignment, the fusion process is conducted. It should be
noted that this study has attempted to determine the optimal
combination of features extracted from the backbone network for
use in generating local features. The selected combinations and the
generated local features are presented in Section 3.3. Thus far, three
types of local features have been obtained, with sizes of 80%80,
40%40, and 20%20, respectively.

Once the requisite global and local features have been obtained,
they need to be fused using the global-local feature fusion (GLF)
module. Figure 4 demonstrates the specific fusion method using an
80x80 local feature as an example. This process involves the fusion
of three distinct types of local features, each with a different size,
with the global features. Firstly, the local features are subjected to a
convolutional block with a 1x1 convolution. This operation is
intended to combine and transform the features in each channel,
thereby increasing the nonlinearity of the network. At the same
time, the channels of the local features are adjusted for subsequent
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weighted fusion. Global features are divided into two parallel
branches. The first branch integrates local features, performs scale-
based feature alignment, and then processes them through a 1x1
convolution within the CBS block, activated by the Sigmoid
function to produce a set of weights. The second branch consists
only of local features that likewise undergo scale-based feature
alignment.Once the aforementioned steps have been completed, the
local features will be processed and the first branch will obtain the
weight, which will then be multiplied with the second branch to
obtain the results of the addition. Subsequently, the processed local
features will be multiplied with the weights obtained from the first
branch and then added with the results obtained from the second
branch. Finally, the features will be further extracted and fused by a
RepC2f module. At this juncture, the fusion of global and local

CBS

features is complete. The formula for combining global and local
features is as follows:

F,=CBS1q Xieea) 5)

A, = sigmoid(CBS,,, (Linear(X, ., (H, W)))) (6)
F, = CBS,,,(Linear(X g, (H, W))) (7)
Y=F®A,6F, (®)

where, CBS,,; is the CBS module using 1x1 convolution, F is the
local feature part in the fusion process, F, is the entire feature part
in the fusion process, 4, is the global feature weight in the fusion
process, ® is element-wise multiplication, and @ is element-wise
addition.

Local feature 80x80

80%80

Linear

80%80

® Element-wise multiplication

@ Element-wise addition

Sigmoid

Global feature
40x40

Figure 4 Structure of global-local feature fusion module

2.3.3 Lightweight fusion

At the end of the local feature fusion, global feature fusion, and
local feature and global feature fusion modules, this study has built-
in Efficient Channel Attention™. ECA is a lightweight channel
attention mechanism, which, through a local cross-channel
interaction strategy without dimensionality reduction, can help it to
focus on the really important parts of the channel during the feature
fusion process and thus improve the performance of the model. The
structure of ECA is shown in Figure 5. ECA first performs Global
Average Pooling on the input feature maps to obtain a global feature

Global-average-pooling

GAP
S

A
igmoid \J: ‘m
—_—]

Figure 5 Structure of efficient channel attention module
T T oo

description for each channel. Then one-dimensional convolution is
used to capture the inter-channel dependencies. Finally, the results
obtained by 1D convolution are used as channel weights to weight
the original feature maps. ECA introduces almost no parameters,
and in this model, a single use of ECA introduces only three
parameters, and ultra-lightweight is the main reason why it is
chosen.

In the context of local and global feature fusion, as well as top-
down fusion, the reparameterization technique is employed to adjust
the convolutional layers within the C2f residual block. The
fundamental principle of the reparameterization technique is to
decompose a complex convolutional operation into a series of
elementary convolutional operations for training purposes, and
subsequently to merge these elementary convolutional operations
into an equivalent complex convolutional operation in the inference
stage. The conversion diagram is shown in Figure 6. During
training, a multi-branch structure is adopted to enhance training
effectiveness. The main branch consists of a 3x3 convolution
followed by a BN activation function; the auxiliary branch consists
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Figure 6 Schematic diagram of reparameterization training inference conversion
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of a 1x1 convolution followed by a BN activation function; the third
branch is an identity mapping branch, used when the input and
output channel counts are the same. During inference, the three
trained branches are converted into a single 3x3 convolution. The
identity branch can be viewed as a 1x1 convolution. First, the conv
and BN operations are converted into a convolution with a bias
term. Then, the edges of the two 1x1 convolution kernels are
padded with zeros to form a 3x3 convolution kernel. Finally, the
three convolution kernels are summed together. This method
enhances the expressive capacity and training efficiency of the
model while maintaining the inference efficiency.

