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Abstract: To  enable  efficient  and  low-cost  automated  apple  harvesting,  this  study  presented  a  multi-class  instance
segmentation model, SCAL (Star-CAA-LADH), which utilizes a single RGB sensor for image acquisition. The model achieves
accurate  segmentation  of  fruits,  fruit-bearing  branches,  and  main  branches  using  only  a  single  RGB  image,  providing
comprehensive  visual  inputs  for  robotic  harvesting.  A  Star-CAA module  was  proposed  by  integrating  Star  operation  with  a
Context-Anchored  Attention  mechanism  (CAA),  enhancing  directional  sensitivity  and  multi-scale  feature  perception.  The
Backbone and Neck networks were equipped with hierarchically structured SCA-T/F modules to improve the fusion of high-
and low-level  features,  resulting in more continuous masks and sharper boundaries.  In the Head network,  a Segment_LADH
module  was  employed  to  optimize  classification,  bounding  box  regression,  and  mask  generation,  thereby  improving
segmentation  accuracy  for  small  and  adherent  targets.  To  enhance  robustness  in  adverse  weather  conditions,  a  Chain-of-
Thought  Prompted  Adaptive  Enhancer  (CPA)  module  was  integrated,  thereby  increasing  model  resilience  in  degraded
environments.  Experimental  results  demonstrate  that  SCAL  achieves  94.9%  AP_M  and  95.1%  mAP_M,  outperforming
YOLOv11s  by  6.6%  and  4.6%,  respectively.  Under  multi-weather  testing  conditions,  the  CPA-SCAL  variant  consistently
outperforms other comparison models in accuracy. After INT8 quantization, the model size was reduced to 14.5 MB, with an
inference  speed  of  47.2  frames  per  second  (fps)  on  the  NVIDIA  Jetson  AGX  Xavier.  Experiments  conducted  in  simulated
orchard environments validate the effectiveness and generalization capabilities of the SCAL model, demonstrating its suitability
as an efficient and comprehensive visual solution for intelligent harvesting in complex agricultural settings.
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 1    Introduction
As one of the world’s major commercial fruit crops, apples are

still predominantly harvested by hand—a process that is both labor-
intensive  and  inefficient[1].  This  reliance  limits  scalability  and  fails
to  meet  the  demands  of  large-scale  commercial  production[2,3].  To
address  these  limitations,  robotic  harvesting  technologies  have

garnered  increasing  interest[4-6].  Although  numerous  robotic
harvesters  have  been  developed,  they  often  fall  short  of  human
performance due to technical constraints.  Among these limitations,
the  lack  of  reliable  visual  perception  remains  a  fundamental
obstacle  to  effective  robotic  harvesting[7].  This  limitation  is
compounded  by  practical  cost  and  hardware  constraints,  which
preclude  the  use  of  complex  multi-sensor  systems.  As  a  result,
achieving  comprehensive  scene  understanding  with  only  a  single
vision sensor has emerged as a critical technical challenge.

The  rapid  development  of  deep  learning  has  significantly
accelerated  the  integration  of  object  detection  and  image
segmentation  in  agricultural  applications[8-10].  Object  detection
algorithms  typically  locate  objects  by  generating  bounding  boxes,
serving common tasks such as fruit or branch recognition. However,
these  methods  offer  only  coarse  approximations  of  target  regions,
and  thus  often  require  additional  post-processing  to  achieve  fine
localization[11].  In  contrast,  image  segmentation  techniques  produce
precise  object  masks  that  can  be  directly  associated  with  depth
information,  enabling  accurate  three-dimensional  spatial
localization[12,13].

In  unstructured  orchard  environments,  the  intricate  spatial
topology of branches and the dynamic morphology of slender fruit-
bearing  branches  present  significant  challenges  for  robotic
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harvesting. Accurately and rapidly acquiring the spatial positions of
apples,  main  branches,  and  fruit-bearing  branches  is  essential  to
improve the performance of vision-guided robotic systems. Precise
spatial  perception  enables  optimal  grasp  planning  and  path
generation, reduces collision risks, and improves harvesting success
rates and operational efficiency[14].

