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Abstract: Tea shoot segmentation is crucial for the automation of high-quality tea plucking. However, accurate segmentation
of tea shoots in unstructured and complex environments presents significant challenges due to the small size of the targets and
the similarity in color between the shoots and their background. To address these challenges and achieve accurate recognition
of tea shoots  in complex settings,  an advanced tea shoot  segmentation network model  is  proposed based on You Only Look
Once version 8 segmentation (YOLOv8-seg) network model. Firstly, to enhance the model’s segmentation capability for small
targets, this study designed a feature fusion network that incorporates shallow, large-scale features extracted by the backbone
network. Subsequently, the features extracted at different scales by the backbone network are fused to obtain both global and
local  features,  thereby  enhancing  the  overall  information  representation  capability  of  the  features.  Furthermore,  the  Efficient
Channel Attention mechanism was integrated into the feature fusion process and combined with a reparameterization technique
to  refine  and  improve  the  efficiency  of  the  fusion  process.  Finally,  Wise-IoU  with  a  dynamic  non-monotonic  aggregation
mechanism  was  employed  to  assign  varying  gradient  gains  to  anchor  boxes  of  differing  qualities.  Experimental  results
demonstrate that the improved network model increases the AP50 of box and mask by 4.33% and 4.55%, respectively, while
maintaining  a  smaller  parameter  count  and  reduced  computational  demand.  Compared  to  other  classical  segmentation
algorithms  models,  the  proposed  model  excels  in  tea  shoot  segmentation.  Overall,  the  advancements  proposed  in  this  study
effectively  segment  tea  shoots  in  complex  environments,  offering  significant  theoretical  and  practical  contributions  to  the
automated plucking of high-quality tea.
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 1    Introduction
Tea holds substantial economic and cultural value worldwide[1],

and tea harvesting is a crucial aspect of the tea industry. However,
labor  shortages  and  short  harvesting  cycles  pose  significant
challenges  for  tea  harvesting,  necessitating  the  demand  for
automated  tea  harvesting  solutions[2].  Due  to  its  high  economic
value, high-quality tea requires stringent standards for plucking tea
shoots,  which  are  generally  classified  into  three  categories:  single

bud,  one  bud  with  one  leaf,  and  one  bud  with  two  leaves[3].
Therefore,  the  harvesting  of  high-quality  tea  necessitates  selective
plucking  methods,  requiring  the  harvesting  machines  to  possess  a
certain level of intelligence. The detection and segmentation of tea
shoots  are  crucial  for  realizing  intelligent  picking.  Consequently,
research  on  tea  shoot  detection  and  segmentation  is  of  great  value
and significance to the development of the tea industry.

Current crop segmentation primarily relies on traditional image
processing and deep learning.  Traditional  methods segment  targets
based  on  local  features,  geometry,  and  pixel-level  processing,  but
their  reliance on manual feature design limits accuracy in complex
tea  shoot  segmentation[4-6].  Deep  learning  has  achieved  remarkable
success  in  computer  vision,  driving  advancements  in  crop
segmentation[7].  Kang  et  al.[8]  combined  instance  and  semantic
segmentation  in  a  first-order  detection  network,  achieving  high
efficiency  in  apple  detection.  Liao  et  al.[9]  employed  background
transfer learning and a color attention module to improve dandelion
segmentation.  For  tea  shoot  detection,  Xu et  al.[10] proposed a  two-
level  fusion  network  integrating  YOLOv3[11]  and  DenseNet201,
balancing  speed  and  accuracy.  Gui  et  al.[12]  enhanced  detection  by
introducing Ghost convolution[13] and a bottleneck attention module,
reducing computational costs while improving precision. Li et al.[14]

applied a pruned YOLOv3 model for real-time tea shoot picking. In
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the  field  of  small  target  crop  detection,  Wu  et  al.[15]  expanded  the
receptive  field  and  fused  multi-scale  features  via  a  multi-branch
structure, improving weed detection. Xu et al.[16] designed a feature
extraction  module  with  grid  resampling  to  enhance  detection  of
inconspicuous  small  targets.  Liu  et  al.[17]  integrated  a  multi-scale
extraction  module  and  a  dedicated  small  target  detection  layer,
boosting  accuracy  for  unopened  cotton  bolls.  Research
demonstrates that multi-scale feature extraction and fusion enhance
small  object segmentation in agriculture.  However,  tea bud images
captured  by  picking  robots  present  challenges:  their  small  pixel
proportion  and  color  similarity  to  old  leaves  increase  missed  and
false detections. Limited small-target features are further weakened
or  lost  in  deep  network  layers.  While  multi-scale  fusion  improves
detection, cross-scale integration often fails to preserve fine-grained
details, exacerbating spatial information loss. Additionally, the high
color  similarity  between  tea  buds  and  background  demands  robust
shape  and  texture  discrimination,  yet  traditional  feature  weighting
struggles  to  differentiate  noise  from  true  signals,  increasing  false
positives.  Thus,  optimizing  shallow  feature  utilization  and
minimizing information loss during multi-scale fusion is  critical  to
improving small tea bud detection in complex environments.

Early  target  segmentation  algorithms  relied  only  on  final
feature  maps  for  predictions,  neglecting  feature  fusion  in  neck
networks.  Shallow  features  provide  positional  accuracy  but  lack
semantics,  while  deep  features  offer  rich  semantics  but  poor
localization—creating challenges for small  target segmentation. To
address this, Lin et al.[18] proposed Feature Pyramid Network (FPN),
enabling  unidirectional  fusion  by  upsampling  deep  features  and
merging  them  with  shallow  ones.  This  balances  high-level
semantics  and  low-level  details,  improving  small-target  detection
efficiently.  Liu  et  al.[19]  enhanced  FPN  with  path  aggregation
network,  adding  bottom-up  fusion  to  strengthen  multi-scale
representation. Tan et al.[20] advanced bidirectional fusion further via
a  weighted  feature  pyramid  network,  pruning  low-contribution
nodes and iterating layers for adaptive feature weighting.  Zhang et
al.[21]  introduced  TopFormer,  using  multi-scale  tokens  as  inputs  to
generate  perceptive  features,  which  are  injected  back  into  original
tokens.  This  token-based  design  enhances  cross-scale  perception.
Wang et  al.[22]  refined TopFormer with Gather-and-Distribute (GD)
modules  for  granular  feature  fusion  across  scales.  Qian  et  al.[23]

