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Efficient and comprehensive visual solution for a smart apple harvesting

robot in complex settings via multi-class instance segmentation
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Abstract: To enable efficient and low-cost automated apple harvesting, this study presented a multi-class instance
segmentation model, SCAL (Star-CAA-LADH), which utilizes a single RGB sensor for image acquisition. The model achieves
accurate segmentation of fruits, fruit-bearing branches, and main branches using only a single RGB image, providing
comprehensive visual inputs for robotic harvesting. A Star-CAA module was proposed by integrating Star operation with a
Context-Anchored Attention mechanism (CAA), enhancing directional sensitivity and multi-scale feature perception. The
Backbone and Neck networks were equipped with hierarchically structured SCA-T/F modules to improve the fusion of high-
and low-level features, resulting in more continuous masks and sharper boundaries. In the Head network, a Segment LADH
module was employed to optimize classification, bounding box regression, and mask generation, thereby improving
segmentation accuracy for small and adherent targets. To enhance robustness in adverse weather conditions, a Chain-of-
Thought Prompted Adaptive Enhancer (CPA) module was integrated, thereby increasing model resilience in degraded
environments. Experimental results demonstrate that SCAL achieves 94.9% AP_M and 95.1% mAP_M, outperforming
YOLOvlls by 6.6% and 4.6%, respectively. Under multi-weather testing conditions, the CPA-SCAL variant consistently
outperforms other comparison models in accuracy. After INT8 quantization, the model size was reduced to 14.5 MB, with an
inference speed of 47.2 frames per second (fps) on the NVIDIA Jetson AGX Xavier. Experiments conducted in simulated
orchard environments validate the effectiveness and generalization capabilities of the SCAL model, demonstrating its suitability
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as an efficient and comprehensive visual solution for intelligent harvesting in complex agricultural settings.
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1 Introduction

As one of the world’s major commercial fruit crops, apples are
still predominantly harvested by hand—a process that is both labor-
intensive and inefficient!". This reliance limits scalability and fails
to meet the demands of large-scale commercial production™. To
address these limitations, robotic harvesting technologies have
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garnered increasing interest*. Although numerous robotic
harvesters have been developed, they often fall short of human
performance due to technical constraints. Among these limitations,
the lack of reliable visual perception remains a fundamental
obstacle to effective robotic harvesting”. This limitation is
compounded by practical cost and hardware constraints, which
preclude the use of complex multi-sensor systems. As a result,
achieving comprehensive scene understanding with only a single
vision sensor has emerged as a critical technical challenge.

The rapid development of deep learning has significantly
accelerated the integration of object detection and image
segmentation in agricultural applications®'. Object detection
algorithms typically locate objects by generating bounding boxes,
serving common tasks such as fruit or branch recognition. However,
these methods offer only coarse approximations of target regions,
and thus often require additional post-processing to achieve fine
localization!"". In contrast, image segmentation techniques produce
precise object masks that can be directly associated with depth
information,  enabling three-dimensional  spatial
localization!>".

In unstructured orchard environments, the intricate spatial
topology of branches and the dynamic morphology of slender fruit-

bearing branches present significant challenges for robotic

accurate
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harvesting. Accurately and rapidly acquiring the spatial positions of
apples, main branches, and fruit-bearing branches is essential to
improve the performance of vision-guided robotic systems. Precise
spatial perception enables optimal grasp planning and path
generation, reduces collision risks, and improves harvesting success
rates and operational efficiency!*.

A range of deep learning models has been applied to address
these challenges. For instance, Wang and He!"" utilized an improved
Mask R-CNN to segment apples under complex conditions
involving shadows, varied backgrounds, and foliage occlusion,
achieving a precision of 97.1% and a segmentation mAP of 91.7%,
with an inference time of 250 ms per image. Tong et al.' applied a
Cascade Mask R-CNN with a Swin-T backbone to segment trunks
and branches in dormant orchards, reporting bbox mAP and segm
mAP of 94.3% and 94.0%, respectively. Additionally, Sapkota et
al.' compared YOLOVS and Mask R-CNN across two scenarios:
dormant tree trunk and branch segmentation (Scene 1), and
segmentation of unripe apples in leafy conditions (Scene 2). In
Scene 1, YOLOVS achieved 90.6% precision, 74.0% mAP@0.5,
and an inference speed of 10.9 ms, while Mask R-CNN reached
81.3%, 70.0%, and 15.6 ms, respectively. In Scene 2, YOLOVS
outperformed Mask R-CNN with 92.9% precision and 90.2% mAP,
further highlighting the speed and accuracy advantages of YOLO-
based models. Building on this line of research, Yan et al.'¥
developed an improved YOLOv8s-based perception model capable
of simultaneously detecting apples and segmenting branches and
trunks. By embedding SE attention and dynamic snake convolution,
the model achieved a precision of 99.6% for apple recognition and
an mAP of 81.6% for branch and trunk segmentation.

Nevertheless, most of these studies focus on single-class
segmentation, targeting either fruits or branches, and fail to provide
the comprehensive multi-object perception required for complex
orchard environments. To address this limitation, Rong et al.'!
proposed an enhanced semantic segmentation model based on Swin
Transformer V2 for simultaneous segmentation of tomato fruits,
calyxes, and stems. By integrating a SeMask module into the
encoder, the model achieved improved performance with an
inference time of approximately 120 ms. Similarly, Kang and
Chen™ introduced DaSNet-v2, a single-stage detection framework
that integrates both instance and semantic segmentation branches.
The model achieved 87.3% fruit segmentation accuracy and a
branch segmentation IoU of 79.4%, with an average processing time
of 70 ms. However, although DaSNet-v2 supports the concurrent
segmentation of fruits and branches, it relies exclusively on
semantic segmentation for the latter, thus lacking the ability to
distinguish individual branch instances. Moreover, its relatively
complex architecture poses challenges for deployment on edge
computing devices.

While semantic segmentation has been widely applied in
agricultural perception tasks, its inability to differentiate between
individual instances within the same class limits its effectiveness in
multi-target scenarios, particularly in environments characterized by
dense foliage or morphologically similar targets'”. In contrast,
instance segmentation distinguishes individual objects within a
category and delineates their precise boundaries. When combined
with depth information, instance segmentation can assign unique
spatial attributes to each object, enabling higher-level reasoning and
decision-making in robotic harvesting systems®'!. However, the
complexity and computational demands of instance segmentation
models pose challenges for real-time deployment on edge devices.
Therefore, a balance must be achieved between segmentation

accuracy and inference efficiency, highlighting the need for
lightweight yet effective visual perception models to support real-
time scene understanding in robotic harvesting tasks.

To address the aforementioned challenges, this study proposed
a novel multi-class instance segmentation framework, termed
SCAL, specifically designed to accurately segment apples, main
branches, and fruit-bearing branches in unstructured orchard
environments. The main contributions of this work were as follows:

1) The Star-CAA module was designed to enable coordinated
modeling between feature and spatial dimensions. This module

effectively accommodated scale variation and topological
complexity in branching structures, thereby enhancing spatial
perception.

