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Using SWAT to simulate crop yields and 
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Abstract: Crop yields and salinity levels in the North Fork of the Red River (North Fork River) basin, located in southwestern 
Oklahoma and the Texas Panhandle, were analyzed based on the diverse climate in the region.  Saline irrigation water is a 
major problem in the basin.  The Elm Fork Creek flows through salt deposits, making the creek and its receiving stream, the 
North Fork River, too saline to use for irrigation.  This greatly reduces the number of hectares that can be utilized for 
agricultural crops within the basin.  A baseline SWAT model was setup, calibrated and validated to simulate streamflow and 
wheat and cotton yields.  The SWAT model and a regression equation were used to analyze variable weather impacts on crop 
yields and salinity levels.  Using the weather generator WXGEN and 58 years of observed weather data, ten 50-year weather 
datasets were generated.  Output from the weather generator was input into the calibrated SWAT model to simulate wheat and 
dryland and irrigated cotton yields for the ten weather scenarios.  Using an empirical relationship between ionic strength and 
streamflow, salinity levels were estimated.  Though the crop yields varied greatly from year to year, the yields were not 
significantly different over the 50-year simulation period.  The electrical conductivity (EC, expressed in decisiemens per meter 
or dS/m) at the US Geological Survey gage station just downstream of the salt deposits was significantly different with levels 
ranging from 40 to 65 dS/m.  Though the water in the Elm Fork is much too saline to use for irrigation, the water in the North 
Fork River may be used as long as the flow rates in the river are greater than 0.60 m3/s.  In order to optimize the available 
cropland, a salinity control must be installed upstream of the salt deposits on the Elm Fork Creek. 
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1  Introduction 

The effects of saline irrigation water on crop yields 
are major problems worldwide[1].  In the western USA, 
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climatic conditions are generally characterized by low 
precipitation and high evaporative demand, resulting in 
crop production systems that are heavily dependent on 
irrigation[2,3].  Much of the irrigated cropland in the 
region has been greatly impacted by high salinity levels 
in local stream systems, groundwater and other sources of 
irrigation water.  As a result, irrigated crop yields have 
been negatively impacted by saline irrigation water[2,3], 
resulting in a total estimated reduction in revenue of 
approximately $2.5 billion for the western USA crop 
production region[2].  These negative salinity impacts 
could be further exacerbated if variability in climatic 
patterns intensifies in the future.   

Due to increased water demand, many agricultural 
producers in various regions across the globe are forced 
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to use irrigation water which is often characterized by 
high salinity levels.  In turn, the continued irrigation of 
saline water and the subsequent water removal by the 
plants often results in salt accumulations in the soil[4].  
The increased salinity levels in the soils not only 
produces toxic effects on plant growth, but also 
significantly reduces the potential water uptake by plants 
and thus inhibits plant growth and reduces yields[5].   

Excessive salinity levels have been found to result in 
significant decreases in lettuce, alfalfa and cotton yields 
in the western USA[3].  Decreases in crop yields in 
response to high soil and irrigation water salinity levels 
have also been reported in other countries[1].  In India 
for example, wheat and cotton yields decreased by 11% 
and 30%, respectively, when the electrical conductivity 
(EC, expressed in decisiemens per meter or dS/m) of the 
irrigation water increased from 2-4 to 4-6 dS/m[6].  
These crop yields further decreased 40% and 45% when 
the salinity levels were 6-8 dS/m. Some crops are more 
resistant than others to saline water[7].  At 6 dS/m, cotton 
yields are not affected, alfalfa yields decrease by half and 
lettuce yields drop to near zero[3].  In the Ibshwai 
District in Africa they found that wheat yields were not 
affected, onion yields decreased by 33%, peppers by 50% 
and summer tomatoes by over 75% when the EC of the 
irrigated water increased from 0.5 to 2.8 dS/m[1,8]. 

Crop growth models are important tools in evaluating 
the potential growth and yields of crops in different 
climatic and environmental conditions, including saline 
affected watershed systems.  There have been several 
studies predicting wheat yields using various models, 
such as the CERES-wheat model[9,10], the Environmental 
Policy Integrated Climate (EPIC) field-scale 
environmental model[10,11], and the Soil and Water 
Assessment Tool (SWAT) water quality model[12,13].  
Vaghefi et al.[14] and Faramarzi et al.[15] used SWAT to 
simulate wheat yields in Iran.  Sun and Ren[16] used 
SWAT to simulate winter wheat-summer maize double 
cropping system for various irrigation and nutrient stress 
scenarios in China, while Nair et al.[17] used SWAT to 
calibrate wheat, soybean and corn yields and compare the 
simulated crop yields to observed yields.  Other models, 
such as EPIC[18,19] and GRAMI[20], have been utilized to 

predict cotton yields. Sarkar et al.[21], Panagopoulos et 
al.[22] and Gikas et al.[23] used SWAT to estimate cotton 
yields, though none of these studies separated cotton into 
dryland and irrigated, and only Sarkar et al.[21] compared 
the SWAT simulated yields to observed yields. Previous 
research has also underscored the importance of 
incorporating calibration of crop yields within overall 
hydrologic and water quality testing of SWAT 
applications[21].  