2.3.4 WIoU loss algorithm

Accurate target localization is a pivotal step in target detection
algorithms, achieved through the regression of the bounding box.
Wise-IoU (WIoU)® introduces a dynamic non-monotonic
aggregation mechanism and proposes evaluating the quality of the
anchor box based on its degree of outlier. This method employs a
gradient gain assignment strategy to diminish the competitiveness
of high-quality anchor boxes while mitigating the detrimental
gradient effects of low-quality samples.

WIoUv3 is improved by WIoUvl; WloUvl can be obtained
from Equation (9)-(11). IoU is utilized to measure the degree of
overlap between the prediction box and the real box. Py, reflects
the degree of attention to the center distance.

W,H;

Liw=1-ToU=1- €[0,1] 9)

u

(x_xv/)2+(y_y1)2
Rwiov = —_ - 1, 10
(SR et o

Cwmuw = RWIOUL"IOU (1 1)

where W; and H; represent the width and height of the overlapping
part, and S, denotes the area of the prediction box and the real box
minus the overlapping part. The coordinates (x, y) and (xy, Vg
correspond to the centers of the prediction and real boxes. W, and
H, are the width and height of the smallest rectangular box that
encircles the prediction box and the real box.

WIoUv3 introduces the concept of outlier f to assess the
quality of the anchor box. Utilizing f, along with the predefined
fixed values o and J, the non-monotonic aggregation coefficient 7 is
constructed and subsequently applied to WloUv1. A;, denotes the
monotonic focus factor. This dynamic gradient assignment strategy
optimizes gradient allocation according to real-time conditions,
thereby mitigating the influence of low-quality samples that could
produce detrimental gradients. The formula for WIoUv3 is as
follows:

ﬁ=%€[0,+oo) (12)

ToU

s (13)

Lo = Mlwioust, T'= 75(%*’5

The study focuses on tea shoots, which present a challenging
environment characterized by dense growth, small target size,
variable angles, and frequent occlusions, resulting in the presence of
some low-quality samples. In such scenarios, applying a static
approach to all samples, including low-quality ones, can
inadvertently enhance the fitting loss and compromise the model’s
generalization capability. To address this issue, this study employed
WIoUv3 in place of CloU within the YOLOVS framework,
leveraging the advanced dynamic mechanisms of WloU to improve
detection performance under these complex conditions.

3 Experimental results and analysis

3.1 Evaluation indicators

The complexity and performance evaluation of deep learning
models typically employs metrics such as precision, recall, average
precision (AP), the number of parameters, and floating-point
operations per second (FLOPs).

Precision quantifies the probability of true positive samples
among all samples predicted to be positive, while recall measures
the probability of true positive samples among all actual positive
samples. Average precision (AP) is calculated as the area under the
precision-recall curve, representing the mean precision across
varying recall levels. These metrics collectively provide a
comprehensive evaluation of model performance and are computed
using the following equations:

. TP
Precision = 75— (14)
TP
Recall = TP TEN (15)
1
APa = fop(r)dr (16)

where, TP, FP, and FN are the number of true positive cases, false
positive cases, and false negative cases, respectively. P(r) denotes
the precision when the recall is », and a denotes the IoU threshold.
A larger value of o represents a more stringent prediction
requirement; in this paper, a is set to 0.5, and AP50 is used to
denote the average accuracy of the model in subsequent
experiments in this paper.

Parameters directly influence the storage demands of a model,
while FLOPs quantify the computational workload during model
inference. These metrics serve as pivotal benchmarks for assessing
model complexity and computational resource utilization.
Computation of these metrics is facilitated by the following

equations:

Parameter = C;, X Cou X K XK (17)

FLOPS = (2C;, X K* = 1) X Hyy X Wy X Coue (18)

where, C;, and C,, are the number of channels of the input and
output convolutional layers, K denotes the size of the convolutional
kernel, and H,, and W, are the height and width of the output
feature map of the convolutional layer.