expanded  feature  pyramids  by  adding  five  layers  and  introducing
max  pooling  and  up-sampling  pooling  modules.  These  enable
flexible  multi-scale  fusion  while  preserving  critical  spatial
information.  The  development  of  feature  fusion  techniques  has
progressed  from  top-down  fusion  to  simple  bidirectional  fusion,
then  to  complex  bidirectional  fusion,  and  finally  to  the  use  of
specialized modules to aid in fusion. Top-down fusion often results
in the continuous dilution of information from the topmost layers as
it  progresses  downward.  In  contrast,  bidirectional  fusion,  while
more  effective,  does  not  fully  utilize  secondary  information  for
cross-layer  information  fusion,  especially  across  multiple  layers.
Moreover, the introduction of specially designed complex modules,
despite  improving  fusion  capabilities,  can  lead  to  a  reduction  in
efficiency.

To  address  these  issues,  this  study  proposes  an  enhanced  tea
shoot  segmentation  model  based  on  the  YOLOv8  target
segmentation  algorithm.  The  model  is  targeted  to  a  series  of
improvements  on YOLOv8 according to  the  complex environment
of  the  actual  growth  of  tea.  The  modified  model  enhances  the
segmentation accuracy of tea shoots in the field, thereby facilitating
precise  plucking  by  tea  plucking  robots.  The  key  contributions  of

this study are as follows:
1) Designed a neck fusion network for small targets. The use of

large feature maps of the backbone network was added to the neck
fusion  network.  The  features  are  divided  into  global  and  local
features for multi-scale fusion.

2)  Adding  ECA  attention  mechanism  and  combining  with
reparameterization technique in the feature fusion process to capture
key features and improve the computational efficiency. Realize the
efficient and fine fusion of features.

3) Use Wise-IoU instead of CIoU. Reduce the competitiveness
of  high-quality  anchor  boxes  while  reducing  the  harmful  gradient
generated by low-quality  examples.  The new loss  function focuses
on  average-quality  anchor  boxes,  thus  improving  the  overall
performance of segmentation.

 2    Materials and methods
 2.1    Data preparation
 2.1.1    Data acquisition

The  tea  data  utilized  in  this  study  were  collected  in  August
2023  from  Songyang  County,  Lishui  City,  Zhejiang  Province,
China.  The  tea  variety  is  Longjing.  During  the  collection  process,
the center of the camera lens is  positioned at  a vertical  distance of
0.25-0.30 m from the surface of the tea plant. This distance ensures
that a single frame image fully covers the target tea buds within the
standard tea row width range and maintains the tea buds within an
ideal  size  range  in  the  image.  The  camera’s  optical  axis  was
oriented  at  an  angle  of  55°±2°  relative  to  the  ground  plane.  This
angle maximizes the visible surface area of the tea buds to minimize
leaf  obstruction  while  effectively  suppressing  distant,  unclear
interference targets. Data collection was conducted in two sessions,
morning  and  afternoon,  systematically  covering  typical  tea  garden
lighting  scenarios,  including  direct  sunlight,  diffuse  reflection,  and
leaf  transmission.  This  ensured  diversity  in  the  lighting  conditions
of the dataset. A total of 850 target images were collected.
 2.1.2    Data generation

Using  the  data  clarity  feature  of  the  Baidu  Machine  Learning
(BML) platform, 850 images from the initial dataset were screened.
The screening criteria were to remove images with low clarity due
to  environmental  disturbances  and  those  with  excessive  similarity.
The  annotation  criteria  followed  the  “one  bud,  one  leaf”  standard
for  premium  tea  picking,  annotating  all  areas  above  the  node  and
5  cm  below  the  node.  All  images  in  the  dataset  were  annotated
using  the  instance  segmentation  annotation  tool  on  the  BML
platform,  and  the  annotation  results  were  manually  reviewed  to
verify the accuracy of the annotation of bud and leaf morphological
features.  Following  the  annotation  process,  offline  data
augmentation  was  performed  on  these  images.  The  augmentation
techniques employed were autocontrast and brightness adjustments,
each  of  which  effectively  doubled  the  original  dataset  with  labels.
This augmentation process culminated in a total of 2340 labeled tea
shoots  images.  AutoContrast  enhances  the  contrast  of  images,
thereby  increasing  the  distinction  between  tea  shoots  and  the
background,  which  is  particularly  beneficial  for  differentiating  tea
shoots from older leaves. Brightness adjustment modifies the image
brightness,  simulating  the  varying  lighting  conditions  encountered
in  real  outdoor  environments  from  morning  to  night.  This
adjustment  is  essential  for  increasing  the  dataset’s  diversity  with
respect  to  light  intensity.  The  visual  comparison  of  images  before
and after augmentation is depicted in Figure 1.

After  completing  the  augmentation,  the  dataset  was  divided,
resulting  in  a  tea  segmentation  dataset  comprising  2100  training
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images  and  240  validation  images.  Although  the  dataset  size  is
relatively  modest,  the  tea  targets  are  notably  small  and  densely
packed,  with each image containing between 20 to  40 targets.  The
statistics  show that  there  are  62  985  labeled  targets  in  the  dataset.
These  tea  buds  exhibit  significant  diversity  in  terms  of  growth

posture, spatial arrangement, and lighting conditions, demonstrating
a  certain  degree  of  broad  applicability.  Most  of  these  targets  are
between  5%-10%  of  the  height  of  the  picture,  and  the  width  is
between  2%-5%  of  the  width  of  the  picture,  which  is  typical  of
small targets.