The Elm Fork River, a major tributary of the North 
Fork of the Red River (North Fork River) in southwest 
Oklahoma, USA, flows through salt deposits upstream of 
its confluence with the North Fork River, resulting in all 
water downstream becoming too saline to use for 
irrigation purposes.  However, Bhavsar et al.[24] found 
that there were over 20 000 hm2 of soil with irrigation 
potential along the Elm and North Fork Rivers in the 
overall North Fork River basin.  Thus, it is urgent to 
determine if the excessive saline content of the North 
Fork River stream system can be mitigated to overcome 
current limitations for irrigation use, especially within the 
context of potential future climatic variability.  The 
application of a model, such as SWAT, could be very 
useful in such an analysis.  

At present, SWAT does not simulate salinity directly 
in streamflow; however, Gikas et al.[25], Piman et al.[26], 
and Somura et al.[27] used SWAT to simulate streamflows, 
and then used the estimated streamflows with other 
models or regression equations to simulate salinity 
impacts for studies conducted in Greece, southeast Asia, 
and Japan.  The overall goal of this study is to build on 
these previous studies to predict in-stream salinity levels 
for the North Fork River, and then to assess the effects of 
climatic variability on in-stream salinity levels and the 
implications of the salinity levels on crop yields based on 
analyses performed with SWAT.  Thus, the specific 
objectives of this research are to describe: (1) the SWAT 
baseline streamflow calibration/validation and crop yield 
calibration procedures and results, (2) the interface 
between SWAT streamflow estimates and a regression 
equation in order to predict in-stream salinity levels, and 
(3) the analysis of potential future salinity levels and 
corresponding crop yields based on likely weather 
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variability for the North Fork River basin.  These results 
will help watershed planners better understand the 
potential variability in salinity levels and crop yields in 
the basin and provide guidance in deciding if a salinity 
control is necessary and cost efficient. 

2  Materials and methods 

This study was divided into three steps.  The first 
step was to setup, calibrate and validate streamflow in the 
basin using the SWAT model.  The second step was to 
use historical weather data and the weather generator 
WXGEN to generate ten 50-year datasets as input for the 
calibrated SWAT model.  The final step was to estimate 
and analyze the range of crop yields and salinity levels in 
the basin resulting from weather variability.  Since 
SWAT does not simulate salinity, a regression equation 
was developed using streamflow and EC.  
2.1  Study area description 

The North Fork River basin occupies 5 900 km2 in 
southwest Oklahoma and the Texas panhandle (Figure 1).  
The basin receives an average annual rainfall of 695 mm 
with average minimum and maximum temperatures of 
10°C and 23°C, respectively.  There are two major 
reservoirs, Atlus-Lugert and Tom Steed.  The two major 
tributaries in the basin are the Elm Fork and North Fork 
Rivers, which are listed on the US Environmental 
Protection Agency 303(d) list as impaired by chloride[28].  
High salinity levels were due to natural salt springs on the 
Elm Fork just west of the US Geological Survey (USGS) 
gage station 07303400 (Figure 2).  From 1982 to 2005 
the average EC at the gage station was 18 dS/m with a 
range of 4.1 to 65 dS/m[29], which was well above     
3.0 dS/m where the degree of restriction on irrigation use 
is severe[30].  Ayers and Westcot[30] indicated that EC 
levels less than 0.7 dS/m have no restrictions on irrigation 
use and those between 0.7 and 3.0 dS/m have slight to 
moderate restrictions.  The EC levels greater than 10 
dS/m are classified as highly saline and only very tolerant 
crops can be successfully grown[1].  Further downstream 
in the basin at USGS gage station 07305000 (Figure 2), 
diluted streamflow decreased salinity levels to an average 
of 6.3 dS/m with a range from 1.6 to 14 dS/m during the 
years 1982 to 2005[29].  The average flow at the two 

USGS gage stations was 1.13 and 9.85 m3/s for 07303400 
and 07305000, respectively, for the same period of record.  