A  range  of  deep  learning  models  has  been  applied  to  address
these challenges. For instance, Wang and He[15] utilized an improved
Mask  R-CNN  to  segment  apples  under  complex  conditions
involving  shadows,  varied  backgrounds,  and  foliage  occlusion,
achieving a precision of 97.1% and a segmentation mAP of 91.7%,
with an inference time of 250 ms per image. Tong et al.[16] applied a
Cascade Mask R-CNN with a Swin-T backbone to segment trunks
and  branches  in  dormant  orchards,  reporting  bbox  mAP and  segm
mAP  of  94.3%  and  94.0%,  respectively.  Additionally,  Sapkota  et
al.[17]  compared  YOLOv8  and  Mask  R-CNN  across  two  scenarios:
dormant  tree  trunk  and  branch  segmentation  (Scene  1),  and
segmentation  of  unripe  apples  in  leafy  conditions  (Scene  2).  In
Scene  1,  YOLOv8  achieved  90.6%  precision,  74.0%  mAP@0.5,
and  an  inference  speed  of  10.9  ms,  while  Mask  R-CNN  reached
81.3%,  70.0%,  and  15.6  ms,  respectively.  In  Scene  2,  YOLOv8
outperformed Mask R-CNN with 92.9% precision and 90.2% mAP,
further  highlighting  the  speed  and  accuracy  advantages  of  YOLO-
based  models.  Building  on  this  line  of  research,  Yan  et  al.[18]

developed an improved YOLOv8s-based perception model capable
of  simultaneously  detecting  apples  and  segmenting  branches  and
trunks. By embedding SE attention and dynamic snake convolution,
the model achieved a precision of 99.6% for apple recognition and
an mAP of 81.6% for branch and trunk segmentation.

Nevertheless,  most  of  these  studies  focus  on  single-class
segmentation, targeting either fruits or branches, and fail to provide
the  comprehensive  multi-object  perception  required  for  complex
orchard  environments.  To  address  this  limitation,  Rong  et  al.[19]

proposed an enhanced semantic segmentation model based on Swin
Transformer  V2  for  simultaneous  segmentation  of  tomato  fruits,
calyxes,  and  stems.  By  integrating  a  SeMask  module  into  the
encoder,  the  model  achieved  improved  performance  with  an
inference  time  of  approximately  120  ms.  Similarly,  Kang  and
Chen[20]  introduced  DaSNet-v2,  a  single-stage  detection  framework
that  integrates  both  instance  and  semantic  segmentation  branches.
The  model  achieved  87.3%  fruit  segmentation  accuracy  and  a
branch segmentation IoU of 79.4%, with an average processing time
of  70  ms.  However,  although  DaSNet-v2  supports  the  concurrent
segmentation  of  fruits  and  branches,  it  relies  exclusively  on
semantic  segmentation  for  the  latter,  thus  lacking  the  ability  to
distinguish  individual  branch  instances.  Moreover,  its  relatively
complex  architecture  poses  challenges  for  deployment  on  edge
computing devices.

While  semantic  segmentation  has  been  widely  applied  in
agricultural  perception  tasks,  its  inability  to  differentiate  between
individual instances within the same class limits its effectiveness in
multi-target scenarios, particularly in environments characterized by
dense  foliage  or  morphologically  similar  targets[13].  In  contrast,
instance  segmentation  distinguishes  individual  objects  within  a
category  and  delineates  their  precise  boundaries.  When  combined
with  depth  information,  instance  segmentation  can  assign  unique
spatial attributes to each object, enabling higher-level reasoning and
decision-making  in  robotic  harvesting  systems[21].  However,  the
complexity  and  computational  demands  of  instance  segmentation
models  pose  challenges  for  real-time deployment  on  edge  devices.
Therefore,  a  balance  must  be  achieved  between  segmentation

accuracy  and  inference  efficiency,  highlighting  the  need  for
lightweight  yet  effective  visual  perception  models  to  support  real-
time scene understanding in robotic harvesting tasks.

To address the aforementioned challenges, this study proposed
a  novel  multi-class  instance  segmentation  framework,  termed
SCAL,  specifically  designed  to  accurately  segment  apples,  main
branches,  and  fruit-bearing  branches  in  unstructured  orchard
environments. The main contributions of this work were as follows:

1)  The  Star-CAA module  was  designed  to  enable  coordinated
modeling  between  feature  and  spatial  dimensions.  This  module
effectively  accommodated  scale  variation  and  topological
complexity  in  branching  structures,  thereby  enhancing  spatial
perception.