 
 

a. The original figure b. The labeling figure

c. The labeling figure after autocontrast enlargement d. The labeling figure after brightness enlargement

Figure 1    Figure enlargement and labeling
 

 2.2    YOLOv8-seg model introduction
YOLOv8, developed by Ultralytics in January 2023, represents

a  significant  enhancement  and  optimization  over  previous  YOLO
versions,  delivering  notable  improvements  in  image  classification,
object  detection,  and  instance  segmentation[24].  The  backbone
network  employs  the  CSPDarknet  architecture[25],  designed  to
extract  feature  information  at  various  scales.  The  neck  network
incorporates  the  Path  Aggregation  Network  (PAFPN) structure,  an
extension  of  the  FPN.  PAFPN  adds  a  bottom-up  pathway  to  the
traditional FPN, addressing the issue of insufficient detail in deeper
features extracted from shallow features. Consequently, PAFPN can
capture richer feature information. Within the neck network, the C2f
module  facilitates  feature  fusion  and  enhancement,  improving
feature expression capability and network efficiency through cross-
stage local connections. The head of YOLOv8 utilizes a decoupled
head  structure,  which  separates  target  location  and  category
information  into  distinct  output  layers.  For  its  loss  function,
YOLOv8 employs the Complete Intersection over  Union (CIoU)[26]

as  the  regression  loss.  CIoU  improves  regression  accuracy  by
considering  the  relative  proportions  of  detection  boxes  and
incorporating  aspect  ratios.  Overall,  the  YOLOv8  algorithm
demonstrates  exceptional  performance  across  various  tasks,
achieving  state-of-the-art  accuracy  on  multiple  datasets  with  rapid
detection  speeds.  Consequently,  this  model  was  selected  as  a
benchmark for tea shoot detection.
 2.3    Tea segmentation model
 2.3.1    Model improvement and optimization methods

Based on the superior performance of the YOLOv8 algorithm,
this  study  chose  YOLOv8  as  the  baseline  model  for  the  tea  shoot
segmentation algorithm, as shown in Figure 2. The backbone of this
algorithm follows the  structure  of  the  baseline  model,  utilizing the
CBS module and the C2f module to extract features. The backbone

network  extracts  four  types  of  feature  maps:  160×160,  80×80,
40×40, and 20×20. The 160×160 feature map has a small receptive
field  and  high  resolution,  excelling  at  capturing  low-level
information such as the fine textures and blurred edges of tea buds,
but  it  has  weak  semantic  discrimination  capabilities  and  may
confuse tea buds with similar-shaped old leaves. The 80×80 feature
combines  both  detail  and  structural  information,  effectively
distinguishing tea buds from interfering objects  such as leaves and
branches.  The  40×40  feature  possesses  strong  semantic
representation  capabilities,  enhancing  target  discrimination  in
complex  backgrounds,  but  at  the  cost  of  some  detail  loss.  The
20×20 feature, though weakened in small target detection due to its
large  receptive  field,  provides  critical  supplementary  contextual
information for higher-level semantic understanding through multi-
scale  fusion.  Since  this  segmentation  target,  tea  buds,  are  mostly
small  objects  in  the  actual  environment,  the  shallow large  features
extracted by the main network are very helpful for the segmentation
of small objects. Therefore, compared with the baseline model, this
study increased the use of feature maps with a size of 160×160. This
study  input  all  four  feature  maps  into  the  neck  multi-scale  feature
fusion network for feature fusion. A novel multi-scale feature fusion
structure  is  introduced  to  facilitate  the  effective  fusion  of  the  four
sizes  of  feature  maps.  This  structure  incorporates  the  fusion  of
global  features,  local  features,  and  their  combination.  Initially,  the
feature  maps  extracted  from  the  backbone  network  are  fused  to
generate  global  features,  which encapsulate  both shallow and deep
information.  Subsequently,  feature  maps  of  the  same  scale  as  the
output  header  are  fused  with  their  neighboring  feature  maps  to
obtain  local  features.  To  optimize  the  fusion  of  global  and  local
features,  a  parameter-free  attention  mechanism  and
reparameterization  technique  was  employed[27].  Finally,  the  fused
features  are  passed  to  the  detection  head  using  a  bottom-up
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approach, maintaining the same structure as the segmentation head
of  YOLOv8  without  any  modifications.  This  comprehensive

approach  ensures  the  effective  segmentation  of  tea  shoots  while
leveraging the strengths of the YOLOv8 framework.
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Figure 2    Improvement of model network structure
 

 2.3.2    Multi-scale feature fusion
The  specific  acquisition  of  global  features  is  illustrated  in

Figure 3. Prior to the acquisition of global features, it is necessary to
select  the  scale  of  the  global  features.  In  this  case,  40×40  was
chosen as the scale for feature fusion. However, if 20×20 had been
selected, a significant amount of underlying information would have
been lost, which would have been disadvantageous for the detection
of small targets. The use of scales such as 80×80 or even 160×160
would necessitate the allocation of greater computational resources
when  processing  in  subsequent  modules.  In  light  of  the
aforementioned considerations, it can be posited that a fusion scale
of 40×40 is optimal in terms of both accuracy and speed. Once the
fusion scale has been established, the feature maps of the remaining
scales  are  aligned.  The  160×160  and  40×40  feature  maps  are  then
downsampled using average pooling, while the 20×20 feature maps
are upsampled using bilinear interpolation. Finally, the four aligned
features  are  fused  by  the  CBS  module.  The  formula  for  obtaining
global features is as follows:

X̂l =AvgPool(Xl,output_size = (H,W)) (1)
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Figure 3    Structure of global feature fusion module

X̂m =AvgPool(Xm,output_size = (H,W)) (2)

X̂n = Linear(Xn,output_size = (H,W)) (3)

X̂global =CBS
(
Concat

(
X̂l, X̂m, X̂s, X̂n

)
∈ RB×4C×H×W

)
(4)

where, Xl, Xm, Xs, Xm are four different feature scales from largest to
smallest, H and W are the height and width of the features, AvgPool
is  average  pooling,  Linear  is  linear  interpolation,  and Xglobal  is  the
global feature.