 
Figure 1  Location of the North Fork of the Red River basin 

with state and county boundaries in southwest Oklahoma and the 
Texas Panhandle 

 
Figure 2  Location of the Elm Fork and North Fork Rivers, 

Altus-Lugert and Tom Steed reservoirs, 19 National Weather 
Service stations, and the U.S. Geological Survey gage stations 

07303400 and 0730500 in the North Fork of the Red River basin 
 

The two most prevalent crops within the basin are 
wheat and cotton[31].  Whereas wheat and dryland cotton 
are found throughout the basin, irrigated cotton was 
mainly grown in the Texas Panhandle and the southern 
reaches of the basin within the Lugert-Altus Irrigation 
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District.  Irrigation water from the Altus-Lugert 
reservoir was transported through canals to the irrigation 
district. 
2.2  SWAT model description 

The SWAT model is a basin-scale hydrological/water 
quality model used to predict streamflow and pollutant 
losses (phosphorous, nitrogen and sediment) from basins 
made up of mixed land covers, soils and slopes.  The 
model was developed to assist water resource managers 
in assessing water quantity and/or quality in large river 
basins and as a tool to evaluate the implementation of 
different agricultural conservation practices[12].  The 
SWAT model, a product of over 30 years of model 
development by the US Department of Agriculture 
Agricultural Research Service, has been extensively used 
worldwide[13].  The model is process based and can 
simulate the hydrological cycle, crop yield, soil erosion 
and nutrient transport.  The model divides the watershed 
into subbasins, which are further split into hydrological 
response units (HRUs).  Each HRU is made up of one 
soil, one land use and one slope.  The model uses the 
Modified Universal Soil Loss Equation (MUSLE) to 
calculate sediment yield in each HRU.  This sediment 
along with any nutrients are summed up for each 
subbasin and routed through the reach.  The water and 
sediment along with any other pollutants are routed from 
reach to reach until it arrives at the watershed outlet.  
Many field-scale activities, such as planting dates, 
irrigation, fertilization, grazing, harvesting and tillage, are 
utilized by SWAT as management options scheduled by 
date.  Further details on the theoretical aspects of 
hydrology, nutrient cycling, crop growth and their 
linkages are provided in Neitsch et al.[32].   ArcGIS[33] 
can be utilized for model input of land cover, soils, 
elevation, weather, and point sources.  For this project 
SWAT 2005 and a monthly time step were utilized. 
2.3  SWAT model setup 
2.3.1  Land cover 

Land cover data were obtained from two sources, the 
Cropland Data Layer (CDL)[34] and 2001 National Land 
Cover Data (NLCD)[35,36].  The CDL contained 
crop-specific digital data and was combined with the 
non-agricultural data from NLCD.  Each of the 30 land 

cover categories were delegated to one of seven land 
cover categories that were used in the SWAT model 
(Table 1).  For example, canola, rye, oats, alfalfa, wheat 
and other small grains were combined to form the small 
grain crops category.  Row crops, of which the majority 
was cotton, were then divided into dryland and irrigated 
cotton based on Landsat 5 satellite imagery taken on 
August 10, 2006[37]. 

 

Table 1  Seven land use categories and areas utilized in the 
North Fork of the Red River basin SWAT model 

Basin area 
Land use 

Percent/% km2 

Developed land 4.5 250 

Forest 2.1 120 

Grassland 24.4 1360 

Row crops 3.8 210 

Dryland 2.0 110 

Irrigated 1.8 100 

Shrubland 37.4 2080 

Small grain crops 27.1 1510 

Water 0.7 390 
 

Thermal band six in Landsat 5 was utilized to identify 
irrigated fields since surface waters and irrigated areas 
were cooler than their surroundings (see dark areas in 
Figure 3).  The thermal band data were converted from 
at-sensor spectral radiance to effective at-sensor 
brightness temperature using: 

2

1ln 1

KT
K
L


 

 
 

              (1) 

where, T was the effective at-sensor brightness 
temperature (K); K2 was a calibration constant (K); K1 
was a calibration constant [W/(m2·sr·µm)]; and Lλ was 
the spectral radiance at the sensor’s aperture 
[W/(m2·sr ·µm)][38].  Aided by 2008 National 
Agricultural Imagery Program images (NAIP)[39] to 
identify irrigated fields, areas with a temperature below 
34°C were identified as water or irrigated row crops.  
This data layer was then overlaid with the land cover 
layer and any areas identified as cooler than 34°C and 
row crops were designated as irrigated row crops.  
Figure 3 illustrates the identified irrigated fields of the 
Landsat thermal band six image of the Lugar-Altus 
Irrigation District in the southern part of the basin. 
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Figure 3  Landsat 5 satellite image taken in 2006 illustrates the 

areas with cooler temperatures (black) utilized to identify the 
irrigated row crops and surface water in the North Fork of the Red 

River basin 
 

2.3.2  Digital elevation model and soils 
All data were input into the ArcSWAT 2.1.5a user 

interface.  The first step in setting up the SWAT model 
was the delineation of the basin using a 1:24 000 scale 
USGS National Hydrology Dataset and a 10 m USGS 
DEM to calculate slopes, slope lengths, and to define the 
stream network.  The resulting stream network was used 
to define a basin consisting of 95 subbasins.  For soils, 
STATSGO[40] 1:25 000 scale soil maps were used.  
These layers along with the land cover layer were used to 
define HRUs; 0% slope, 10% land and 10% soil class 
thresholds were used to create 1 787 HRUs within 95 
subbasins for the SWAT simulations. 
2.3.3  Weather, point sources, inlets and ponds 