2) SCAL operated using only RGB images captured by a single
camera,  offering  a  low-cost  solution  for  acquiring  detailed  scene
understanding.  The  model  achieved  high  segmentation  accuracy
while  maintaining  computational  efficiency  on  edge  devices,
successfully  balancing  precision  and  real-time  performance.  This
design  significantly  improved  the  capabilities  of  vision-guided
robotic systems in orchard harvesting scenarios.

3)  To  ensure  consistent  segmentation  under  challenging
conditions  such  as  rain  and  fog,  a  weather-adaptive  image
augmentation module was incorporated. This enhanced the model’s
robustness  and  supported  all-weather  visual  perception,  enabling
reliable operation in intelligent harvesting systems.

 2    Materials and methods
 2.1    Dataset construction
 2.1.1    Dataset acquisition

The  image  dataset  used  in  this  study  was  collected  from  the
“Yujia”  Orchard  Cooperative  in  Baoji  City,  Shaanxi  Province,
China,  during  the  peak  apple  harvesting  season  from  October  to
November  2024.  The  orchard  cultivated  three  commercially
significant  apple  varieties:  “Honeycrisp”,  “Yanfu”,  and
“Ruixianghong”. Sampling was conducted in plots managed under a
modern  high-density  dwarf  rootstock  cultivation  system,
characterized  by  row  spacing  of  2.0-3.5  m  and  plant  spacing  of
approximately 1.2 m.

Images were captured using an iPhone 12 Pro, Huawei P40 Pro,
and  ZED2i  depth  camera,  all  positioned  directly  facing  the  apple
trees at  distances ranging from 300 to 600 mm. This configuration
simulated  the  installation  of  visual  sensors  on  robotic  apple
harvesters.  To  improve  the  model’s  robustness  under  varying
environmental  conditions  and  enhance  its  generalization  across
scenarios,  a  multi-condition  illumination  sampling  strategy  was
adopted. Images were systematically acquired under both sunny and
overcast  weather,  at  different  times  of  day  (morning,  midday,  and
evening), and under both front-lit and backlit lighting conditions. In
addition,  supplementary  samples  were  collected  at  night  using
artificial lighting. The complete data acquisition workflow is shown
in Figure 1.
 2.1.2    Multi-weather conditions simulation

In  real  agricultural  environments,  weather  conditions  vary
significantly,  including  rainfall,  fog,  and  their  combinations.
However, such conditions were absent during our image acquisition
period,  leading  to  a  lack  of  samples  representing  these  specific
meteorological scenarios in the original dataset.

To  ensure  that  the  developed  visual  model  is  capable  of
supporting  all-weather  harvesting  operations,  a  physics-based
weather  simulation  approach  was  adopted.  Specifically,
professional rain and fog generation algorithms were applied to the
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collected  RGB  images,  thereby  constructing  a  comprehensive
dataset of apple images under simulated adverse weather conditions.

Representative  samples  of  these  simulated  images  are  shown  in
Figure 2.

 
 

a. Location of image acquisition and orchard environment 

b. Data acquisition equipment

c. Examples of collected data
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Figure 1    Data acquisition workflow diagram
 
 

a. Original image b. Simulated rainy condition c. Simulated foggy condition d. Simulated reain-fog combination

Figure 2    Simulated apple images under adverse weather conditions
 

This  strategy  enhances  the  model’s  generalizability  across  a
wider  range  of  environmental  scenarios,  enabling  it  to  maintain
stable performance even under unfavorable weather conditions.
 2.1.3    Dataset annotation

To improve computational  efficiency and ensure compatibility
with  low-resolution  image  acquisition  devices,  all  dataset  images
were resized to a uniform resolution of 1024×1024 pixels and saved
in JPG format.