With  regard  to  the  acquisition  of  local  features,  the  fusion
method employed is analogous to that used for global features. The
scale  of  the  local  features  determines  the  final  output  to  the
detection head of the feature map scale. The processing of 160×160
size  features  requires  a  significant  amount  of  computational
resources, which is why the choice of 80×80, 40×40, 20×20 as the
scale  of  the  three  local  features  was  made.  The selected  scales  are
employed  as  a  benchmark  for  aligning  features  of  varying  sizes.
Following alignment,  the fusion process is  conducted.  It  should be
noted  that  this  study  has  attempted  to  determine  the  optimal
combination  of  features  extracted  from  the  backbone  network  for
use in generating local features. The selected combinations and the
generated local features are presented in Section 3.3. Thus far, three
types  of  local  features  have  been  obtained,  with  sizes  of  80×80,
40×40, and 20×20, respectively.

Once the requisite global and local features have been obtained,
they  need  to  be  fused  using  the  global-local  feature  fusion  (GLF)
module. Figure 4 demonstrates the specific fusion method using an
80×80 local feature as an example. This process involves the fusion
of  three  distinct  types  of  local  features,  each  with  a  different  size,
with the global features. Firstly, the local features are subjected to a
convolutional  block  with  a  1×1  convolution.  This  operation  is
intended  to  combine  and  transform  the  features  in  each  channel,
thereby  increasing  the  nonlinearity  of  the  network.  At  the  same
time, the channels of the local features are adjusted for subsequent
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weighted  fusion.  Global  features  are  divided  into  two  parallel
branches. The first branch integrates local features, performs scale-
based  feature  alignment,  and  then  processes  them  through  a  1×1
convolution  within  the  CBS  block,  activated  by  the  Sigmoid
function  to  produce  a  set  of  weights.  The  second  branch  consists
only  of  local  features  that  likewise  undergo  scale-based  feature
alignment.Once the aforementioned steps have been completed, the
local features will be processed and the first branch will obtain the
weight,  which  will  then  be  multiplied  with  the  second  branch  to
obtain the results of the addition. Subsequently, the processed local
features will be multiplied with the weights obtained from the first
branch  and  then  added  with  the  results  obtained  from  the  second
branch. Finally, the features will be further extracted and fused by a
RepC2f  module.  At  this  juncture,  the  fusion  of  global  and  local

features  is  complete.  The  formula  for  combining  global  and  local
features is as follows:

Fl =CBS1×1（Xlocal) (5)

Ag = sigmoid(CBS1×1(Linear(Xglobal, (H,W)))) (6)

Fg =CBS1×1(Linear(Xglobal, (H,W))) (7)

Y = Fl ⊗Ag ⊕Fg (8)

⊗ ⊕

where, CBS1×1 is the CBS module using 1×1 convolution, Fl is the
local feature part in the fusion process, Fg  is the entire feature part
in  the  fusion  process, Ag  is  the  global  feature  weight  in  the  fusion
process,    is  element-wise  multiplication,  and    is  element-wise
addition.
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Figure 4    Structure of global-local feature fusion module
 

 2.3.3    Lightweight fusion
At the end of the local feature fusion, global feature fusion, and

local feature and global feature fusion modules, this study has built-
in  Efficient  Channel  Attention[28].  ECA  is  a  lightweight  channel
attention  mechanism,  which,  through  a  local  cross-channel
interaction strategy without dimensionality reduction, can help it to
focus on the really important parts of the channel during the feature
fusion process and thus improve the performance of the model. The
structure of ECA is shown in Figure 5.  ECA first  performs Global
Average Pooling on the input feature maps to obtain a global feature

description for  each channel.  Then one-dimensional  convolution is
used to  capture  the  inter-channel  dependencies.  Finally,  the  results
obtained by 1D convolution are used as channel weights to weight
the  original  feature  maps.  ECA  introduces  almost  no  parameters,
and  in  this  model,  a  single  use  of  ECA  introduces  only  three
parameters,  and  ultra-lightweight  is  the  main  reason  why  it  is
chosen.

In the context of local and global feature fusion, as well as top-
down fusion, the reparameterization technique is employed to adjust
the  convolutional  layers  within  the  C2f  residual  block.  The
fundamental  principle  of  the  reparameterization  technique  is  to
decompose  a  complex  convolutional  operation  into  a  series  of
elementary  convolutional  operations  for  training  purposes,  and
subsequently  to  merge  these  elementary  convolutional  operations
into an equivalent complex convolutional operation in the inference
stage.  The  conversion  diagram  is  shown  in  Figure  6.  During
training,  a  multi-branch  structure  is  adopted  to  enhance  training
effectiveness.  The  main  branch  consists  of  a  3×3  convolution
followed by a BN activation function; the auxiliary branch consists

 

GAP      Global-average-pooling

GAP Sigmoid

Figure 5    Structure of efficient channel attention module
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Figure 6    Schematic diagram of reparameterization training inference conversion
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of a 1×1 convolution followed by a BN activation function; the third
branch  is  an  identity  mapping  branch,  used  when  the  input  and
output  channel  counts  are  the  same.  During  inference,  the  three
trained  branches  are  converted  into  a  single  3×3  convolution.  The
identity branch can be viewed as a 1×1 convolution. First, the conv
and  BN  operations  are  converted  into  a  convolution  with  a  bias
term.  Then,  the  edges  of  the  two  1×1  convolution  kernels  are
padded  with  zeros  to  form  a  3×3  convolution  kernel.  Finally,  the
three  convolution  kernels  are  summed  together.  This  method
enhances  the  expressive  capacity  and  training  efficiency  of  the
model while maintaining the inference efficiency.
 2.3.4    WIoU loss algorithm

Accurate target localization is a pivotal step in target detection
algorithms,  achieved  through  the  regression  of  the  bounding  box.
Wise-IoU  (WIoU)[29]  introduces  a  dynamic  non-monotonic
aggregation  mechanism and  proposes  evaluating  the  quality  of  the
anchor  box  based  on  its  degree  of  outlier.  This  method  employs  a
gradient  gain  assignment  strategy  to  diminish  the  competitiveness
of  high-quality  anchor  boxes  while  mitigating  the  detrimental
gradient effects of low-quality samples.

WIoUv3  is  improved  by  WIoUv1;  WIoUv1  can  be  obtained
from  Equation  (9)-(11).  IoU  is  utilized  to  measure  the  degree  of
overlap between the prediction box and the real box. ΡWIoU reflects
the degree of attention to the center distance.