Observed daily precipitation and minimum and 
maximum temperatures were used in the SWAT model.  
Nineteen National Weather Service Cooperative Weather 
Network (COOP data) stations were utilized from 1950 to 
2007 (Figure 2)[41].  In addition, three major point 
sources were located within the basin, which were the Elk 
City Wastewater Treatment Plant (WWTP), Altus SW 
WWTP, and the Quartz Mountain Regional Authority[42].  
The Altus SE WWTP and Quartz Mountain Regional 
Authority discharged an average flow of 7 600 m3/d and 
600 m3/d, respectively, from 1996 to 2009.  Elk City had 
a lagoon system and therefore discharged on an irregular 
schedule.  

SWAT inlets were added below the Altus-Lugert 
and Tom Steed reservoirs. Daily releases were obtained 
from the USGS gage station 07303000[29] for the 
Altus-Lugert reservoir and monthly releases from the US 
Army Corp of Engineers[43] for the Tom Steed reservoir.  
Since ponds affect the hydrology by impounding water, 
NAIP from 2008[39] was used to estimate pond and small 
reservoir areas for each subbasin.  Using these NAIP 
data, the ponds and small reservoirs were vectorized in 
ArcGIS and their surface areas estimated.  The ponds 
and small reservoirs were assumed to be at their primary 
spillway elevation, have an average depth of two meters, 
a drainage area equal to 30 times their surface area[44], 
and emergency spillways that were active when volume 
and surface area were 150% of normal. 
2.3.4  SWAT management 

Each land cover was managed in a different way.  
Ten surveys, of which eight were returned, were sent to 
Oklahoma State University Cooperative Extension 
Service personnel and Agronomy Specialists within the 
basin.  They provided information on typical 
fertilization types and dates applied, planting and 
harvesting dates, irrigation practices and tillage 
operations performed by agricultural producers in the 
basin.  These data were analyzed, composited and 
entered into the SWAT model as shown in Table 2.  The 
small grain was further split into two land use categories 
where 75% was grazed with cattle during the winter 
months and was tilled whereas the other 25% did not 
have any cattle and was no-till.  The irrigated and dry 
land row crops were also further split into tilled (80%) 
and no-till (20%). 

SWAT overestimated stream flow from 2003 to 2007 
after the initial model setup and calibration.  The likely 
cause was the increase in irrigated cotton since 2000 in 
Wheeler and Collingsworth Counties in Texas[31]   

(Figure 4).  The quantity of irrigated cotton increased 
from an average of 3 400 hm2 from 1995 to 2002 to an 
average of 7 600 hm2 from 2003 to 2007.  A water 
withdrawal of 1.5 million m3 per month was added from 
May through November from 2003 to 2007 to account for 
this increase in irrigated cotton based on the irrigation 
needs of the cotton and the precipitation in the area for 
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that time period. 
 

Table 2  Typical fertilization, tillage, grazing, planting and 
harvesting data obtained from surveys from local Oklahoma 

State University Cooperative Extension Service personnel and 
Agronomy Specialists within the basin and utilized in the 

SWAT model 
Land cover Land cover/% Operation Date 

56 kg/hm2 N February 1 
Harvest June 15 

45 kg/hm2 N 
45 kg/hm2 P September 1 

25 

Plant October 1 
56 kg/hm2 N February 1 

Harvest June 15 

45 kg/hm2 N 
45 kg/hm2 P September 1 

Tillage September 15 

Plant October 1 

Small grain 

75 

Graze 2.5 Animal Units/hm2 November-February 

56 kg/hm2 N 
34 kg/hm2 P May 1 

Plant May 15 
20 

Harvest November 1 

Tillage April 15 

56 kg/hm2 N 
34 kg/hm2 P May 1 

Plant May 15 

Irrigated 
row crops 

80 

Harvest November 1 

56 kg/hm2 N 
34 kg/hm2 P May 1 

Plant May 15 
20 

Harvest November 1 

Tillage April 15 

56 kg/hm2 N 
34 kg/hm2 P May 1 

Plant May 15 

Dryland 
crops 

80 

Harvest November 1 
 

2.4  Weather variability 
Weather in the North Fork River basin can vary 

dramatically from year to year.  From 1950 to 2013, the 
average annual precipitation ranged from 370 mm to    
1 100 mm while the maximum and minimum annual 
temperatures range from 21.3 to 25.8°C and 8.2 to 11.5°C, 
respectively.  From May to October, the cotton growing 
season, the annual precipitation varied from 150 mm to 
875 mm.  The temperatures during the cotton growing 
season can also vary dramatically.  For example, the 
average June maximum temperature was 33°C, ranging 
from 27°C to 39°C.  Figure 5 shows the variability in 
precipitation and temperature during the cotton growing 
season.  This annual variation in precipitation and 
temperature can have a dramatic effect on streamflow, 
salinity levels and crop yields in the basin.  