In  orchard  environments,  main  branches  generally  grow  in
horizontal  or  inclined  orientations,  whereas  fruit-bearing  branches
extend  in  more  diverse  directions.  As  the  objective  of  this  study

is  apple  harvesting,  only  the  main  branches  and  fruit-bearing
branches  within  apple-containing  regions  were  annotated.  Due  to
the  distinct  morphological  differences  among  apples,  fruit-bearing
branches,  and  main  branches,  distinct  annotation  strategies  were
applied.  For  apples  and  fruit-bearing  branches,  a  minimum
enclosing  polygon  annotation  strategy  was  employed  to  minimize
background  pixels  and  improve  localization  accuracy.  In  contrast,
main  branches  are  typically  longer  and  thicker.  Annotating  the
entire  structure  with  a  single  polygon  often  introduces  excessive
background  noise  and  leads  to  poor  boundary  alignment,  which
adversely  affects  feature  extraction.  To  address  this,  a  segmented
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quadrilateral  annotation  strategy  was  implemented,  wherein
multiple  rectangular  segments  were  aligned  along  the  primary
growth direction of each branch[22].

All annotations were manually created using the Labelme tool.
As shown in Figure 3, the annotations were saved in JSON format
and  then  converted  to  the  TXT  format  compatible  with  the
YOLOv11 framework.
 2.1.4    Data augmentation and division

To mitigate the risk of overfitting due to the limited number of
training  samples,  multiple  offline  data  augmentation  techniques
were applied to the original dataset. These included noise injection,
mirroring,  rotation,  contrast  adjustment,  brightness  variation,  and
translation, as shown in Figure 4.

By  incorporating  images  captured  under  diverse  weather  and

lighting  conditions,  a  dataset  comprising  7000  images  was
constructed.  The  dataset  was  then  partitioned  into  training,
validation, and test sets using a 7:2:1 ratio.

 
 

a. Rotation b. Mirroring c. Contrast adjustment

d. Noise injection e. Brightness variation f. Image scaling

Figure 4    Data augmentation for apple recognition
 

 2.2    Design of  the Star-CAA and SCA-T/F modules  for multi-
scale feature fusion
 2.2.1    Star Operation

In  robotic  apple-harvesting  tasks,  the  precise  segmentation  of
main branches, fruit-bearing branches, and fruits directly influences
the harvesting success rate, operational efficiency, and the degree of
tree  structure  protection.  However,  this  task  presents  several
challenges:  the  morphological  continuity  between  main  and  fruit-
bearing  branches  leads  to  unclear  boundary  distinctions;  apples  of
different  cultivars  often  share  similar  colors  and  textures;  and
changing  lighting  conditions  can  obscure  object  edges.  These
factors  are  further  compounded  by  the  need  for  both  high
segmentation accuracy and real-time inference.

Recent  studies  have  shown  that  the  method  of  feature  fusion
plays  a  critical  role  in  determining  segmentation  performance[23].
Star  Operation,  as  a  novel  feature  fusion  mechanism,  exhibits
unique  mathematical  properties  and  strong  practical  potential[24].  It
performs  nonlinear,  high-order  fusion  by  applying  element-wise
multiplication  to  two  input  features,  thereby  achieving  high-
dimensional  nonlinear  mapping  within  a  low-dimensional  space.

x = [x1, x2, . . . , xn] ∈ RnGiven  input  features  ,  the  two  paths  are
linearly transformed and then multiplied, yielding the output:

Γ (X) = Relu

(
n∑

i=1

α1
i xi

)
⊙

(
n∑

j=1

α2
j x j

)
=

n∑
i=1

n∑
j=1

ki, j xi x j (1)

⊙
α1

i α2
j

where, X  denotes  the  feature  set  of  the  input  data;    denotes  the
element-wise  multiplication;    and    are  learnable  parameters;
and ki,j denotes the combination coefficient.

Considering  the  symmetry  xixj=xjxi,  the  dimensionality  of  the
mapped feature space is approximately:

n(n+1)
2

≈ n2

2
(2)

O
Å

n2

2

ãThrough the learnable coefficient ki,j, the model can adaptively
adjust the feature mapping strategy to suit different structural targets
better. Although the theoretical dimensionality of the mapped space

is  ,  all  computations  are  retained  in  the  original  n-

dimensional  space.  When  multiple  Star  Operation  layers  are
cascaded,  the  dimensionality  of  the  feature  space  increases
exponentially.