2) SCAL operated using only RGB images captured by a single
camera, offering a low-cost solution for acquiring detailed scene
understanding. The model achieved high segmentation accuracy
while maintaining computational efficiency on edge devices,
successfully balancing precision and real-time performance. This
design significantly improved the capabilities of vision-guided
robotic systems in orchard harvesting scenarios.

3) To ensure consistent segmentation under challenging
conditions such as rain and fog, a weather-adaptive image
augmentation module was incorporated. This enhanced the model’s
robustness and supported all-weather visual perception, enabling
reliable operation in intelligent harvesting systems.

2 Materials and methods

2.1 Dataset construction
2.1.1 Dataset acquisition

The image dataset used in this study was collected from the
“Yujia” Orchard Cooperative in Baoji City, Shaanxi Province,
China, during the peak apple harvesting season from October to
November 2024. The orchard cultivated three commercially
apple “Yanfu”, and
“Ruixianghong”. Sampling was conducted in plots managed under a
modern  high-density dwarf rootstock cultivation system,
characterized by row spacing of 2.0-3.5 m and plant spacing of

significant varieties:  “Honeycrisp”,

approximately 1.2 m.

Images were captured using an iPhone 12 Pro, Huawei P40 Pro,
and ZED2i depth camera, all positioned directly facing the apple
trees at distances ranging from 300 to 600 mm. This configuration
simulated the installation of visual sensors on robotic apple
harvesters. To improve the model’s robustness under varying
environmental conditions and enhance its generalization across
scenarios, a multi-condition illumination sampling strategy was
adopted. Images were systematically acquired under both sunny and
overcast weather, at different times of day (morning, midday, and
evening), and under both front-lit and backlit lighting conditions. In
addition, supplementary samples were collected at night using
artificial lighting. The complete data acquisition workflow is shown
in Figure 1.

2.1.2  Multi-weather conditions simulation

In real agricultural environments, weather conditions vary
significantly, including rainfall, fog, and their combinations.
However, such conditions were absent during our image acquisition
period, leading to a lack of samples representing these specific
meteorological scenarios in the original dataset.

To ensure that the developed visual model is capable of
supporting all-weather harvesting operations, a physics-based
weather simulation approach was adopted. Specifically,
professional rain and fog generation algorithms were applied to the
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collected RGB images, thereby constructing a comprehensive

Representative samples of these simulated images are shown in

dataset of apple images under simulated adverse weather conditions. Figure 2.
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Figure 2 Simulated apple images under adverse weather conditions

This strategy enhances the model’s generalizability across a
wider range of environmental scenarios, enabling it to maintain
stable performance even under unfavorable weather conditions.
2.1.3 Dataset annotation

To improve computational efficiency and ensure compatibility
with low-resolution image acquisition devices, all dataset images
were resized to a uniform resolution of 1024x1024 pixels and saved
in JPG format.

In orchard environments, main branches generally grow in
horizontal or inclined orientations, whereas fruit-bearing branches
extend in more diverse directions. As the objective of this study

is apple harvesting, only the main branches and fruit-bearing
branches within apple-containing regions were annotated. Due to
the distinct morphological differences among apples, fruit-bearing
branches, and main branches, distinct annotation strategies were
applied. For apples and fruit-bearing branches, a minimum
enclosing polygon annotation strategy was employed to minimize
background pixels and improve localization accuracy. In contrast,
main branches are typically longer and thicker. Annotating the
entire structure with a single polygon often introduces excessive
background noise and leads to poor boundary alignment, which
adversely affects feature extraction. To address this, a segmented
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quadrilateral annotation strategy was implemented, wherein
multiple rectangular segments were aligned along the primary
growth direction of each branch™.

All annotations were manually created using the Labelme tool.
As shown in Figure 3, the annotations were saved in JSON format
and then converted to the TXT format compatible with the
YOLOv11 framework.
2.1.4 Data augmentation and division

To mitigate the risk of overfitting due to the limited number of
training samples, multiple offline data augmentation techniques
were applied to the original dataset. These included noise injection,
mirroring, rotation, contrast adjustment, brightness variation, and
translation, as shown in Figure 4.

By incorporating images captured under diverse weather and

d. Noise injection

e. Brightness variation

Figure 3  Annotation examples from the dataset

lighting conditions, a dataset comprising 7000 images was
constructed. The dataset was then partitioned into training,
validation, and test sets using a 7:2:1 ratio.

[}

. Contrast adjustment

f. Image scaling

Figure 4 Data augmentation for apple recognition

2.2 Design of the Star-CAA and SCA-T/F modules for multi-
scale feature fusion
2.2.1 Star Operation

In robotic apple-harvesting tasks, the precise segmentation of
main branches, fruit-bearing branches, and fruits directly influences
the harvesting success rate, operational efficiency, and the degree of
tree structure protection. However, this task presents several
challenges: the morphological continuity between main and fruit-
bearing branches leads to unclear boundary distinctions; apples of
different cultivars often share similar colors and textures; and
changing lighting conditions can obscure object edges. These
factors are further compounded by the need for both high
segmentation accuracy and real-time inference.

Recent studies have shown that the method of feature fusion
plays a critical role in determining segmentation performance.
Star Operation, as a novel feature fusion mechanism, exhibits
unique mathematical properties and strong practical potential®, It
performs nonlinear, high-order fusion by applying element-wise
multiplication to two input features, thereby achieving high-
dimensional nonlinear mapping within a low-dimensional space.

Given input features x=[x,X,,...,x,] €R", the two paths are
linearly transformed and then multiplied, yielding the output:

O] Za’ﬁxi =szi.1xixj (1)
J=1

=1 j=1
where, X denotes the feature set of the input data; © denotes the
element-wise multiplication; «; and o’ are learnable parameters;

I'(X) =Relu Za;xi

i=1

and k;; denotes the combination coefficient.
Considering the symmetry xx=xux;, the dimensionality of the
mapped feature space is approximately:

nn+1) n:
3 2)

Through the learnable coefficient k;;, the model can adaptively

adjust the feature mapping strategy to suit different structural targets
better. Although the theoretical dimensionality of the mapped space

nZ
is 0(;), all computations are retained in the original n-

dimensional space. When multiple Star Operation layers are
cascaded, the dimensionality of the feature space increases
exponentially.
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where, ¢ is the number of layers. This implicit infinite-
dimensionality allows the model to capture fine-grained object
variations and complex spatial relationships without substantially
increasing computational complexity, providing a solid theoretical
foundation for the high-precision segmentation of main branches,
fruit-bearing branches, and apples. Additionally, the quadratic term
xx; in Equation (1) can be viewed as a nonlinear multi-scale
combination, which, when combined with large-kernel depth-wise
convolutions, contributes to a multi-scale receptive field mechanism
that enhances the model’s adaptability to scale changes. For main
branches, this helps capture the gradual change in thickness along
the trunk. For slender fruit-bearing branches that are only a few
pixels wide, it maps spatial features into high-dimensional space,
preserving structural continuity and enhancing local contrast. For
apples, which vary in size, texture, and illumination, the nonlinear
mapping improves robustness.