LIoU = 1− IoU = 1− WiHi

S u

∈ [0,1] (9)

RWIoU = exp

Ç
(x− xgt)

2
+ (y− ygt)

2(
W2

g +H2
g

) å
∈ [1,e) (10)

LWIoUv1 =RWIoULIoU (11)
where Wi and Hi represent the width and height of the overlapping
part, and Su denotes the area of the prediction box and the real box
minus  the  overlapping  part.  The  coordinates  (x,  y)  and  (xgt,  ygt)
correspond to  the  centers  of  the  prediction  and real  boxes. Wg  and
Hg  are  the  width  and  height  of  the  smallest  rectangular  box  that
encircles the prediction box and the real box.

Λ∗IoU

WIoUv3  introduces  the  concept  of  outlier  β  to  assess  the
quality  of  the  anchor  box.  Utilizing  β,  along  with  the  predefined
fixed values α and δ, the non-monotonic aggregation coefficient r is
constructed and subsequently applied to WIoUv1.   denotes the
monotonic focus factor. This dynamic gradient assignment strategy
optimizes  gradient  allocation  according  to  real-time  conditions,
thereby  mitigating  the  influence  of  low-quality  samples  that  could
produce  detrimental  gradients.  The  formula  for  WIoUv3  is  as
follows:

β =
L∗IoU

LIoU

∈ [0,+∞) (12)

LWIoUv3 = rLWIoUv1, r =
β

δαβ−δ
(13)

The  study  focuses  on  tea  shoots,  which  present  a  challenging
environment  characterized  by  dense  growth,  small  target  size,
variable angles, and frequent occlusions, resulting in the presence of
some  low-quality  samples.  In  such  scenarios,  applying  a  static
approach  to  all  samples,  including  low-quality  ones,  can
inadvertently  enhance the  fitting loss  and compromise  the  model’s
generalization capability. To address this issue, this study employed
WIoUv3  in  place  of  CIoU  within  the  YOLOv8  framework,
leveraging the advanced dynamic mechanisms of WIoU to improve
detection performance under these complex conditions.

 3    Experimental results and analysis
 3.1    Evaluation indicators

The  complexity  and  performance  evaluation  of  deep  learning
models typically employs metrics such as precision, recall, average
precision  (AP),  the  number  of  parameters,  and  floating-point
operations per second (FLOPs).

Precision  quantifies  the  probability  of  true  positive  samples
among  all  samples  predicted  to  be  positive,  while  recall  measures
the  probability  of  true  positive  samples  among  all  actual  positive
samples. Average precision (AP) is calculated as the area under the
precision-recall  curve,  representing  the  mean  precision  across
varying  recall  levels.  These  metrics  collectively  provide  a
comprehensive evaluation of model performance and are computed
using the following equations:

Precision = TP
TP + FP (14)

Recall = TP
TP + FN (15)

APα =
w 1

0
p (r)dr (16)

where, TP, FP, and FN are the number of true positive cases, false
positive  cases,  and  false  negative  cases,  respectively. P(r)  denotes
the precision when the recall is r, and α denotes the IoU threshold.
A  larger  value  of  α  represents  a  more  stringent  prediction
requirement;  in  this  paper,  α  is  set  to  0.5,  and  AP50  is  used  to
denote  the  average  accuracy  of  the  model  in  subsequent
experiments in this paper.

Parameters directly influence the storage demands of a model,
while  FLOPs  quantify  the  computational  workload  during  model
inference. These metrics serve as pivotal benchmarks for assessing
model  complexity  and  computational  resource  utilization.
Computation  of  these  metrics  is  facilitated  by  the  following
equations:

Parameter =Cin ×Cout × K ×K (17)

FLOPs =
(

2Cin ×K2 −1
)
×Hout ×Wout ×Cout (18)

where, Cin  and Cout  are  the  number  of  channels  of  the  input  and
output convolutional layers, K denotes the size of the convolutional
kernel,  and Hout  and Wout  are  the  height  and  width  of  the  output
feature map of the convolutional layer.
 3.2    Experimental platform and training settings

This experiment was performed on a computer with 64 GB of
RAM on  Ubuntu  16.04  LTS system,  an  Intel  i7-9800  8-core  CPU
and four NVIDIA RTX2080Ti 11GB GPUs. The learning task was
performed  on  python  3.8.17  using  the  computing  platform
CUDA10.2, cuDNN 7.6.5 with pytorch 1.8.0.

The  experimentation  leverages  the  YOLOv8  codebase,  which
offers  a  spectrum  of  model  scales  designated  as n,  s, m,  l,  and  x,
where  n  denotes  the  smallest  model.  To  ensure  methodological
consistency,  all  training  parameters  remain  uniform,  with  pre-
training  weights  being  omitted.  The  training  was  performed  for  a
total  of  200  epochs,  the  batch  size  was  set  to  32,  and  the  image
input  size  was  640×640.  Training  is  executed  employing  the  SGD
optimizer,  initialized with  a  learning rate  of  0.01.  To speed up the
training process and to avoid overfitting, the impulse parameter was
set to 0.937 and the weight decay coefficient to 0.0005.
 3.3    Local feature fusion selection experiments

An  ablation  study  is  performed  in  this  section  to  investigate
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which  block  or  blocks  of  features  extracted  using  the  backbone
network can lead to the best performance of the model when fused
to obtain local features.