3.2 Experimental platform and training settings

This experiment was performed on a computer with 64 GB of
RAM on Ubuntu 16.04 LTS system, an Intel 17-9800 8-core CPU
and four NVIDIA RTX2080Ti 11GB GPUs. The learning task was
performed on python 3.8.17 using the computing platform
CUDA10.2, cuDNN 7.6.5 with pytorch 1.8.0.

The experimentation leverages the YOLOVS codebase, which
offers a spectrum of model scales designated as n, s, m, /, and x,
where n denotes the smallest model. To ensure methodological
consistency, all training parameters remain uniform, with pre-
training weights being omitted. The training was performed for a
total of 200 epochs, the batch size was set to 32, and the image
input size was 640%640. Training is executed employing the SGD
optimizer, initialized with a learning rate of 0.01. To speed up the
training process and to avoid overfitting, the impulse parameter was
set to 0.937 and the weight decay coefficient to 0.0005.

3.3 Local feature fusion selection experiments
An ablation study is performed in this section to investigate
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which block or blocks of features extracted using the backbone
network can lead to the best performance of the model when fused
to obtain local features.

The backbone network extracts feature maps of four different
sizes, labeled sequentially from shallow to deep as 1 through 4.
Specifically, the values 1, 2, 3, and 4 correspond to the dimensions
of 160x160, 80%80, 40x40, and 20x20 feature maps, respectively.
The neck network requires three distinct sizes of local features. The
notation (2,3,4) indicates that the feature maps labeled 2, 3, and 4
are used independently as local features. The notation (12,23,34)
signifies the fusion of feature maps 1 and 2, 2 and 3, and 3 and 4,
serving as the first, second, and third local features, respectively.
Similarly, (123,234,134) represents the fusion of three different
sizes of feature maps to form each local feature. Figure 7 and
Figure 8 display the AP50 and loss metrics of the model during
training with various local feature fusion strategies. These figures
demonstrate that the new neck network facilitates faster
convergence and improved AP50.
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Table 1 presents the performance outcomes of models
employing various local feature fusion strategies on the validation
set. The results indicate a consistent improvement in performance
over YOLOv8n-seg’s PAFPN, irrespective of the local feature
fusion strategy used. Notably, the model utilizing a single feature
map as the local feature achieves the highest performance. This may
be due to the global feature already encapsulating information from
the four different-sized feature maps, and excessive fusion leading
to information redundancy. Compared to YOLOv8n-seg, the model
with the optimal fusion strategy shows improvements of 4.33% in
AP50 and 4.08% in Recall for box, and 4.55% in AP50 and 3.98%
in Recall for mask. The neck structure introduced in this study
increases the fusion operations of feature maps of varying sizes.
However, due to the reparameterization of C2f, the overall number
of parameters for the model under the optimal fusion strategy is less
than that of YOLOvS8n-seg. Models using the fusion of two or three
feature maps as local features exhibit a gradual increase in
parameter count compared to the original model. Regarding FLOPs
performance, YOLOv8n-seg achieves the best results, primarily

because the fusion of different-sized feature maps necessitates
feature alignment, thereby increasing
computational effort. Additionally, YOLOv8n-seg, as the smallest
model in the YOLOvS series, achieves an inference speed of

operations such as

1.21 millisecond per image on A100 TensorRT. Therefore, given
that 12.61G FLOPs require only 1.21 millisecond, the additional
0.78G FLOPs for a nearly 4% improvement in AP50 and Recall is a
worthwhile trade-off.

Table 1 Results of different local feature fusion strategies

Local feature Parameters/ FLOPs/ AP50  Recall ~AP50_  Recall
M G box/% box/% mask/% mask/%
(2,3,4) 3.22 1339  86.02 79.21 81.60 75.99
(12,23,34) 3.33 13.82 8538 7854 80.28 74.46
(13,14,24) 3.35 1399 8558 78.62 80.92 75.93
(123,234,134) 3.35 14.10 84.87 78.46 79.82 74.74
YOLOv8n-seg 3.26 12.61 81.69 75.13 77.05 72.01