To preserve structural continuity during segmentation, for
adjacent pixels p; and p; with corresponding features f; and f, the
cosine similarity in the high-dimensional mapped space is given by:

()
IRGIRGI

This equation demonstrates the strong aggregation ability of
Star Operation in spatially continuous regions. Even under varying

“4)

Similarity(p;, p;) =

illumination or texture conditions in the original feature space, the
high-dimensional mapping preserves feature continuity and
consistency, thereby reducing segmentation errors arising from
structural discontinuities or blurred boundaries.

Notably, Star Operation produces significant gradient
enhancement and amplification effects at object boundaries. For a
pixel Xyoumaary located on a semantic boundary, the boundary gradient
response VI'(Xyouaary) 15 defined as:

Let

A= Zn:a’i‘xi, B= iaij (%)
i=1 J=1

Then,
VI (Xuunaay) = (Relu(A)- VB)O(B-VA) +Relu(A)0VB  (6)

This boundary response function integrates three key mechan-
isms: nonlinear activation, dual-branch feature complementarity,
and multiplicative amplification. When the input feature crosses a
semantic boundary, the spatial gradients from both paths V(4) and
V(B) produce an amplification effect, which is further enhanced
when multiplied by the respective feature values. As a result, the
boundary signal is significantly boosted. Consequently, even when
feature transitions are weak or ambiguous, the Star Operation can
generate structurally coherent and highly responsive boundary
features. Compared to traditional methods that rely heavily on
explicit edge priors or predefined structural assumptions, Star
Operation exhibits strong adaptability across diverse target types. It
enhances boundary representations by implicitly encoding structural
information in high-dimensional space through nonlinear feature
composition, eliminating the need for manually designed strategies
tailored to specific object classes such as apples or branches.

To encapsulate, the distinctive mathematical characteristics of
Star Operation offer a compelling alternative to the traditional
deepening or widening of neural network architectures. Leveraging

implicit high-dimensional mapping and nonlinear feature
interactions, it enables efficient, high-precision perception and
segmentation of complex targets, particularly when deployed on
resource-constrained edge devices in agricultural environments.
2.2.2  Context anchor attention

In orchard-harvesting scenarios, main branches typically grow
in horizontal or oblique orientations, whereas fruit-bearing branches
exhibit more irregular and diverse growth patterns. A clear
hierarchical structure is present: fruit-bearing branches attach to the
main branches, and fruits are primarily located at the distal ends of
fruit-bearing branches or directly connected to the main branches.
Consequently, the model must be capable of simultaneously
perceiving three distinct object types with varying scales and
effectively capturing the complex spatial relationships among them.

To address this challenge, the CAA mechanism®! was
introduced to enhance the model’s ability to construct the
topological structure of branching connections. This module first
extracts locally compressed contextual features using global average
pooling, expressed as:

U;r/) — ConV]X] (AngOOl (Fi”))) (7)

where, F” denotes the input feature of the ith module in layer p;
and U® represents its corresponding global contextual feature.
Subsequently, the separates  spatial
dependencies along horizontal and vertical directions using depth-
wise separable convolutions, forming a cross-decoupled structure as

CAA mechanism

illustrated in Figure 5. This design facilitates the construction of
long-range dependencies in both directions:

{GEP) = DWCOnV]xk (Uﬁp))

8
H” =DWConv,, (Gj.”)) ®

where, G” and H” represent the features obtained after horizontal
and vertical convolutions, respectively. This process allows the
model to effectively capture directional features and gain a better
understanding of the orientation and connection patterns of
branches. In cases where fruits or branches are partially occluded or
missing, CAA can utilize long-range contextual reasoning to infer
the continuity of occluded structures. By leveraging both visible
local features and their contextual dependencies, the model’s
robustness is enhanced in complex natural environments.

Horizontal & Vertical Dwconv

Figure 5 Schematic of horizontal and vertical convolutions in the
CAA module

The peg ﬁt\
S

nn

The resulting features are then passed through a convolution
layer followed by a Sigmoid activation function to generate a spatial
attention map:

)

A" = Sigmoid (Conv,,, (H"))
AEP) c [0’ 1]C><H><W

This attention map assigns selection weights to each pixel
position within the target region (with red indicating weights close
to 1), thereby enhancing the model’s focus on boundary-relevant
regions. As shown in Figure 6, this boundary enhancement
mechanism enables the model to accurately locate the connection
points between fruit-bearing branches, main branches, and fruits,
thereby improving overall segmentation accuracy.
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Figure 6 Generation of attention weight maps in the CAA module

2.2.3 Star-CAA: Integrating nonlinear interaction and direction-
aware attention

To achieve coordinated modeling between feature and spatial
dimensions, this study proposes the Star-CAA module. This module
retains the nonlinear feature combination capabilities of the Star
Operation while incorporating the CAA mechanism to enhance
directional spatial perception of the output feature maps prior to
feature dimensionality reduction. This integration significantly
improves the network’s ability to perceive structural continuity and
distinguish ambiguous or overlapping boundary regions.

Let I' denote the output of the Star Operation (as defined in
Equation (1)), which serves as the input to the CAA module. The
directionally enhanced features are expressed as:

Y=AYorI (10)

Due to the spatial continuity and directional sensitivity of the
attention map A\”, this multiplicative operation not only enhances
the model’s response to subtle structural differences in branch
connections but also strengthens its ability to capture boundaries in
blurred or cluttered regions. Furthermore, the modular structure of
this attention mechanism simplifies computation and achieves high
efficiency, making it suitable for deployment on resource-
constrained edge devices in agricultural settings.

CA4A4

However, in deep networks, if the attention feature map
deviates significantly from the original feature distribution, this may
suppress useful semantic information and compromise the stability
of the network representation. To address this issue, the Star-CAA
module introduces a residual connection mechanism to fuse the
original input features with the enhanced attention features, thereby

mitigating the suppression effect and preserving semantic
consistency. The final output is expressed as:
Youpu =Y X (11)

This design not only improves the consistency of feature
representations between edge and core regions but also facilitates
gradient propagation in deep neural networks, thereby enhancing
training efficiency.

Compared with traditional attention mechanisms (e.g., SE,
which operates solely in the channel dimension, and CBAM, which
relies on pooling for attention generation), Star-CAA achieves
simultaneous modeling of spatial and channel dimensions with
enhanced directional perception. As shown in Figure 7, this makes
it particularly suitable for tasks involving objects with explicit
directional structures in agricultural environments, such as main
branches and fruit-bearing branches.