For this project a stand-alone version of WXGEN[45] 
was utilized to generate weather datasets.  Statistics 
(mean and standard deviation) from historical records 
was input into WXGEN to produce ten 50-year datasets, 
which included rainfall, minimum and maximum 
temperatures and solar radiation.  The temperature and 
solar radiation utilized cross- and auto-correlation 
between the variables[46]. 
 

 
Figure 4  Decrease in baseflow and an increase in irrigated cotton 

for Wheeler and Collingsworth Counties in Texas from 
1995-2007[29,31] 

 
Figure 5  Box plots for average monthly temperature and 

precipitation for National Weather Service Cooperative Weather 
Network gage station C340184 from 1950 to 2013 for the cotton 

growing season of May to October 
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2.5  Salinity and electrical conductivity 
A statistically valid relationship (α=0.05) between EC 

and streamflow was found at each of the gage stations 
07303400 and 07305000 (Figure 6).  EC was the 
preferred method to assess salinity, and was based on the 
concept that the electrical current carried by a salt 
solution under standard conditions increased as the salt 
concentrations of the solution increased.  The USGS 
gage stations 07303400 and 07305000 had EC data from 
1982 to 2005 for 37 and 43 days, respectively.  The EC 
(dS/m) was regressed against streamflow to develop a 
relationship of the form: 

1 2log( ) ( ) log( )EC Log a a Flow          (2) 
or 

2
1

aEC a Flow                    (3) 

where, a1 and a2 were linear regression coefficients, and 
Flow was stream flow (m3/s).  Muttiah et al.[47] used a 
monthly relationship between flow and EC as the driver 
for their in-stream salinity modeling of the Mid-Rio 
Grande and Wichita watersheds.  Somura et al.[27] 
estimated monthly salinity from a regression curve 
(R2=0.53) for Lake Shinji in the Hii River basin.  At 
gage 07303400, all data were used in the analysis  
except for one outlier when the flow exceeded 1 700 m3/s, 
which was over 200 times the second largest flow   
event for sampling period.  All data points were used at 
the gage station 07305000.  The flow and EC regression 
had a Coefficient of Determination (R2) of 0.93 and 0.43 
at the gage stations 07303400 and 07305000, 
respectively. 

 
Figure 6  Relationship between streamflow and Electrical conductivity at the US Geological Survey gage stations 07303400  

and 07305000 for the period 1982-2005[29] 
 

2.6  Model evaluation 
Calibration is the process by which parameters are 

adjusted to make predictions agree with observations.  
SWAT was designed for use on large un-gaged basins 
and can be used without calibration.  However, 
calibration generally improves the reliability and reduces 
the uncertainty of model predictions.  Validation is 
similar to calibration except model parameters are not 
modified.  Validation tests the calibrated model with 
observed data that are not used in the calibration process 
and preferably under conditions outside the calibration 
period.  For both the calibration and validation models, a 
five-year warm-up was added to insure that the model 
represented reasonable initial conditions at the beginning 
of each simulation, i.e., aquifer levels, soil water 

conditions, vegetative growth, etc. 
2.6.1  Crop yields 

The wheat and irrigated and dryland cotton yields 
were compared to National Agricultural Statistical 
Service (NASS) data using default SWAT model 
parameters.  The SWAT simulated crop yields for wheat 
and irrigated and dry land cotton were evaluated against 
county level NASS data for the years 2001 to 2007[34].  
These crops were chosen since they represented the 
dominant crops in the basin.  Annual crop yields from 
the counties within the basin were averaged and 
compared to predictions from the flow-calibrated SWAT 
model.  No calibration was utilized for the simulated 
crop yields.  Three statistics were used to evaluate the 
model performance: R2, Nash-Sutcliffe Efficiency (NSE) 
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and Percent Bias (PBIAS)[48,49].  R2 is the square of 
Pearson’s product-moment correlation coefficient[50] and 
represents the proportion of total variance in the observed 
data that can be explained by a linear model.  The NSE 
indicates how well observed flows versus simulated crop 
yields fit a 1:1 line[51], given as: 

2
1

2
1

( )
1 100%

( )

n obs sim
i ii

n obs mean
ii

Y Y
NSE

Y Y




 
   
  




    (4) 

where, n is the total number of observations, and the 
superscripts obs, sim and mean represent the observed, 
simulated and mean observed values, respeectively.  
PBIAS was calculated using: 

1

1

( ) 100

( )

n obs sim
i ii

n obs
ii

Y Y
PBIAS

Y




  
 
 
 




        (5) 

where, PBIAS is the deviation of data being evaluated, 
expressed as a percentage.  