 

Figure 3    Annotation examples from the dataset
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dim(Γt) ≈
Å

n2

2

ãt

(3)

where,  t  is  the  number  of  layers.  This  implicit  infinite-
dimensionality  allows  the  model  to  capture  fine-grained  object
variations  and  complex  spatial  relationships  without  substantially
increasing  computational  complexity,  providing  a  solid  theoretical
foundation  for  the  high-precision  segmentation  of  main  branches,
fruit-bearing branches, and apples. Additionally, the quadratic term
xixj  in  Equation  (1)  can  be  viewed  as  a  nonlinear  multi-scale
combination,  which,  when  combined  with  large-kernel  depth-wise
convolutions, contributes to a multi-scale receptive field mechanism
that  enhances  the  model’s  adaptability  to  scale  changes.  For  main
branches,  this  helps  capture  the  gradual  change  in  thickness  along
the  trunk.  For  slender  fruit-bearing  branches  that  are  only  a  few
pixels  wide,  it  maps  spatial  features  into  high-dimensional  space,
preserving  structural  continuity  and  enhancing  local  contrast.  For
apples,  which  vary  in  size,  texture,  and illumination,  the  nonlinear
mapping improves robustness.

To  preserve  structural  continuity  during  segmentation,  for
adjacent  pixels  pi  and  pj  with  corresponding  features  fi  and  fj,  the
cosine similarity in the high-dimensional mapped space is given by:

Similarity(pi, p j) =
Γ ( fi)Γ

(
f j

)
∥Γ ( fi)∥

∥∥Γ( f j

)∥∥ ≈ 1 (4)

This  equation  demonstrates  the  strong  aggregation  ability  of
Star Operation in spatially continuous regions. Even under varying
illumination or  texture  conditions  in  the  original  feature  space,  the
high-dimensional  mapping  preserves  feature  continuity  and
consistency,  thereby  reducing  segmentation  errors  arising  from
structural discontinuities or blurred boundaries.

Xboundary

∇Γ(Xboundary)

Notably,  Star  Operation  produces  significant  gradient
enhancement  and  amplification  effects  at  object  boundaries.  For  a
pixel   located on a semantic boundary, the boundary gradient
response   is defined as:

Let

A =
n∑

i=1

α1
i xi, B =

n∑
j=1

α2
j x j (5)

Then,

∇Γ
(

Xboundary

)
= (Relu(A) · ∇B)⊙ (B · ∇A)+Relu(A)⊙∇B (6)

∇
∇

This  boundary response function integrates  three  key mechan-
isms:  nonlinear  activation,  dual-branch  feature  complementarity,
and  multiplicative  amplification.  When  the  input  feature  crosses  a
semantic boundary, the spatial gradients from both paths  (A) and
(B)  produce  an  amplification  effect,  which  is  further  enhanced

when  multiplied  by  the  respective  feature  values.  As  a  result,  the
boundary signal  is  significantly boosted.  Consequently,  even when
feature  transitions  are  weak  or  ambiguous,  the  Star  Operation  can
generate  structurally  coherent  and  highly  responsive  boundary
features.  Compared  to  traditional  methods  that  rely  heavily  on
explicit  edge  priors  or  predefined  structural  assumptions,  Star
Operation exhibits strong adaptability across diverse target types. It
enhances boundary representations by implicitly encoding structural
information  in  high-dimensional  space  through  nonlinear  feature
composition, eliminating the need for manually designed strategies
tailored to specific object classes such as apples or branches.

To  encapsulate,  the  distinctive  mathematical  characteristics  of
Star  Operation  offer  a  compelling  alternative  to  the  traditional
deepening or widening of neural network architectures. Leveraging

implicit  high-dimensional  mapping  and  nonlinear  feature
interactions,  it  enables  efficient,  high-precision  perception  and
segmentation  of  complex  targets,  particularly  when  deployed  on
resource-constrained edge devices in agricultural environments.
 2.2.2    Context anchor attention

In  orchard-harvesting  scenarios,  main  branches  typically  grow
in horizontal or oblique orientations, whereas fruit-bearing branches
exhibit  more  irregular  and  diverse  growth  patterns.  A  clear
hierarchical structure is present: fruit-bearing branches attach to the
main branches, and fruits are primarily located at the distal ends of
fruit-bearing  branches  or  directly  connected  to  the  main  branches.
Consequently,  the  model  must  be  capable  of  simultaneously
perceiving  three  distinct  object  types  with  varying  scales  and
effectively capturing the complex spatial relationships among them.