Nonlinear channel Directional attention
interaction enhancement Y
X h output
w
¢ S
IS
X X S
|

Figure 7 Schematic of spatial-channel joint modeling and directional enhancement fusion in the Star-CAA module

2.2.4 SCA-T/F: Structure-aware multi-scale feature fusion with
Star-CAA

SCA-T/F is a newly designed multi-scale feature extraction and
fusion module constructed by integrating Star-CAA with C3k2. The
architecture offers two complementary configurations adapted to
different feature processing demands: SCA-T (a deep cascaded
structure) and SCA-F (a lightweight and fast structure), as shown in
Figure 8.

When C3k=True, the SCA-T module adopts a more complex
CSP (Cross Stage Partial) structure, which splits the input features
into two parallel branches. The main path embeds multiple cascaded
Star-CAA modules, forming a deep hierarchical transformation
stream (NSCA). This layered design expands the effective receptive
field of the model. It progressively builds multilevel feature
abstraction, from edge textures and geometric structures to high-
level semantics, enabling the network to effectively capture the
global topological relationships and spatial extension patterns of the

target structure.

When C3k=False, SCA-F employs a more straightforward
feature processing pathway, embedding only a single Star-CAA
module in the main branch. This lightweight design significantly
reduces the number of parameters and computational complexity
while minimizing redundant transformations and preserving high
feature fidelity. Although a single Star-CAA module has a relatively
limited receptive field, it exhibits greater sensitivity to local details,
enabling effective capture of high-frequency features and boundary
information. This sensitivity directly contributes to more explicit
boundary representations and stronger modeling of the structural
continuity of slender fruit-bearing branches.

In the backbone network design, SCA-T and SCA-F modules
are flexibly deployed at different levels according to the semantic
depth and spatial resolution of the hierarchical features. In the deep
semantic extraction stages, SCA-T is used to enhance structural
abstraction capabilities. In contrast, in the shallow detail-preserving
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stages, SCA-F is applied to strengthen the response to edge textures
and local features. By deploying the two types of modules across
semantic a progressively hierarchical structure-aware
modeling path is constructed. This collaborative design significantly

levels,

improves the model’s ability to integrate global semantic
understanding with local structural modeling, thereby enhancing its
capability to perceive multi-class objects with strong structural

awareness and spatial topology comprehension.
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Figure 8 Structural illustration of the SCA-T and SCA-F modules

2.3 Segment LADH: Triple-branch head with Mask,
Classification, and Localization streams

The accurate segmentation of main branches, fruit-bearing
branches, and fruits requires the simultaneous extraction of both
textural and boundary features. However, conventional coupled
head architectures often fail to balance the extraction needs of these
heterogeneous features effectively. To address this issue, this study
incorporates a Lightweight Asymmetric Dense Head (LADH) into
the model’s segmentation head. By employing an asymmetric multi-
level compression strategy, the decoupled head design introduces
task-specific branches that effectively reduce mutual interference
among classification, localization, and segmentation tasks within

the model™.

As shown in Figure 9, the Segment LADH adopts a three-path
parallel architecture, with each path dedicated to a specific task,
thereby mitigating cross-task interference. The instance
segmentation branch further decomposes the segmentation task into
two independent sub-processes: mask prototype generation and
mask coefficient prediction, which are handled by the ProtoHead
and PredictionHead, respectively. This structure enables the model
to extract generalized shape representations and multi-scale
semantic features separately, leading to precise segmentation of
apple contours, stem locations, and connection points between fruits
and branches.

-
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Figure 9 Segment LADH structure diagram

The classification branch is dedicated to differentiating among
the main branches, fruit-bearing branches, and apples. The
bounding box prediction path utilizes a DSConv-DSConv—

Conv—Conv2d sequence in conjunction with distributed focal loss
optimization, in order to achieve accurate localization of all three
object categories.
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Additionally, the Segment LADH module extensively replaces
standard convolutions with depthwise separable convolutions,
significantly reducing both parameter count and computational
overhead. This lightweight design facilitates real-time inference on
edge computing devices, making it suitable for deployment in
orchard robotics and other resource-constrained agricultural
environments.

2.4 CPA: Adaptive visual enhancement for multi-condition
degradation

Mechanical harvesting in
significant challenges due to highly variable and unstructured

orchard environments faces
natural conditions. In foggy environments, image clarity and
contrast are significantly reduced, resulting in blurred boundaries
between objects and their surroundings, such as apples and branch
structures. Rainy conditions introduce light refraction and water

CPA

droplet interference, resulting in noisy and complex textures. When
both fog and rain coexist, the degradation becomes even more
severe, further diminishing image quality. Most conventional visual
enhancement techniques are designed for specific types of
degradation, making them insufficient for handling diverse and
dynamic  environmental conditions. Therefore, a
enhancement approach capable of adaptively addressing multiple
types of degradation is urgently needed.

The CPA module addresses this problem through a chain-of-
thought prompting-based mechanism, enabling adaptive processing
of wvarious degradations®”. The architecture
comprises two core components: the Chain-of-thought Generation
Module (CGM) and Content-driven Prompt Block (CPB). Together,
they form a cascaded encoder-decoder framework that enables multi-

visual

environmental

level feature extraction and enhancement, as shown in Figure 10.
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Figure 10 CPA structure diagram

The CGM employs a sequence of transposed convolutional
layers to generate prompts that encode multi-scale degradation
features. These prompts incorporate environmental clues associated
with fog, rain, and mixed weather conditions, allowing the model to
reason about the nature and extent of degradation gradually. The
CPB divides the input features into multiple segments, each of
which is processed by an independent Transformer module. This
design allows the encoded degradation information from the
prompts to be effectively injected into the input features, ensuring
efficient cross-scale interaction.

As a result, the model can dynamically adjust its enhancement
strategy in the presence of unknown degradation types and unseen
weather conditions, ultimately providing high-quality inputs for the
downstream segmentation task.

2.5 SCAL: Instance segmentation model for main branches,
fruit-bearing branches, and apples

The instance segmentation framework proposed in this study
integrates all previously introduced innovative components to
address the multifaceted challenges faced by robotic arms in fruit-
picking scenarios. The architecture is composed of three primary
components: the Backbone, Neck, and Head, forming a complete
pipeline for feature extraction and segmentation. The overall
architecture is illustrated in Figure 11.

In the Backbone, the differentiated deployment of SCA-T and
SCA-F modules is based on a careful analysis of the feature

processing requirements at different hierarchical levels. The overall
design follows a progressive receptive field expansion strategy:

1) In the shallow layers, the SCA-F modules are used to
preserve high feature fidelity and sensitivity to local details,
preventing premature abstraction that could result in the loss of fine-
grained information;

2) As the network deepens, the SCA-T modules are introduced
to capture morphological structures and spatial context, owing to
their larger effective receptive fields and deeper representation
capacity. The cascaded Star-CAA units in these modules
progressively refine features—from edge textures to structural
forms and, finally, semantic information—establishing a complete
abstraction hierarchy.