2.6.2  Streamflow 
Following the crop yield evaluation, streamflow was 

calibrated using monthly and annual streamflow at USGS 
gage stations 07303400 and 07305000.  The monthly 
and annual SWAT simulated streamflows were calibrated 
from 2001 to 2007 and validated from 1995 to 2000.  
Next, the calibrated streamflows were coupled with the 
regression equations to estimate the EC. 

A sensitivity analysis was conducted on 15 
parameters based on previously used calibration 
parameters and documentation from the SWAT manuals.  
Parameters were adjusted within SWAT recommended 
range and its sensitivity analyzed.  The various 
parameters were adjusted in order to minimize the 
relative error and obtain the best goodness-of-fit statistics 
for each gage station.  Ultimately seven parameters were 
modified in the final calibration (Table 3). 

 

Table 3   Parameters used to calibrate the SWAT model for the North Fork of the Red River basin 

Original value Calibrated value Subbasin Variable Description 

0.95 0.51 All basins ESCO Soil evaporation compensation coefficient 

0.05 0.20 All basins RCHRG_DP Aquifer percolation coefficient 

1.0 100 All basins REVAPMIN Threshold water level in shallow aquifer for revap or percolation to deep aquifer 

0.025 0.055 All basins ALPHA_BF Baseflow Alpha Factor (d) 

0.08-0.23 +0.01 07303400 SOL_AWC Soil available water capacity 

49-84 -4 07303400 CN2 SCS curve number adjustment 

39-92 +5 07305000 CN2 SCS curve number adjustment 

0 13.5 07303400 CH_K2 Effective hydraulic conductivity in main channel alluvium (mm·h-1) 

0 4.2 07305000 CH_K2 Effective hydraulic conductivity in main channel alluvium (mm·h-1) 
 

The NSE and R2 were used as indicators of 
goodness-of-fit.  Moriasi et al.[49] assumed a monthly 
NSE greater than 0.75 indicated a very good model, 0.65 
to 0.75 as good and 0.50 to 0.65 as satisfactory when 
calibrating SWAT for streamflow. 

3  Results and discussion 

SWAT satisfactorily predicted average annual wheat 
yields, although it over predicted the yield by 0.33 Mg/hm2 

or 17% in 2007 (Figure 7), the second wettest year in the 
simulation period.  The relationship between SWAT 
simulated wheat yields versus the NASS observed wheat 
yields had an R2 of 0.61 (Table 4).  The observed yields 
ranged from 1.40 to 2.19 Mg/hm2 while simulated yields 
ranged from 1.39 to 2.44 Mg/hm2.  These results were 
similar to those reported by Nair et al.[17] for SWAT 

simulated wheat yields who reported R2 values of 0.57 and 
0.81 for the calibration and validation periods, 
respectively.  They reported, however, higher NSEs of 
0.53 and 0.61 for the calibration and validation periods, 
respectively.  No other studies reported observed vs. 
simulated results except for Vaghefi et al.[14] and 
Faramarzi et al.[15], who only reported R and P factors, i.e. 
data percentage bracketed by the 95% prediction 
uncertainty. 

The observed versus simulated annual dryland cotton 
yields had an R2 of 0.74, with observed data ranging from 
0.32 to 0.75 Mg/hm2 compared to 0.46 to 0.87 Mg/hm2 for 
the simulated predictions.  The model consistently over 
predicted the yields except for the wettest year.  The only 
reported comparisons between observed vs. dryland cotton 
was by Sarkar et al.[21] with an R2 of 0.45. 
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Figure 7  Observed vs. SWAT simulated (a) annual wheat, (b) 

dryland cotton and (c) irrigated cotton yields from 2001 to 2007 
 

Table 4  Summary statistics for the observed data vs. SWAT 
simulated wheat, dryland cotton and irrigated cotton yields for 

the period 2001 to 2007 

Yield/Mg·hm-2 

Observed Simulated Crop R2 NSEa Percent 
bias 

Range Mean Range Mean 

Wheat 0.61 0.33 3 1.40-2.19 1.92 1.39-2.44 1.86 

Dryland cotton 0.74 0.4 -22.2 0.32-0.75 0.52 0.46-0.87 0.63 

Irrigated cotton 0.38 -0.61 9.4 0.93-1.64 1.21 0.85-1.67 1.1 

Note: a NSE: Nash-Sutcliffe modeling efficiency.  
 

The results for the irrigated cotton were not as 
favorable as indicated by an R2 of 0.38 and a negative NSE 
(Table 4).  The observed data ranged from 0.93 to    

1.64 Mg/hm2 compared to 0.85 to 1.67 Mg/hm2 for the 
simulated predictions.  The current literature does not 
report any other irrigated cotton modeling results obtained 
with SWAT.  These results indicate that further testing is 
needed on irrigated cotton systems using SWAT. 
3.1  Streamflow 

Graphical comparisons between the measured and 
observed aggregated monthly streamflows are shown for 
the calibration and validation periods for both USGS 
gauges in Figure 8.  The streamflows predicted by SWAT 
replicated the observed streamflows well for most months 
although some peak streamflow periods were under 
predicted by the model, especially in the validation period. 