The  backbone  network  extracts  feature  maps  of  four  different
sizes,  labeled  sequentially  from  shallow  to  deep  as  1  through  4.
Specifically, the values 1, 2, 3, and 4 correspond to the dimensions
of  160×160,  80×80,  40×40,  and  20×20  feature  maps,  respectively.
The neck network requires three distinct sizes of local features. The
notation  (2,3,4)  indicates  that  the  feature  maps  labeled  2,  3,  and  4
are  used  independently  as  local  features.  The  notation  (12,23,34)
signifies the fusion of feature maps 1 and 2, 2 and 3, and 3 and 4,
serving  as  the  first,  second,  and  third  local  features,  respectively.
Similarly,  (123,234,134)  represents  the  fusion  of  three  different
sizes  of  feature  maps  to  form  each  local  feature.  Figure  7  and
Figure  8  display  the  AP50  and  loss  metrics  of  the  model  during
training  with  various  local  feature  fusion  strategies.  These  figures
demonstrate  that  the  new  neck  network  facilitates  faster
convergence and improved AP50.
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Table  1  presents  the  performance  outcomes  of  models
employing  various  local  feature  fusion  strategies  on  the  validation
set.  The  results  indicate  a  consistent  improvement  in  performance
over  YOLOv8n-seg’s  PAFPN,  irrespective  of  the  local  feature
fusion  strategy  used.  Notably,  the  model  utilizing  a  single  feature
map as the local feature achieves the highest performance. This may
be due to the global feature already encapsulating information from
the  four  different-sized  feature  maps,  and excessive  fusion  leading
to information redundancy. Compared to YOLOv8n-seg, the model
with  the  optimal  fusion  strategy  shows  improvements  of  4.33% in
AP50 and 4.08% in Recall for box, and 4.55% in AP50 and 3.98%
in  Recall  for  mask.  The  neck  structure  introduced  in  this  study
increases  the  fusion  operations  of  feature  maps  of  varying  sizes.
However, due to the reparameterization of C2f, the overall number
of parameters for the model under the optimal fusion strategy is less
than that of YOLOv8n-seg. Models using the fusion of two or three
feature  maps  as  local  features  exhibit  a  gradual  increase  in
parameter count compared to the original model. Regarding FLOPs
performance,  YOLOv8n-seg  achieves  the  best  results,  primarily

because  the  fusion  of  different-sized  feature  maps  necessitates
operations  such  as  feature  alignment,  thereby  increasing
computational  effort.  Additionally,  YOLOv8n-seg,  as  the  smallest
model  in  the  YOLOv8  series,  achieves  an  inference  speed  of
1.21  millisecond  per  image  on  A100  TensorRT.  Therefore,  given
that  12.61G  FLOPs  require  only  1.21  millisecond,  the  additional
0.78G FLOPs for a nearly 4% improvement in AP50 and Recall is a
worthwhile trade-off.
  

Table 1    Results of different local feature fusion strategies

Local feature Parameters/
M

FLOPs/
G

AP50_
box/%

Recall_
box/%

AP50_
mask/%

Recall_
mask/%

(2,3,4) 3.22 13.39 86.02 79.21 81.60 75.99
(12,23,34) 3.33 13.82 85.38 78.54 80.28 74.46
(13,14,24) 3.35 13.99 85.58 78.62 80.92 75.93

(123,234,134) 3.35 14.10 84.87 78.46 79.82 74.74
YOLOv8n-seg 3.26 12.61 81.69 75.13 77.05 72.01

 

 3.4    Ablation study of module
To better understand the contributions of each improvement to

the  model’s  performance  enhancement,  this  study  conducted  a
related  ablation  study.  The  results  of  this  study  are  presented  in
Table 2. The data clearly demonstrate that the model incorporating
the  new  neck  network  outperforms  the  original  YOLOv8n-seg
model.  This  finding underscores  the  pivotal  role  of  the  multi-scale
feature fusion method in boosting model performance. Furthermore,
the inclusion of the ECA attention mechanism allows the model to
better  focus  on  crucial  information  during  the  feature  fusion
process, with minimal impact on parameter count. Additionally, the
dynamic  non-monotonic  aggregation  mechanism  of  WIoU
contributes  to  further  performance  gains.  The  hexagram  of  the
ablation  study  results,  shown  in  Figure  9,  clearly  illustrates  that
each  module  enhances  the  model’s  performance.  The  optimal
performance  is  achieved  when  all  modules  are  integrated,
highlighting the synergistic effect of the proposed improvements.
  

Table 2    Ablation study of module
Model YOLOv8n-seg YOLOtea YOLOtea-ECA YOLOtea-ECA-WIoU

New neck - √ √ √
ECA - - √ √
WIoU - - - √

Parameters/M 3.26 3.22 3.22 3.22
FLOPs/G 12.61 13.39 13.39 13.39

AP50_ box/% 81.69 84.01 84.41 86.02
Recall_ box/% 75.13 77.46 78.21 79.21
AP50_ mask/% 77.05 79.42 80.91 81.60
Recall_ mask/% 72.01 74.24 75.05 75.99

  
YOLOV8n YOLOtea

YOLOtea-ECA YOLOtea-WIoU

AP50_box

Recall_box

AP50_mask

Recall_mask

Parameters

FLOPs

Figure 9    Ablation research hexagram
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 3.5    Experimental  comparison  of  different  segmentation
algorithms

This  section  presents  a  comparison  between  this  improved
model and several other models, including Mask R-CNN, SOLOv2,
Point rend, YOLOv5-seg, and YOLOv8-seg. This improved model
selected  the  fusion  strategy  of  (2,3,4)  as  the  optimal  local  feature
fusion  strategy.  The  experimental  results  presented  in  Table  3
demonstrate  that  the  improved  model  proposed  in  this  paper
exhibits  clear  advantages  in  terms  of  the  number  of  parameters,
AP50_box, AP50_mask, and inference speed.
  

Table 3    Experimental comparison of different segmentation
algorithm models

Model Parameters/
M

FLOPs/
G

Backbone
scale

Box_
AP50/%

Mask_
AP50/%

FPS/
img∙s–1

Mask R-CNN 43.97 115.25 Resnet50 88.64 84.78 15.38
SOLOv2 46.23 248.20 Resnet50 - 85.60 14.49
Point rend 55.76 64.76 Resnet50 91.89 89.12 13.70

YOLOv5-seg
2.76 11.09 n 78.98 74.65 129.87
9.78 38.09 s 90.62 86.87 57.14

YOLOv8-seg
3.26 12.61 n 81.69 77.05 121.95
11.79 42.69 s 92.52 89.03 53.76

TeaYolo
3.22 13.39 n 86.02 81.60 98.04
9.80 41.58 s 93.83 89.78 53.48

 