In the Neck, multi-scale feature fusion and enhancement are
required to bridge the Backbone outputs with the segmentation
head. To this end, we construct a hierarchical fusion structure using
both SCA-T and SCA-F modules. Their complementary
characteristics facilitate a balanced integration of semantic
abstraction and detail preservation during upsampling and feature
aggregation. This configuration not only optimizes computational
resource allocation but also enables the network to adaptively
handle features with different levels of abstraction and spatial
resolution, ultimately producing unified and enriched feature
representations for the segmentation head.
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Figure 11  Overall architecture of the proposed instance segmentation model

The Segment LADH head adopts an asymmetric multi-path
decouples localization, and
tasks. This task-specific branching effectively
overcomes mutual interference, thereby enhancing the overall

architecture that classification,

segmentation

stability of predictions. Its unique mask-generation mechanism
allows for the precise delineation of fruit boundaries and key
connection points.

Under adverse weather conditions—such as fog, rain, or their
combination—the CPA module is activated at the input stage to
enhance degraded images, ensuring that high-quality visual
information is fed into the network.

Through the

components, the proposed model demonstrates strong performance

collaborative integration of these novel
in addressing critical challenges, such as the continuous transition
between branch types, the detection of delicate structures, boundary
definition under complex lighting conditions, and the segmentation
of attachment points between fruits and branches. This architecture
thus establishes a robust and precise visual foundation for intelligent

harvesting systems in complex orchard environments.

3 Experimental results and analysis

3.1 Segmentation model training

The model training in this study was conducted on a
workstation equipped with an Intel Core i9-14900KF CPU (32
cores), 128 GB of RAM, and an NVIDIA GeForce RTX 4080
SUPER GPU (16 GB memory). The training environment was
based on Python 3.10 and the PyTorch 2.1.0 framework, accelerated
by CUDA 12.1 and cuDNN 8.8.0.1. The detailed training
parameters are listed in Table 1.

Table 1 Training parameters for the recognition model

Training parameters Values Training parameters Values
Optimizer SGD Epochs 300
Workers 12 Batch size 8
Mask_ratio 4 Size 640
1r0 0.01 Irf 0.01

3.2 Evaluation metrics

Instance segmentation is an extension of object detection that
not only requires locating each target but also achieving pixel-wise
segmentation for each instance. Therefore, this study employs
multiple metrics to comprehensively evaluate the segmentation
model.

To evaluate detection and segmentation accuracy, the following
metrics are employed: Average Precision (AP), mean Average
Precision (mAP), Average Precision for mask segmentation
(AP_M), and its corresponding mean (mAP_M). The mAP metric,
which balances precision and recall, is calculated as follows:

— 0
P= 2o X 100% (12)
— TP 0,
R= oo X 100% (13)
1
AP = fP(R)de 100% (14)
0

where, TP, FP, and FN denote true positives, false positives, and
false negatives, respectively.
_JANB]
" JAUB|

(15)

where, 4 represents the predicted bounding box; and B is the ground
truth bounding box. In instance segmentation, loU measures the
pixel-level overlap between predicted and ground truth masks.
L
AP=-) AP, x100%(oU > 0.5 16
mAP= % 6o(IoU > 0.5) (16)

i=1

where, n refers to the number of target categories, which is 3 in this
study.

For evaluating the inference efficiency of the model, this study
uses the average processing time per image and estimates the
complexity and computational cost through Giga Floating-point
Operations (GFLOPs). Model size and the number of parameters is
also included for a comprehensive evaluation. The corresponding
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calculations are as follows:
GFlops = A Z Kernel!C2,C; + Z 6C; (17)
=1 i=1

Params = 1 ZGZKerneIfCi]Cf (18)
i=1

where, 1 is a constant coefficient; Kernel denotes the kernel size of
each convolution layer; n is the number of layers; C is the number
of channels; 0 represents the input image’s height or width; and i is
the index of the ith layer.
3.3 Effectiveness validation of Star-CAA

In this study, the proposed Star-CAA module integrates the
contextual perception capabilities of the CAA mechanism with the
nonlinear high-dimensional feature representation of Star Operation,
thereby enabling enhanced structural perception and regional focus
in instance segmentation tasks. To evaluate its effectiveness,
systematic comparative experiments were conducted. In these
experiments, ‘CAA’ and ‘StarBlock’ refer to models integrating
only the respective components individually. The experimental
results are presented in Table 2.

Table 2 Performance comparison of Star-CAA

Model AP/% mAP/% AP_M/% mAP_M/%
YOLOvll1s 88.7 90.3 88.3 90.5
CAA 91.0 91.7 91.0 92.0
StarBlock 89.9 90.4 90.2 90.9
Star-CAA 92.8 93.8 93.0 93.9

Compared to YOLOv11s, the Star-CAA module improved AP,
mAP, AP M, and mAP M by 4.1%, 3.5%, 4.7%, and 3.4%,

respectively, indicating notable enhancements in both detection and
segmentation performance. Furthermore, relative to the individual
integration of either CAA or StarBlock, Star-CAA consistently
achieved superior results. Specifically, it outperformed CAA by
1.8%, 2.1%, 2.0%, and 1.9%, and outperformed StarBlock by 2.9%,
3.4%, 2.0%, and 2.0% across the four metrics, validating the
complementary integration of combining contextual anchoring with
nonlinear high-dimensional feature modeling.

To further evaluate performance across different target
categories, a category-level assessment of AP_M was conducted for
apples (A), main branches (PB), and fruit-bearing branches (FB), as
displayed in Table 3.

Table 3 Category-wise segmentation accuracy

Model Evaluation metrics A% PB/% FB/%
YOLOvlls AP M 92.2 87.3 85.4
CAA AP M 94.7 90.0 88.3
Star-CAA AP_M 96.5 91.5 91.0

As shown, Star-CAA achieves improvements of 4.3%, 4.2%,
and 5.6% over YOLOvlls for A, PB, and FB, respectively,
demonstrating superior segmentation performance, particularly for
the structurally complex and intertwined PB and FB targets.
Compared to CAA, Star-CAA achieves further gains of 1.8% for A
and 2.7% for FB, suggesting that the Star operation enhances local
detail representation when combined with contextual attention
mechanisms.

To further evaluate the segmentation performance across
categories, Grad-CAM"* was applied to visualize the heatmaps
generated by the three models (Figure 12). Three heatmaps from
layers associated with the segmentation head were selected to
compare each model’s regional focus on the target objects.

Orginal YOLOvlls

CAA Star-CAA

Figure 12 Comparative heatmaps in different models

As observed in Figure 12, the segmentation heatmaps illustrate
distinct differences among the three models across target categories.

1) Apple segmentation: YOLOv11s can roughly identify most
apple regions but exhibits weak and dispersed activation, indicating
limited focus. The CAA model enhances attention through
contextual anchoring, resulting in more concentrated activations
near fruit boundaries; however, it still fails to achieve full coverage
of the fruit areas. In contrast, Star-CAA demonstrates improved
edge and contour sensitivity, yielding nearly complete coverage
with stronger edge responses and more precise segmentation.