To  address  this  challenge,  the  CAA  mechanism[25]  was
introduced  to  enhance  the  model’s  ability  to  construct  the
topological  structure  of  branching  connections.  This  module  first
extracts locally compressed contextual features using global average
pooling, expressed as:

U(p)
i =Conv1×1

(
AvgPool

(
F(p)

i

))
(7)

F(p)
i

U(p)
i

where,    denotes  the  input  feature  of  the  ith  module  in  layer p;
and   represents its corresponding global contextual feature.

Subsequently,  the  CAA  mechanism  separates  spatial
dependencies  along  horizontal  and  vertical  directions  using  depth-
wise separable convolutions, forming a cross-decoupled structure as
illustrated  in  Figure  5.  This  design  facilitates  the  construction  of
long-range dependencies in both directions:®

G(p)
i =DWConv1×k

(
U(p)

i

)
H(p)

i =DWConvk×1

(
G(p)

i

) (8)

G(p)
i H(p)

iwhere,   and   represent the features obtained after horizontal
and  vertical  convolutions,  respectively.  This  process  allows  the
model  to  effectively  capture  directional  features  and  gain  a  better
understanding  of  the  orientation  and  connection  patterns  of
branches. In cases where fruits or branches are partially occluded or
missing,  CAA can  utilize  long-range  contextual  reasoning  to  infer
the  continuity  of  occluded  structures.  By  leveraging  both  visible
local  features  and  their  contextual  dependencies,  the  model’s
robustness is enhanced in complex natural environments.
  

Horizontal & Vertical Dwconv The best fit

Figure 5    Schematic of horizontal and vertical convolutions in the
CAA module

 

The  resulting  features  are  then  passed  through  a  convolution
layer followed by a Sigmoid activation function to generate a spatial
attention map: ®

A(p)
i = Sigmoid

(
Conv1×1

(
H(p)

i

))
A(p)

i ∈ [0,1]C×H×W
(9)

This  attention  map  assigns  selection  weights  to  each  pixel
position within the target region (with red indicating weights close
to  1),  thereby  enhancing  the  model’s  focus  on  boundary-relevant
regions.  As  shown  in  Figure  6,  this  boundary  enhancement
mechanism  enables  the  model  to  accurately  locate  the  connection
points  between  fruit-bearing  branches,  main  branches,  and  fruits,
thereby improving overall segmentation accuracy.
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Figure 6    Generation of attention weight maps in the CAA module
 

 2.2.3    Star-CAA:  Integrating  nonlinear  interaction  and  direction-
aware attention

To  achieve  coordinated  modeling  between  feature  and  spatial
dimensions, this study proposes the Star-CAA module. This module
retains  the  nonlinear  feature  combination  capabilities  of  the  Star
Operation  while  incorporating  the  CAA  mechanism  to  enhance
directional  spatial  perception  of  the  output  feature  maps  prior  to
feature  dimensionality  reduction.  This  integration  significantly
improves the network’s ability to perceive structural continuity and
distinguish ambiguous or overlapping boundary regions.

ΓLet    denote  the  output  of  the  Star  Operation  (as  defined  in
Equation  (1)),  which  serves  as  the  input  to  the  CAA module.  The
directionally enhanced features are expressed as:

Y = A(p)
i ⊙Γ (10)

A(p)
i

Due  to  the  spatial  continuity  and  directional  sensitivity  of  the
attention map  ,  this  multiplicative  operation  not  only  enhances
the  model’s  response  to  subtle  structural  differences  in  branch
connections but also strengthens its ability to capture boundaries in
blurred  or  cluttered  regions.  Furthermore,  the  modular  structure  of
this attention mechanism simplifies computation and achieves high
efficiency,  making  it  suitable  for  deployment  on  resource-
constrained edge devices in agricultural settings.