For the average monthly calibration, gage 07303400 
had an R2 of 0.78 and a NSE of 0.68 and gage 07305000 
had an R2 of 0.88 and a NSE of 0.86 (Figures 8a and 8c).  
Based on the suggested criteria by Moriasi et al.[49], the 
model performance at the two gage stations could be 
described as good and very good.  The lower NSE for the 
gage station 07303400 during the calibration period was 
due to under predicting runoff from several rainfall events 
at the end of 2002 and 2006.  The basin received isolated 
thunderstorms and being the upstream gage station with a 
smaller basin, the weather station most likely missed these 
events.  This was not observed in gage station 07305000 
since it was further downstream and drained a much larger 
basin. 

Flow validation indicated if the SWAT model 
predicted reasonable results under conditions outside the 
calibration period. Even though the validation period was 
wetter than the calibration period, the model performed 
‘very good’ at both gage stations for average monthly 
streamflow; gage 07303400 had an R2 of 0.84 and a NSE 
of 0.77, and gage 07305000 had an R2 of 0.89 and a NSE 
of 0.76 (Figures 8b and 8d). 
3.2  Crop yield and salinity variability 
3.2.1  Crop yield 

The yields for wheat, irrigated cotton and dryland 
cotton were analyzed for each of the ten 50-year 
simulations.  The range of yields was plotted and 
statistical significance determined at an α=0.05 level.  
The average wheat yields for the ten simulations ranged 
from 1.70 to 1.76 Mg/hm2 and were not significantly 
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different based on a t-test (Figure 9).  The annual yields 
ranged from a minimum of 0.62 Mg/hm2 to 3.02 Mg/hm2 
(Figure 10).  Neither the irrigated nor dryland cotton 
yields were significantly different for the ten 50-year 
simulations based on a t-test.  The irrigated cotton yields 
averaged 0.85 to 0.95 Mg/hm2 with an annual minimum of 

0.18 Mg/hm2 and an annual maximum of 2.11 Mg/hm2.  
These yields were much higher and more variable than the 
yields for the dryland cotton, which ranged from 0.48 to 
0.52 Mg/hm2 for the ten 50-year simulations with annual 
minimum and maximum yields of 0.08 and 1.09 Mg/hm2, 
respectively. 

 
Figure 8  Total streamflow calibration and validation results for monthly SWAT simulations at the US Geological Survey gage stations  

(a and b, respectively) 07303400 and (c and d, respectively) 07305000  

 
Figure 9  Wheat, irrigated cotton and dryland cotton yields for ten 50-year SWAT simulations based on historical weather variability 

 
Figure 10  Average annual wheat, irrigated cotton and dryland cotton yields for ten 50-year SWAT simulations and the combined  

500 simulations 
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Based on the results of these simulations, agricultural 
producers can expect highly variable yields from year to 
year based on the timing of the precipitation and 
temperatures; however the long term average yield will 
likely stabilize (Figure 11).  Other factors, such as a late 
freeze, pests, hail and severe storm, are factors that SWAT 
currently does not consider that can dramatically affect the 
crop yields. 
3.2.2  Salinity 

The average flow at gage station 07303400 for the ten 
50-year simulations ranged from 0.35 to 0.84 m3/s 
(Figure 11a).  The salinity levels between years were 
statistically significant based on a t-test with average EC 
levels ranging from 40 to 65 dS/m (Figure 11 b).  After 
log transforming these data, a Tukey’s multiple 
comparison test was performed at an α=0.05 showing that 
two of the ten simulations were significantly different.  
The annual flows and EC levels ranged from 0.008 to  
5.8 m3/s and 5.4 to 369 dS/m, respectively, for the entire 

500 years of simulation (Figures 12a and 12b). 
The average annual streamflow and EC levels at gage 

station 0705000, located near the Lugert-Altus Irrigation 
District, for the ten 50-year simulations ranged from 4.0 to 
6.7 m3/s and 4.6 to 5.2 dS/m (Figures 11c and 11d), 
respectively, and were not statistically different.  For the 
combined 500 simulation years the annual flows and EC 
levels ranged from 0.64 to 31.3 m3/s and 3.3 to 7.9 dS/m, 
respectfully (Figures 12c and 12d).  Based on Ayers and 
Westcot[30], when irrigated water is above 5.3 dS/m, full 
yield potential begins to decrease, and at 19 dS/m the yield 
potential is zero.  Miyamoto et al.[52] reported 
groundwater with salinity levels averaging 3.5 dS/m and 
up to 8.0 dS/m being applied in Texas and successfully 
growing cotton.  In Arizona, Dutt et al.[53] successfully 
grew cotton using irrigated water with salinity levels 
ranging from 3 to 4 dS/m.  Williams[3] states that cotton 
has a threshold of 5.1 dS/m and shows only a 25% 
reduction in yield when salinity reaches 8.4 dS/m. 