2) Main branch (PB) segmentation: The targets are linear and
morphologically diverse. YOLOv11s displays discontinuous and
incomplete responses, attending only to fragmented parts of the
branches. CAA improves spatial continuity via context modeling
and directional enhancement, but the resulting heatmaps remain
either fragmented or overly diffuse. Star-CAA generates strong
activations at branch junctions and along continuous structures, with
heatmaps more closely aligned with the true branch contours,
indicating superior spatial modeling and continuity perception.

3) Fruit-bearing branch (FB) segmentation: These structures are
small, complex, and often occluded by apples. YOLOv1ls shows
weak and discontinuous responses with poor edge focus. While
CAA increases regional sensitivity, it still struggles to accurately
delineate FB contours or differentiate them from nearby PB
structures and apples. Star-CAA shows markedly improved
responses, with heatmaps that effectively capture fine-scale
branches and junctions. This suggests enhanced capability in
modeling fine-grained structures and local interactions.

Although the CAA mechanism improves attention focus and
direction awareness in complex backgrounds through contextual
anchoring, its reliance on linear relationships and spatial attention
limits its capacity to capture nonlinear feature interactions and high-
dimensional semantics. These limitations are particularly
pronounced  when  processing structurally complex or
morphologically variable targets. The Star operation addresses this
shortcoming by nonlinearly combining multi-scale features, thereby
expanding the representational space and enhancing local semantic
expressiveness. This complementary integration allows the Star
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operation to compensate for the CAA module’s deficiencies in fine-
grained modeling. Both quantitative results and visualizations
demonstrate that Star-CAA more accurately attends to object
boundaries and connection points, facilitating improved modeling
of structural continuity, topological relationships, and fine local
details.

3.4 Ablation experiment with different improved models

To systematically evaluate the effectiveness of each proposed
enhancement, stepwise ablation experiments were conducted. In this
setting, ‘A’ represents the replacement of the original C3k2 module
with the SCA-T/F module, while ‘B’ denotes the substitution of the
original segmentation head with the Segment LADH head.

As listed in Table 4, the integration of SCA-T/F modules at
multiple network levels led to notable performance improvements
over YOLOvll1s. Specifically, AP, mAP, AP M, and mAP M
improved by 5.3%, 4.4%, 6.0%, and 4.3%, respectively. These
results demonstrate that a hierarchical deployment of SCA-T/F
enhances the model’s capacity for deep feature extraction and
improves its adaptability to features across varying levels of
abstraction and resolution. Although this integration introduced a
slight increase in computational cost, as measured by GFLOPs and
parameter count, the performance gains clearly outweighed the
added resource demands.

Table 4 Results of the ablation experiments

AP/ mAP/ AP_M/ mAP_M/ GFLOPs/ Parameters/ Model Speed/
% % % % G M size/MB  ms

x 88.7 903 883 90.5 353 100679 77 20.6 22
x 940 947 943 94.8 41.6 116 806 97  23.9 3.8
N o922 931 925 93.5 32.6 9295017 19.1 3.7
N 949 951 949 95.1 38.8 10907737 224 33

>

B

X 2. X

<

When replacing only the segmentation head with the
Segment LADH, a reduction in both parameter count and GFLOPs
was observed, primarily due to the use of depthwise separable
convolutions in place of standard convolutions. Furthermore, the
asymmetric multi-stage compression architecture and the decoupled
mask generation mechanism improved segmentation performance
for main branches, fruit-bearing branches, and apples. In detail, AP,
mAP, AP M, and mAP_M increased by 3.5%, 2.8%, 4.2%, and
4.3%, respectively, indicating a balanced improvement in both
accuracy and computational efficiency. When both modules were
integrated to form the complete SCAL model, the performance
improved further, achieving the best results across all metrics:
AP=94.9%, mAP=95.1%, AP_M=94.9%, and mAP_M=95.1%.
Compared to YOLOV11s, these represent absolute improvements of
6.2%, 4.8%, 6.6%, and 4.9%, respectively.

To visually illustrate the performance impact of each module,
the evaluation results were normalized and presented in a 3D bar
chart (Figure 13). The figure reveals a consistent upward trend
across all metrics as each component was incrementally integrated
into the model. Notably, the improvements in segmentation-related
metrics (AP_M and mAP_M) were particularly pronounced.

These findings confirm the strong complementarity and
synergistic effects between the SCA-T/F module and the
Segment LADH head. Their integration enhances the model’s
robustness and accuracy in addressing critical challenges, including
structural continuity modeling of branches, inference of connections
between fruits and branches, fine-grained detail extraction, and
boundary recognition under complex lighting conditions. This
integrated design offers a reliable technical foundation for
intelligent visual perception in orchard environments.
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Figure 13 Performance comparison of the ablation models

3.5 Comparison with different models

To comprehensively evaluate the performance advantages of
the proposed SCAL model in both detection and segmentation
tasks, several mainstream YOLO-based models were selected as
baselines, including YOLOv5s®), YOLOv8s™, YOLOv10s®", and
YOLOv11s™. All models were trained and evaluated on the same
unified dataset. The detailed performance metrics are presented in
Table 5.

Table 5 Comparative experimental results
AP/ mAP/ AP_M/ mAP_M/ GFLOPs/ Parameters/ Model

Model o o g % G M size/MB
YOLOvSs 853 873 854 877 378 9766713 198
YOLOVSs 887 897 87.6 897 424 11780761 227

YOLOv10s 855 884  86.0 88.6 40.5
YOLOvlls 88.7 903 883 90.5 35.3
SCAL 949 951 949 95.1 38.8

9171097 18.7
100679 77 20.6
10907737 224

As listed in Table 5, the SCAL model achieves the highest
accuracy across all metrics. Compared to the second-best model,
YOLOv11s, SCAL improves mAP by 4.8% and mAP_M by 4.6%,
while increasing the computational cost by only 9.9% (from 35.3 to
38.8 GFLOPs). In contrast, YOLOv10s exhibits significantly higher
computational overhead (40.5 GFLOPs) with only marginal
performance gains, indicating a suboptimal performance-to-cost
ratio. YOLOvV8s achieves higher accuracy than both YOLOvS5s and
YOLOv10s, with an AP of 88.7%. However, despite consuming
9.3% more computational (42.4 GFLOPs), it
underperforms SCAL by 6.2% in AP. These comparisons further

resources

validate SCAL’s favorable balance between performance and
efficiency, demonstrating its ability to deliver substantial accuracy
improvements with relatively low computational overhead.

To visually demonstrate the segmentation quality and
generalization capability of each model under complex conditions, a
set of raw orchard images was used as the test set, and the
corresponding segmentation outputs were then visualized for
comparative analysis, as shown in Figure 14. The figure presents
the segmentation performance of different models on three target
categories—main branches, fruit-bearing branches, and apples—in
typical orchard scenes.