However,  in  deep  networks,  if  the  attention  feature  map
deviates significantly from the original feature distribution, this may
suppress  useful  semantic  information and compromise the stability
of the network representation.  To address this  issue,  the Star-CAA
module  introduces  a  residual  connection  mechanism  to  fuse  the
original input features with the enhanced attention features, thereby
mitigating  the  suppression  effect  and  preserving  semantic
consistency. The final output is expressed as:

Youtput = Y ⊕X (11)

This  design  not  only  improves  the  consistency  of  feature
representations  between  edge  and  core  regions  but  also  facilitates
gradient  propagation  in  deep  neural  networks,  thereby  enhancing
training efficiency.

Compared  with  traditional  attention  mechanisms  (e.g.,  SE,
which operates solely in the channel dimension, and CBAM, which
relies  on  pooling  for  attention  generation),  Star-CAA  achieves
simultaneous  modeling  of  spatial  and  channel  dimensions  with
enhanced directional perception. As shown in Figure 7,  this makes
it  particularly  suitable  for  tasks  involving  objects  with  explicit
directional  structures  in  agricultural  environments,  such  as  main
branches and fruit-bearing branches.
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Figure 7    Schematic of spatial-channel joint modeling and directional enhancement fusion in the Star-CAA module
 

 2.2.4    SCA-T/F:  Structure-aware  multi-scale  feature  fusion  with
Star-CAA

SCA-T/F is a newly designed multi-scale feature extraction and
fusion module constructed by integrating Star-CAA with C3k2. The
architecture  offers  two  complementary  configurations  adapted  to
different  feature  processing  demands:  SCA-T  (a  deep  cascaded
structure) and SCA-F (a lightweight and fast structure), as shown in
Figure 8.

When  C3k=True,  the  SCA-T  module  adopts  a  more  complex
CSP (Cross Stage Partial)  structure,  which splits  the input  features
into two parallel branches. The main path embeds multiple cascaded
Star-CAA  modules,  forming  a  deep  hierarchical  transformation
stream (NSCA). This layered design expands the effective receptive
field  of  the  model.  It  progressively  builds  multilevel  feature
abstraction,  from  edge  textures  and  geometric  structures  to  high-
level  semantics,  enabling  the  network  to  effectively  capture  the
global topological relationships and spatial extension patterns of the

target structure.
When  C3k=False,  SCA-F  employs  a  more  straightforward

feature  processing  pathway,  embedding  only  a  single  Star-CAA
module  in  the  main  branch.  This  lightweight  design  significantly
reduces  the  number  of  parameters  and  computational  complexity
while  minimizing  redundant  transformations  and  preserving  high
feature fidelity. Although a single Star-CAA module has a relatively
limited receptive field, it exhibits greater sensitivity to local details,
enabling effective capture of high-frequency features and boundary
information.  This  sensitivity  directly  contributes  to  more  explicit
boundary  representations  and  stronger  modeling  of  the  structural
continuity of slender fruit-bearing branches.

In  the  backbone  network  design,  SCA-T  and  SCA-F  modules
are  flexibly  deployed  at  different  levels  according  to  the  semantic
depth and spatial resolution of the hierarchical features. In the deep
semantic  extraction  stages,  SCA-T  is  used  to  enhance  structural
abstraction capabilities. In contrast, in the shallow detail-preserving
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stages, SCA-F is applied to strengthen the response to edge textures
and  local  features.  By  deploying  the  two  types  of  modules  across
semantic  levels,  a  progressively  hierarchical  structure-aware
modeling path is constructed. This collaborative design significantly

improves  the  model’s  ability  to  integrate  global  semantic
understanding with local structural modeling, thereby enhancing its
capability  to  perceive  multi-class  objects  with  strong  structural
awareness and spatial topology comprehension.
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Figure 8    Structural illustration of the SCA-T and SCA-F modules
 