3.4 Ablation study of module

To better understand the contributions of each improvement to
the model’s performance enhancement, this study conducted a
related ablation study. The results of this study are presented in
Table 2. The data clearly demonstrate that the model incorporating
the new neck network outperforms the original YOLOv8n-seg
model. This finding underscores the pivotal role of the multi-scale
feature fusion method in boosting model performance. Furthermore,
the inclusion of the ECA attention mechanism allows the model to
better focus on crucial information during the feature fusion
process, with minimal impact on parameter count. Additionally, the
aggregation mechanism of WIoU
contributes to further performance gains. The hexagram of the

dynamic non-monotonic

ablation study results, shown in Figure 9, clearly illustrates that
each module enhances the model’s performance. The optimal
performance is achieved when all modules are integrated,
highlighting the synergistic effect of the proposed improvements.

Table 2 Ablation study of module

Model YOLOv8n-seg YOLOtea YOLOtea-ECA YOLOtea-ECA-WIoU

New neck - \ \ v

ECA - - N N

WIoU - - - N
Parameters/M 3.26 322 3.22 3.22
FLOPs/G 12.61 13.39 13.39 13.39
AP50_ box/% 81.69 84.01 84.41 86.02
Recall_ box/% 75.13 77.46 78.21 79.21
AP50_ mask/% 77.05 79.42 80.91 81.60
Recall_ mask/% 72.01 74.24 75.05 75.99

— YOLOVS8n —— YOLOtea
YOLOtea-ECA —— YOLOtea-WIoU
AP50_box
FLOPs Recall_box
Parameters AP50_mask
Recall_mask

Figure 9 Ablation research hexagram
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3.5 Experimental
algorithms

This section presents a comparison between this improved
model and several other models, including Mask R-CNN, SOLOv2,
Point rend, YOLOv5-seg, and YOLOvVS8-seg. This improved model
selected the fusion strategy of (2,3,4) as the optimal local feature
fusion strategy. The experimental results presented in Table 3

comparison of different segmentation

demonstrate that the improved model proposed in this paper
exhibits clear advantages in terms of the number of parameters,
AP50 box, AP50 mask, and inference speed.

Table 3 Experimental comparison of different segmentation
algorithm models
Parameters/ FLOPs/ Backbone  Box Mask FPS/

Model

M G scale  AP50/% AP50/% img:s’
Mask R-CNN 43.97 11525 Resnet50  88.64 8478  15.38
SOLOvV2 46.23 248.20 Resnet50 - 85.60  14.49
Point rend 55.76 64.76  Resnet50  91.89 89.12 13.70
2.76 11.09 n 78.98 74.65 129.87
YOLOVS5-seg
9.78 38.09 K 90.62 86.87  57.14
3.26 12.61 n 81.69 77.05 121.95
YOLOv8-seg
11.79 42.69 K 92.52 89.03  53.76
3.22 13.39 n 86.02 81.60  98.04
TeaYolo
9.80 41.58 K 93.83 89.78  53.48

In this study, the final improved model YOLOtea-ECA-WIoU
is defined as TeaYolo, the n and s in the table indicate the scale of
the model, and the larger the scale the deeper the network is. The
combination of the YOLOv8n-seg scale backbone network and the
proposed improvements yields the most pronounced enhancements,
as evidenced by the 4.33% and 4.55% increases in AP50_box and
AP50_mask, respectively, compared to the original YOLOv8n-seg
model. However, the inference speed is slightly reduced, yet the
98.04 FPS remains sufficient for real-time detection. The
enhancement of the YOLOvS8s backbone network has diminished,
which may be attributed to the fact that the AP50 box has reached
93.83% and the AP50 mask is approaching 90%, which represents
a high level of performance. In comparison to the non-YOLO series
of Mask R-CNN, SOLOvV2, and Point rend, the TeaYolo-n model
does not demonstrate an advantage in terms of accuracy, but it is
significantly faster. The TeaYolo-s model has surpassed the
aforementioned non-YOLO series models in terms of accuracy
while maintaining a substantial lead in speed. The parameters T and
FPS indicate that the YOLO series model has a significant
advantage in real-time performance while maintaining high
accuracy. This is due to the advantages of its algorithmic structure,
which is also the reason why it is widely acknowledged. This
proves that it is correct in choosing the YOLO model as the baseline
model. In comparison with the analogous series of YOLO models,
the YOLOvV8-seg model exhibits greater strength than the YOLOVS-
seg model of the same scale in both n and s. Compared with the
YOLOv8-seg model of the same scale, the model proposed in this
study shows the intensity of the enhancement, thus confirming the
efficacy of the augmentation of the model of this study.