As shown in the figure, YOLOvSs, YOLOv8s, YOLOv10s, and
YOLOvl1ls exhibit varying degrees of under-segmentation, mis-
segmentation, and target adhesion (i.e., the merging of distinct
objects into a single instance), particularly under conditions
involving occlusion, blurred boundaries, and complex structural
overlaps. In contrast, the SCAL model demonstrates enhanced
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feature extraction, spatial structure discrimination, and boundary
delineation across all three target categories. It consistently shows

YOLOVS5s YOLOvV8s

Original

better adaptability to real-world challenges, including variable
lighting conditions, occlusions, and background clutter.

YOLOv10s YOLOvlls

N

Note: a. Front lighting1; b. Front lighting2; c. Front lighting3; d. Backlighting1; e. Backlighting2; f. Nighttime with auxiliary lighting. In the images, red bounding boxes

indicate missed segmentations, yellow bounding boxes represent false segmentations, and orange bounding boxes denote target adhesion, where separate objects are

incorrectly merged into a single instance.

Figure 14 Comparison of segmentation results across models in representative orchard scenes

Specifically, YOLOvS5s struggles in high-density fruit regions
(Figures 14a and 14b), exhibiting blind spots due to limited capacity
for handling scale variation and object overlap. YOLOv8s achieves
improved performance through an enhanced feature pyramid
structure but continues to suffer from boundary blurring and mask
adhesion in areas where fruits and branches overlap (Figures 14c
and 14d). In low-light environments (Figures 14e and 14f), its
ability to distinguish features deteriorates, resulting in poor
segmentation. YOLOv10s and YOLOvlls leverage stronger
backbone networks and attention mechanisms to enhance structural
modeling, but still struggle to differentiate texture-similar targets
under challenging lighting conditions and cluttered backgrounds
(Figures 14e and 14f). In contrast, SCAL consistently outperforms
the other models across all six representative scenes, especially in
scenarios with significant scale variance (Figures 14b and 14d). It
produces smooth and complete mask boundaries, maintains internal
mask consistency, and avoids the fragmented segmentation
commonly observed in other YOLO-based models.

This advantage is primarily attributed to SCAL’s multi-scale
feature fusion mechanism, which enhances global semantic
understanding while preserving critical local details. Even under
extreme conditions such as uneven illumination or low-light
environments (Figures 14e and 14f), SCAL maintains high-quality

segmentation and mask coherence, demonstrating strong robustness
and adaptability in extracting features under variable field
conditions. This coherence and environmental adaptability facilitate
the generation of accurate, continuous contour information,
significantly enhancing the operational stability and grasping
precision of robotic picking systems in complex orchard
environments.
3.6 Comparison of models under adverse weather conditions

To comprehensively evaluate the segmentation performance of
different models under adverse weather conditions, a composite test
set was constructed, encompassing three representative challenging
scenarios: Rainy, Foggy, and Mixed (a combination of rain and
fog). Based on this dataset, a systematic comparison was conducted
among four models: YOLOv1ls, SCAL, AirNet-SCAL, and the
proposed CPA-SCAL. AirNet-SCAL refers to a SCAL variant
integrated with the AirNet module®™, specifically designed for
image restoration under adverse weather conditions. This variant
serves as a weather-adaptive baseline for evaluating the
effectiveness and robustness of the proposed method in complex
environmental scenarios.

As listed in Table 6, CPA-SCAL outperforms all comparison
models across all key metrics. It achieves an AP of 88.7% and
AP_M of 88.0%, with mAP and mAP_M reaching 90.5% and
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90.7%, respectively, demonstrating substantial improvements.
While AirNet-SCAL shows modest gains over the original SCAL
model, it remains inferior to CPA-SCAL, further validating the
effectiveness of the proposed weather-aware compensation module.

To wvisually compare model performance under varying
meteorological conditions, Figure 15 presents segmentation results
across the three representative scenarios.

Under rainy conditions, reduced brightness and uneven
illumination caused by light drizzle significantly degrade
segmentation quality. YOLOvlls produces fragmented and
incomplete masks, whereas CPA-SCAL, equipped with context-

feature
mechanisms, effectively mitigates these adverse effects, yielding
coherent and well-defined segmentation results.

aware enhancement and adaptive compensation

Table 6 Performance comparison under weather variations

Model AP/ mAP/ AP_M/ mAP_M/ Parameters/ Model
% % % % M size/MB
YOLOvlls 845 873 84.5 87.1 100 679 77 20.6
SCAL 855 87.6 85.4 87.9 109 077 37 22.4
AirNet-SCAL 849 87.6 84.8 87.8 138 844 26 23.1
CPA-SCAL 88.7 905 88.0 90.7 144 077 37 23.6

Original YOLOvl1ls

AirNet-SCAL | CPA-SCAL

| Weather [

=

Figure 15 Visual comparison of segmentation results

Under foggy conditions, atmospheric scattering reduces
contrast and significantly impairs visibility, particularly for distant
objects. YOLOv1l1s exhibits noticeable missed detections, while
SCAL and AirNet-SCAL show acceptable performance in nearby
regions but struggle in distant low-visibility zones. In contrast, CPA-
SCAL successfully detects and accurately segments all targets,
including main branches heavily occluded by dense fog, exhibiting
superior adaptability to visibility loss.

Under mixed rain-fog conditions, compounded
degradation causes severe quality loss, target boundaries become
increasingly blurred, and structural information is heavily
diminished. Most models suffer significant performance drops in

where

this scenario. However, CPA-SCAL maintains high segmentation
accuracy, especially in handling multi-target occlusions and
boundary ambiguities. The generated masks retain high consistency
and shape integrity, highlighting the model’s exceptional robustness
and generalization capability under extreme environmental
conditions.
3.7 Edge deployment and inference optimization of SCAL

The NVIDIA Jetson series represents a class of low-power,
GPU-driven edge computing devices that have been widely adopted
in various Al applications. To evaluate the inference performance of
the SCAL model on resource-constrained platforms, it was
deployed on the NVIDIA Jetson AGX Xavier, and experiments
were conducted to verify its feasibility within an edge computing
environment.

Figure 16 shows the trade-off between inference speed (FPS)
and normalized segmentation accuracy, including AP M and
mAP_M, across five models. For clarity, the accuracy values were

normalized to the 80%-100% range to highlight the balance
between speed and accuracy for each model.

160+ T ~YOLOVS5s

15.8 YOLOVS8s
+YOLOVI0s

15.6 YOLOvlIs

E 154k SCAL (Ours)
152 15.3 fps
15.0 fi
150F P 129 fps
lag L Il4.8 fpos . |

0.3 0.4 0.5 0.6 0.7
Normalized accuracy
Figure 16 Comparison of inference speed and normalized
accuracy across models on NVIDIA Jetson AGX Xavier

As shown in Figure 16, the SCAL model achieves an inference
speed of 15.3 fps while maintaining high accuracy, demonstrating
strong real-time performance. In contrast, YOLOVSs achieves the
highest inference speed (16.0 fps) but exhibits a notable decline in
accuracy. Although YOLOv8s and YOLOvlls offer improved
accuracy, their relatively slower inference speeds reduce their
suitability for real-time applications that require strict latency
constraints.