In this  study,  the final  improved model  YOLOtea-ECA-WIoU
is defined as TeaYolo, the n and s in the table indicate the scale of
the  model,  and  the  larger  the  scale  the  deeper  the  network  is.  The
combination of the YOLOv8n-seg scale backbone network and the
proposed improvements yields the most pronounced enhancements,
as  evidenced by the  4.33% and 4.55% increases  in  AP50_box and
AP50_mask,  respectively,  compared  to  the  original  YOLOv8n-seg
model.  However,  the  inference  speed  is  slightly  reduced,  yet  the
98.04  FPS  remains  sufficient  for  real-time  detection.  The
enhancement  of  the  YOLOv8s  backbone  network  has  diminished,
which may be attributed to the fact that the AP50 _box has reached
93.83% and the AP50 _mask is approaching 90%, which represents
a high level of performance. In comparison to the non-YOLO series
of  Mask  R-CNN,  SOLOv2,  and  Point  rend,  the  TeaYolo-n model
does  not  demonstrate  an  advantage  in  terms  of  accuracy,  but  it  is
significantly  faster.  The  TeaYolo-s  model  has  surpassed  the
aforementioned  non-YOLO  series  models  in  terms  of  accuracy
while maintaining a substantial lead in speed. The parameters T and
FPS  indicate  that  the  YOLO  series  model  has  a  significant
advantage  in  real-time  performance  while  maintaining  high
accuracy. This is due to the advantages of its algorithmic structure,
which  is  also  the  reason  why  it  is  widely  acknowledged.  This
proves that it is correct in choosing the YOLO model as the baseline
model.  In comparison with the analogous series of  YOLO models,
the YOLOv8-seg model exhibits greater strength than the YOLOv5-
seg  model  of  the  same  scale  in  both n  and  s.  Compared  with  the
YOLOv8-seg model  of  the  same scale,  the  model  proposed in  this
study shows the  intensity  of  the  enhancement,  thus  confirming the
efficacy of the augmentation of the model of this study.

In  comparison  with  other  models,  the  enhanced  model  in  this
study achieves the best balance between performance and inference
speed.  In particular,  the TeaYolo-n model  achieves AP50_box and
AP50_mask of 86.02% and 81.60%, respectively, at a small scale of
3.22  M  parameters  and  a  high  inference  speed  of  98.04  FPS.  In
comparison  with  the  non-YOLO series  and  the  same  scale  YOLO
series, the TeaYolo-s model achieves the optimal performance in all
metrics.

 3.6    Visualization results on the tea dataset
To intuitively compare the model performance before and after

improvements,  the  tea  shoot  samples  were  selected  for  visual
analysis of the segmentation results. To simulate the real-world tea
plucking  environment  and  evaluate  the  generalization  performance
of the model, in addition to the dataset images, this study also uses
images from the perspective of the tea plucking robot developed by
our team. The location of the picking robot and camera is shown in
Figure 10. This study represents dataset images as class I and robot
viewpoint  images  as  class  II.  In  this  study,  the  models  developed
using various local feature fusion strategies were compared with the
original  YOLOv8n-seg  model,  and  the  results  are  shown  in
Figure  11.  The  targets  segmented  by  these  five  models  were
collated  and  evaluated.  Correct  targets  were  manually  marked  on
the  original  images  with  red  detection  boxes  as  references.  The
segmentation results  from each model  were then compared against
these  references.  Orange  masks  represent  the  segmentation  results
of  the  respective  models,  while  white  and  black  boxes  indicate
missed  and  incorrectly  detected  targets,  respectively,  compared  to
the reference examples.
  

Figure 10    Spatial arrangement of camera and tea plucking robot
 

The results reveal that for Class I images, the model employing
the  optimal  local  feature  fusion  strategy  maximizes  the
segmentation of target tea shoots in the images. Despite a decrease
in  performance,  models  utilizing  non-optimal  local  feature  fusion
strategies still  outperform the YOLOv8n-seg model. Moreover, the
improved  model  exhibits  fewer  instances  of  mask  breakage,
indicating  higher  mask  quality.  Even  when  confronted  with  more
small targets in distant views, the improved model demonstrates the
capability  to  segment  a  considerable  number  of  tea  shoots,  with
significantly better results than the YOLOv8n-seg model. For Class
II  images,  the  improved  model  exhibits  improved  performance
compared to  the  original  model.  However,  due  to  the  limitation of
the number of datasets and the large gap in style between the image
types  and  the  training  images,  there  are  more  missed  and  wrongly
detected targets than Class I images.

 4    Discussion
From the above results, it can be seen that since the model used

160×160  large  feature  maps,  the  improvements  proposed  by  this
model  have  produced  good  results  for  tea  buds,  especially  for
smaller  tea  buds.  Figure  12  presents  a  visualization  of  the  four
distinct sizes of feature maps extracted from the backbone network,
ranging  from  shallow  to  deep.  Notably,  the  shallow  network
features exhibit higher resolution, encapsulating richer location and
detailed  information,  but  lack  semantic  depth.  Conversely,  deeper
network features  possess  stronger  semantic  information yet  exhibit
lower  resolution  and  limited  perception  of  details.  Furthermore,
variations in the receptive fields of different-sized feature maps are
discernible.  Figure  13  illustrates  the  results  of  Grad-CAM[30]  heat
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map visualization for various layers of the backbone network, with
the  second  layer  housing  the  160×160  feature  maps  and  the  ninth
layer housing the 20×20 feature maps. As depicted in the figure, as
the neural network delves deeper, the sensory fields of the extracted
feature  maps  progressively  expand.  For  small  targets  occupying
only a fraction of the image’s local area, a larger receptive field may
overlook these targets,  leading to inaccurate localization. Thus, the
utilization of large feature maps extracted from the shallow network
layers  proves  beneficial  in  assisting  the  detection  of  such  small

targets.
Recognizing  that  large  feature  maps  are  favorably  consistent

with  the  goals  of  this  study,  this  study  initially  tried  to  directly
utilize  large  feature  maps  within  the  framework  of  the  original
model.  This  entailed  extending  the  bottom-up  branch  of  the  neck
network upwards, facilitating the fusion of the 80×80 feature maps
with  the  160×160  shallow  large  feature  maps  before  top-down
fusion. Subsequently, the resulting four different-sized feature maps
were  output  to  the  four  detection  heads.  However,  this  method

 

Tea buds: 46

a.

b.

c.

d.

e.

f.