In comparison with other models, the enhanced model in this
study achieves the best balance between performance and inference
speed. In particular, the TeaYolo-n model achieves AP50 box and
AP50_mask of 86.02% and 81.60%, respectively, at a small scale of
3.22 M parameters and a high inference speed of 98.04 FPS. In
comparison with the non-YOLO series and the same scale YOLO
series, the TeaYolo-s model achieves the optimal performance in all
metrics.

3.6 Visualization results on the tea dataset

To intuitively compare the model performance before and after
improvements, the tea shoot samples were selected for visual
analysis of the segmentation results. To simulate the real-world tea
plucking environment and evaluate the generalization performance
of the model, in addition to the dataset images, this study also uses
images from the perspective of the tea plucking robot developed by
our team. The location of the picking robot and camera is shown in
Figure 10. This study represents dataset images as class I and robot
viewpoint images as class II. In this study, the models developed
using various local feature fusion strategies were compared with the
original YOLOv8n-seg model, and the results are shown in
Figure 11. The targets segmented by these five models were
collated and evaluated. Correct targets were manually marked on
the original images with red detection boxes as references. The
segmentation results from each model were then compared against
these references. Orange masks represent the segmentation results
of the respective models, while white and black boxes indicate
missed and incorrectly detected targets, respectively, compared to
the reference examples.

f)
Y
Figure 10  Spatial arrangement of camera and tea plucking robot

The results reveal that for Class I images, the model employing
the optimal local feature strategy maximizes the
segmentation of target tea shoots in the images. Despite a decrease
in performance, models utilizing non-optimal local feature fusion

fusion

strategies still outperform the YOLOv8n-seg model. Moreover, the
improved model exhibits fewer instances of mask breakage,
indicating higher mask quality. Even when confronted with more
small targets in distant views, the improved model demonstrates the
capability to segment a considerable number of tea shoots, with
significantly better results than the YOLOv8n-seg model. For Class
I images, the improved model exhibits improved performance
compared to the original model. However, due to the limitation of
the number of datasets and the large gap in style between the image
types and the training images, there are more missed and wrongly
detected targets than Class I images.

4 Discussion

From the above results, it can be seen that since the model used
160x160 large feature maps, the improvements proposed by this
model have produced good results for tea buds, especially for
smaller tea buds. Figure 12 presents a visualization of the four
distinct sizes of feature maps extracted from the backbone network,
ranging from shallow to deep. Notably, the shallow network
features exhibit higher resolution, encapsulating richer location and
detailed information, but lack semantic depth. Conversely, deeper
network features possess stronger semantic information yet exhibit
lower resolution and limited perception of details. Furthermore,
variations in the receptive fields of different-sized feature maps are
discernible. Figure 13 illustrates the results of Grad-CAM"” heat
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TP:31 FP:4 FN:15 F1:76.54%

TP:29 FP:1 FN:14 F1:79.45%

i

TP:15 FP:12 FN:11 F1:56.60%

Note: a. Manual box labeling b. Improved model under (2,3,4) local feature strategy c. Improved model under (12,23,34) local feature strategy d. Improved model under

(24,13,14) local feature strategy e. Improved model under (123,243,134) local feature strategy f. YOLOv8n-seg model

Figure 11

map visualization for various layers of the backbone network, with
the second layer housing the 160x160 feature maps and the ninth
layer housing the 20x20 feature maps. As depicted in the figure, as
the neural network delves deeper, the sensory fields of the extracted
feature maps progressively expand. For small targets occupying
only a fraction of the image’s local area, a larger receptive field may
overlook these targets, leading to inaccurate localization. Thus, the
utilization of large feature maps extracted from the shallow network
layers proves beneficial in assisting the detection of such small

Visualization results of the original YOLOv8n-seg model and the improved model using different local features on tea samples

targets.