 
Figure 11  Annual streamflow and Electrical Conductivity (EC) at US Geological Survey gage stations (a and b, respectively) 07303400  

and (c and d, respectively) 07305000 for ten 50-year SWAT simulations 
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Figure 12  Average streamflow and Electrical Conductivity (EC) for ten 50-year SWAT simulations and the combined 500 simulations at US 

Geological Survey gage stations (a and b, respectively) 07303400 and (c and d, respectively) 07305000  
 

Based on these results, the likely condition of the 
stream water on the Elm Fork River will be too saline for 
irrigation purposes; however, the salinity in the North Fork 
River should be acceptable to irrigate cotton.  One option 
to utilize the Elm Fork River for irrigation and to further 
decrease the salinity in the North Fork River is to install a 
salinity control upstream of the salt deposits on the Elm 
Fork.  Future work could include EC and flow monitoring 
upstream of the salt deposits on the Elm Fork and upstream 
of the Elm Fork/North Fork River confluence to determine 
the EC levels if a salinity control were to be installed.  
These new data coupled with the SWAT model flow 
simulations will provide a reasonable indication of the 
salinity levels if a control point were installed.  

Based on a maximum simulated annual EC on the 
North Fork of 7.9 dS/m, this water can be utilized to 
irrigate cotton; however, there are two issues that must be 
considered.  Though the maximum annual EC may be  
7.9 dS/m, daily levels may be much higher.  Based on the 
empirical relationship between flow and EC, if the flow 
rate is less than 0.60 m3 /s, then the EC will be greater than 
8.0 dS/m.  This occurred 22% of the time from 1950 to 

2013 and 26% of the time from May to October[29], the 
cotton growing season.  The second issue to consider is 
the buildup of salt in the soil over time.  Studies such as 
Miyamoto et al.[52] and Dutt[53] should be analyzed to 
determine the long-term effect of irrigating with saline 
water has on the soil and crop yields over time. 

Recommended future work also includes climate 
change simulations, which may affect crop yields as well 
as salinity and flows.  The recently released report on 
climate change by the National Oceanic and Atmospheric 
Administration[54] reports precipitation and temperature 
projections for the Great Plains based on the median of the 
15 general circulation models (GCMs); high (A2) and   
14 GCMs low (B1) emissions scenarios.  The projection 
for temperature is an increase of 4.4°C and 2.5°C for the 
years 2070 and 2099, respectively.  The two scenarios 
produced mixed results for precipitation with the A2 
scenario projecting a 3% decrease and the B1 scenario 
projecting a 3% increase for the same time period.  
Precipitation is more challenging to model in the Great 
Plains area due to the dominance of convective storms; 
therefore, the precipitation projections may be inaccurate 



122   June, 2015               Int J Agric & Biol Eng      Open Access at http://www.ijabe.org                   Vol. 8 No.3 

(personal communication, Ray Arritt, March 2014).  
Additional research is required to better understand how 
these convective storms affect climate change. 

4  Conclusions 

Basin-scale models, such as SWAT, are important 
tools for decision makers and watershed managers to aid in 
determining the potential effect of weather variability on 
crop yields, streamflow, salinity levels, etc.  While the 
SWAT model has been used extensively to model 
streamflow and nutrients, there are few publications that 
have utilized the model to predict wheat yields.  There are 
even fewer publications using SWAT to model cotton and 
salinity using a regression equation.  The results 
demonstrated that for the basin studied, SWAT simulated 
acceptable annual wheat and dryland cotton yields and can 
be utilized to predict the change in salinity based on an 
ionic strength/streamflow regression equation. 

The effect of weather variability on crop yields and 
salinity levels were analyzed for the North Fork River 
basin in southwestern Oklahoma.  The crop yields varied 
greatly from year to year based on the variations in 
temperature, precipitation, and solar radiation; however, 
the yields were not significantly different over the 50-year 
simulation and the long term predicted average yields will 
likely stabilize.  The EC at the USGS gage station just 
downstream of the salt deposits was significantly different 
with levels ranging from 40 to 65 dS/m while the diluted 
EC values downstream at gage station 0705000 averaged 
3.3 to 7.9 dS/m.  Though the water in the Elm Fork is 
much too saline to use for irrigation, the water in the North 
Fork River may be used as long as the flow rates in the 
river are above 0.60 m3/s.  Further research is required to 
determine the effect that a salinity control point may have 
on the two rivers and how cost effective it will be to 
implement.  Additional research should also determine 
the long-term effect of irrigating with saline water and 
how future climate change may affect the flow, salinity 
levels and crop yields in the basin. 
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