Tea buds: 43 Tea buds: 26

TP:39  FP:3  FN:7   F1:88.64% TP:35  FP:1  FN:8   F1:88.61% TP:20  FP:11  FN:6  F1:70.18%

TP:39  FP:3  FN:7   F1:88.64% TP:34  FP:1  FN:9   F1:87.18% TP:18  FP:11  FN:8   F1:65.45%

TP:37  FP:4  FN:9   F1:85.06% TP:30  FP:3  FN:13   F1:78.95% TP:14  FP:8  FN:12   F1:58.33%

TP:34  FP:0  FN:12   F1:85.00% TP:32  FP:1  FN:11   F1:84.21% TP:18  FP:11  FN:8   F1:65.45%

TP:31  FP:4  FN:15   F1:76.54% TP:29  FP:1  FN:14   F1:79.45% TP:15  FP:12  FN:11   F1:56.60%

Note: a. Manual box labeling b. Improved model under (2,3,4) local feature strategy c. Improved model under (12,23,34) local feature strategy d. Improved model under
(24,13,14) local feature strategy e. Improved model under (123,243,134) local feature strategy f. YOLOv8n-seg model

Figure 11    Visualization results of the original YOLOv8n-seg model and the improved model using different local features on tea samples
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posed challenges. Not only did it necessitate an additional detection
head,  but  the  alignment  and  fusion  of  feature  maps  based  on  the
160×160 scale significantly escalated model inference computation
and imposed higher demands on the memory of the training device.
Consequently,  training  costs  surged  under  equivalent  equipment
conditions.  Furthermore,  this  study  explored  augmenting  the
utilization of  160×160 large feature  maps while  discarding the use
of  20×20  small  feature  maps.  Regrettably,  this  approach  yielded
subpar  results,  with  a  notable  decline  in  model  performance.  This
outcome  underscores  the  indispensability  of  information  contained
within the small feature maps extracted from deeper network layers
for  effective  inference  tasks.  It  aligns  with  the  prevailing

understanding that deeper networks generally yield superior results
due  to  the  crucial  information  embedded  within  deeper  layers.
Consequently, this study maintained the number of detection heads
and  the  size  of  feature  maps  output  to  the  detection  heads  while
augmenting the utilization of shallow, large 160×160 feature maps.
To  circumvent  160×160  large-scale  alignment  fusion,  these  local
features  were  stratified  into  dimensions  of  80×80,  40×40,  and
20×20,  with  global  features  standardized  at  40×40.  This  strategic
configuration  ensured  the  efficiency  in  multi-scale  feature  fusion.
The model’s performance is optimized when these diverse features
are  efficiently  combined,  enabling  it  to  effectively  address  various
challenging detection tasks.

 
 

Figure 12    Visualization results of feature maps of different sizes; from left to right the sizes of feature maps are 160×160,
80×80, 40×40, and 20×20

 
 

a. YOLOv8 C2f_1 (2th layer) output b. YOLOv8 C2f_2 (4th layer) output

c. YOLOv8 C2f_3 (6th layer) output d. YOLOv8 SPPF (9th layer) output

Figure 13    Visualization of Grad-CAM heat maps for different backbone network layers
 

Although  the  proposed  improvements  show  some  superiority,
the  complexity  and  variability  of  the  environment  impose  greater
demands  on  the  model.  As  can  be  seen  from  the  images  of  tea
samples,  tea  buds  and tea  leaves  often shade each other,  while  the
target  and  the  background  share  similar  colors.  In  addition,
variations  in  light  intensity  throughout  the  day  can  significantly
impact  the  appearance  of  tea  buds,  even  within  the  same  variety.
These  variations  are  particularly  pronounced  when  the  target  is
overexposed, causing the buds to appear whitened and resulting in a
substantial  loss  of  feature  texture.  To  address  this  issue,  future
research  will  explore  multimodal  data  fusion  methods.  By
integrating  depth  information  to  enhance  shape  feature
representation, the sensitivity of traditional RGB features to lighting
conditions  can  be  reduced,  while  fully  leveraging  the  stable
perception  advantages  of  near-infrared  spectroscopy  in  complex
lighting  environments  such  as  low  light  and  high  reflectivity.
Additionally,  to  address  the  issue  of  tea  bud occlusion  in  complex

picking  scenarios,  this  study  proposes  introducing  a  Next-Best-
View  active  perception  strategy.  By  real-time  assessment  of  the
occlusion  status  of  a  tea  bud  from  the  current  viewpoint,  the
camera’s  viewpoint  is  dynamically  adjusted  through  lateral  and
pitch  micro-adjustments  to  obtain  more  complete  tea  bud
observation data.

 5    Conclusions
This study performed a series of optimizations on the YOLOv8-

seg model to enhance its segmentation capability for small targets in
complex  environments.  The  performance  of  the  improved  model
was  validated  with  the  following  experimental  results.  Firstly,  the
new  neck  network  is  more  efficient  in  fusing  multi-scale
information  and  achieves  optimal  performance  when  using  single
feature maps as local features, resulting in improvements of 2.32%
and  2.37%  in  AP50  for  box  and  mask,  respectively.  Furthermore,
when ECA and reparameterization techniques are applied to feature
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fusion,  the  number  of  model  parameters  is  reduced  from
3.26 million to 3.22 million, and performance continues to improve.
Finally,  with  WIoU  used  for  gradient  assignment  in  loss
computation,  the  model’s  performance  reaches  its  peak  in  this
experiment.  The final improved model demonstrates enhancements
of  4.33%  and  4.55%  in  AP50  for  box  and  mask,  respectively,
compared  to  the  pre-improvement  model.  In  comparisons  of
performance  and  efficiency  with  other  classical  segmentation
algorithms  models,  this  model  consistently  retains  its  advantage.
This  demonstrates  the  superiority  of  the  improved  model  in  tea
shoot  segmentation.  This  study  has  significant  theoretical  and
practical  implications  for  the  intelligent  and  precise  plucking  of
high-quality tea shoots.
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