Recognizing that large feature maps are favorably consistent
with the goals of this study, this study initially tried to directly
utilize large feature maps within the framework of the original
model. This entailed extending the bottom-up branch of the neck
network upwards, facilitating the fusion of the 80x80 feature maps
with the 160x160 shallow large feature maps before top-down
fusion. Subsequently, the resulting four different-sized feature maps
were output to the four detection heads. However, this method
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posed challenges. Not only did it necessitate an additional detection
head, but the alignment and fusion of feature maps based on the
160x160 scale significantly escalated model inference computation
and imposed higher demands on the memory of the training device.
Consequently, training costs surged under equivalent equipment
conditions. Furthermore, this study explored augmenting the
utilization of 160x160 large feature maps while discarding the use
of 20x20 small feature maps. Regrettably, this approach yielded
subpar results, with a notable decline in model performance. This
outcome underscores the indispensability of information contained
within the small feature maps extracted from deeper network layers
for effective inference tasks. It aligns with the prevailing

understanding that deeper networks generally yield superior results
due to the crucial information embedded within deeper layers.
Consequently, this study maintained the number of detection heads
and the size of feature maps output to the detection heads while
augmenting the utilization of shallow, large 160x160 feature maps.
To circumvent 160x160 large-scale alignment fusion, these local
features were stratified into dimensions of 80x80, 40x40, and
20%20, with global features standardized at 40%40. This strategic
configuration ensured the efficiency in multi-scale feature fusion.
The model’s performance is optimized when these diverse features
are efficiently combined, enabling it to effectively address various
challenging detection tasks.

Figure 12 Visualization results of feature maps of different sizes; from left to right the sizes of feature maps are 160160,
80x80, 40x40, and 20x20

c. YOLOvV8 C2f 3 (6th layer) output

d. YOLOvVS SPPF (9th layer) output

Figure 13 Visualization of Grad-CAM heat maps for different backbone network layers

Although the proposed improvements show some superiority,
the complexity and variability of the environment impose greater
demands on the model. As can be seen from the images of tea
samples, tea buds and tea leaves often shade each other, while the
target and the background share similar colors. In addition,
variations in light intensity throughout the day can significantly
impact the appearance of tea buds, even within the same variety.
These variations are particularly pronounced when the target is
overexposed, causing the buds to appear whitened and resulting in a
substantial loss of feature texture. To address this issue, future
research will explore multimodal data fusion methods. By
integrating depth information to enhance shape feature
representation, the sensitivity of traditional RGB features to lighting
conditions can be reduced, while fully leveraging the stable
perception advantages of near-infrared spectroscopy in complex
lighting environments such as low light and high reflectivity.
Additionally, to address the issue of tea bud occlusion in complex

picking scenarios, this study proposes introducing a Next-Best-
View active perception strategy. By real-time assessment of the
occlusion status of a tea bud from the current viewpoint, the
camera’s viewpoint is dynamically adjusted through lateral and
pitch micro-adjustments to obtain more complete tea bud
observation data.

5 Conclusions

This study performed a series of optimizations on the YOLOvS8-
seg model to enhance its segmentation capability for small targets in
complex environments. The performance of the improved model
was validated with the following experimental results. Firstly, the
new neck network is more efficient in fusing multi-scale
information and achieves optimal performance when using single
feature maps as local features, resulting in improvements of 2.32%
and 2.37% in AP50 for box and mask, respectively. Furthermore,
when ECA and reparameterization techniques are applied to feature
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fusion, the number of model parameters is reduced from
3.26 million to 3.22 million, and performance continues to improve.
Finally, with WIoU used for gradient assignment in loss
computation, the model’s performance reaches its peak in this
experiment. The final improved model demonstrates enhancements
of 4.33% and 4.55% in AP50 for box and mask, respectively,
compared to the pre-improvement model. In comparisons of
performance and efficiency with other classical segmentation
algorithms models, this model consistently retains its advantage.
This demonstrates the superiority of the improved model in tea
shoot segmentation. This study has significant theoretical and
practical implications for the intelligent and precise plucking of
high-quality tea shoots.
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