To further enhance inference efficiency and deployment
performance, two mainstream low-precision optimization strategies
were applied during model export: FP16 (half-precision floating
point) and INT8 (8-bit integer quantization). FP16 reduces memory
consumption and can accelerate inference on Tensor Core-enabled
GPUs, whereas INT8 provides further compression of model size
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and increases inference speed. Moreover, the model was optimized
using the TensorRT framework to enable hardware-aware
acceleration and runtime efficiency.

Applying FP16 quantization reduced the model size to 18 MB
and increased the inference speed to 43.2 fps, approximately 2.8
times faster than the unoptimized model. With INT8 quantization,
inference speed further improved to 47.2 fps (approximately 3.1
times acceleration), while the model size was reduced to 14.5 MB,
significantly lowering storage requirements and computational
overhead.

In practical orchard-harvesting scenarios, commonly used
depth cameras (e.g., ZED 2i) typically operate at 30.0 fps with
1080P resolution. Thus, the quantized SCAL model is fully capable
of processing such image streams in real time. Combined with its
high-precision segmentation capability, SCAL is well-suited for

LY

a. Setup of the experimental environment

deployment on edge computing devices used in fruit-harvesting
robots operating under resource constraints and requiring real-time
performance.
3.8 Laboratory evaluation of SCAL in a simulated orchard
environment

To evaluate the effectiveness and generalization capability of
the proposed SCAL model in orchard fruit-harvesting scenarios, a
simulated orchard environment was constructed in a laboratory
setting for real-machine experiments. As shown in Figure 17, the
experimental setup includes 15 artificial apple models along with
simulated main branches and fruit-bearing branches. Among them,
five apples are occluded by main branches to replicate typical
complex occlusion conditions observed in real orchard
environments. Figure 17b shows an RGB image captured by the
ZED 2i depth camera.

l

b. Images acquired by the ZED2i camera

Figure 17 Experimental environment setup

Within this experimental environment, the SCAL model
successfully identified and accurately segmented the contours of all
15 apple samples, including the five occluded by main branches.
Additionally, it effectively segmented both the main branches and
fruit-bearing branches located in the apple-bearing areas. As

illustrated in Figure 18, the model performed exceptionally well in
segmenting the boundaries of fruit-bearing branches, even at
junctions where they overlap with main branches and apples—an
essential capability for improving the success rate of robotic picking
operations.

Nvidia Jeston AGX Xavier

Monitor

Note: In the images, the red circles indicate the five apples occluded by the main branches.

Figure 18 Segmentation result visualization

This experiment demonstrates the robustness and generalization
capability of the SCAL model under complex conditions. It
successfully achieved effective segmentation of multiple target
categories, providing precise and stable information to support
subsequent robotic arm tasks such as obstacle avoidance, path
planning, and picking pose estimation. These results further validate
the model’s potential for effectively utilizing multi-class perception

information in practical orchard harvesting applications.

4 Discussion

In complex orchard environments, the proposed model
demonstrated the capability to perform instance segmentation of
apples, main branches, and fruit-bearing branches using a single
visual sensor. It effectively perceived comprehensive visual
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information relevant to fruit harvesting tasks, thereby establishing a
solid foundation for automated harvesting and offering considerable
practical value.

Despite its high segmentation accuracy across multiple target
categories, the model was not integrated with depth information
captured by visual sensors. As a result, a three-dimensional
perception of targets remained absent, which limited the
construction of obstacle maps incorporating main and fruit-bearing
branches. To enable precise fruit picking and effective obstacle
avoidance, future research should incorporate depth cameras to
capture real-time spatial information, thereby facilitating scene
reconstruction and mapping. In addition, the development of
integrated algorithms for picking pose estimation and obstacle-
avoidance path planning—taking into account the motion
characteristics and kinematics of robotic arms—would contribute to
improved harvesting success rates and operational safety”**.

Environmental dynamics such as wind or branch vibrations
induced by picking actions may also disrupt the visual scene,
adversely affecting segmentation stability and potentially resulting
in recognition failures or mechanical damage®®. Therefore, future
investigations should examine the impact of such vibrations on
visual recognition and localization systems. The incorporation of
temporal modeling techniques—such as lightweight temporal
convolutions or spatio-temporal feature fusion mechanisms—may
enhance the robustness of segmentation under dynamic conditions,
thereby improving the model’s adaptability in real-world harvesting
scenarios.

Experimental results also revealed limitations of the SCAL
model under extreme lighting conditions. For instance, in the
strongly shadowed region of scene (f) in Figure 14 the model
exhibited discontinuous mask generation for main branches,
indicating instability in feature representation under uneven
illumination. Although the SCAL model outperformed existing
models in detecting extremely small or blurred targets (e.g., the
slender fruit-bearing branch in scene (a)), this issue was not fully
resolved. This suggests that improvements to the hierarchical
feature fusion strategy remain necessary. Future studies may
explore the integration of multimodal segmentation approaches and
the optimization of multi-level feature fusion to enhance the
recognition of weak-feature targets®’.

5 Conclusions

This study proposed a multi-category instance segmentation
model, SCAL, which achieves accurate segmentation of apples,
main branches, and fruit-bearing branches in unstructured orchard
environments. The main conclusions are summarized as follows:

1) A Star-CAA module was developed to jointly capture
feature and spatial dimensions. By integrating the mathematical
properties of the Star operation with the contextual reasoning
capability of the CAA attention mechanism, the module enables
nonlinear  feature  fusion, enhances boundary gradient
representation, and strengthens directional perception. These
advancements collectively improve fine-grained modeling of
structural continuity, topological relationships, and local details.

2) Through the integration of the SCA-T/F modules and the
Segment LADH head, the SCAL model demonstrated superior
segmentation performance compared with existing algorithms. On
the dataset, it achieved a detection/segmentation mAP_M of 95.1%,
representing improvements of 4.8% in detection mAP and 4.6% in
segmentation mAP_M over the YOLOv11s. Under adverse weather
conditions, the CPA-SCAL model achieved a segmentation

accuracy of 90.7%, which is 3.6% higher than that of YOLOv11s.

3) To further validate the model’s applicability in real-world
production scenarios, the SCAL model was deployed on an
NVIDIA Jetson AGX Xavier edge device. Following FP16 and
INT8 quantization, it achieved real-time segmentation frame rates
of 43.2-47.2 fps. Validation experiments in a simulated orchard
environment further demonstrated its ability to accurately detect and
segment apples under occlusion, providing reliable 3D structural
information to support robotic arm path planning and obstacle
avoidance in automated harvesting systems.
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