 2.3    Segment_LADH:  Triple-branch  head  with  Mask,
Classification, and Localization streams

The  accurate  segmentation  of  main  branches,  fruit-bearing
branches,  and  fruits  requires  the  simultaneous  extraction  of  both
textural  and  boundary  features.  However,  conventional  coupled
head architectures often fail to balance the extraction needs of these
heterogeneous features effectively. To address this issue, this study
incorporates  a  Lightweight  Asymmetric  Dense  Head  (LADH)  into
the model’s segmentation head. By employing an asymmetric multi-
level  compression  strategy,  the  decoupled  head  design  introduces
task-specific  branches  that  effectively  reduce  mutual  interference
among  classification,  localization,  and  segmentation  tasks  within

the model[26].
As shown in Figure 9, the Segment_LADH adopts a three-path

parallel  architecture,  with  each  path  dedicated  to  a  specific  task,
thereby  mitigating  cross-task  interference.  The  instance
segmentation branch further decomposes the segmentation task into
two  independent  sub-processes:  mask  prototype  generation  and
mask  coefficient  prediction,  which  are  handled  by  the  ProtoHead
and PredictionHead,  respectively.  This  structure enables  the model
to  extract  generalized  shape  representations  and  multi-scale
semantic  features  separately,  leading  to  precise  segmentation  of
apple contours, stem locations, and connection points between fruits
and branches.
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Figure 9    Segment_LADH structure diagram
 

The classification branch is dedicated to differentiating among
the  main  branches,  fruit-bearing  branches,  and  apples.  The
bounding  box  prediction  path  utilizes  a  DSConv–DSConv–

Conv–Conv2d  sequence  in  conjunction  with  distributed  focal  loss
optimization,  in  order  to  achieve  accurate  localization  of  all  three
object categories.
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Additionally, the Segment_LADH module extensively replaces
standard  convolutions  with  depthwise  separable  convolutions,
significantly  reducing  both  parameter  count  and  computational
overhead. This lightweight design facilitates real-time inference on
edge  computing  devices,  making  it  suitable  for  deployment  in
orchard  robotics  and  other  resource-constrained  agricultural
environments.
 2.4    CPA:  Adaptive  visual  enhancement  for  multi-condition
degradation

Mechanical  harvesting  in  orchard  environments  faces
significant  challenges  due  to  highly  variable  and  unstructured
natural  conditions.  In  foggy  environments,  image  clarity  and
contrast  are  significantly  reduced,  resulting  in  blurred  boundaries
between objects  and their  surroundings,  such as  apples and branch
structures.  Rainy  conditions  introduce  light  refraction  and  water

droplet interference, resulting in noisy and complex textures. When
both  fog  and  rain  coexist,  the  degradation  becomes  even  more
severe, further diminishing image quality. Most conventional visual
enhancement  techniques  are  designed  for  specific  types  of
degradation,  making  them  insufficient  for  handling  diverse  and
dynamic  environmental  conditions.  Therefore,  a  visual
enhancement  approach  capable  of  adaptively  addressing  multiple
types of degradation is urgently needed.

The  CPA  module  addresses  this  problem  through  a  chain-of-
thought prompting-based mechanism, enabling adaptive processing
of  various  environmental  degradations[27].  The  architecture
comprises  two  core  components:  the  Chain-of-thought  Generation
Module (CGM) and Content-driven Prompt Block (CPB). Together,
they form a cascaded encoder-decoder framework that enables multi-
level feature extraction and enhancement, as shown in Figure 10.
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Figure 10    CPA structure diagram
 

The  CGM  employs  a  sequence  of  transposed  convolutional
layers  to  generate  prompts  that  encode  multi-scale  degradation
features. These prompts incorporate environmental clues associated
with fog, rain, and mixed weather conditions, allowing the model to
reason  about  the  nature  and  extent  of  degradation  gradually.  The
CPB  divides  the  input  features  into  multiple  segments,  each  of
which  is  processed  by  an  independent  Transformer  module.  This
design  allows  the  encoded  degradation  information  from  the
prompts  to  be  effectively  injected  into  the  input  features,  ensuring
efficient cross-scale interaction.

As a result, the model can dynamically adjust its enhancement
strategy in  the presence of  unknown degradation types and unseen
weather conditions, ultimately providing high-quality inputs for the
downstream segmentation task.
 2.5    SCAL:  Instance  segmentation  model  for  main  branches,
fruit-bearing branches, and apples

The  instance  segmentation  framework  proposed  in  this  study
integrates  all  previously  introduced  innovative  components  to
address  the  multifaceted  challenges  faced  by  robotic  arms in  fruit-
picking  scenarios.  The  architecture  is  composed  of  three  primary
components:  the  Backbone,  Neck,  and  Head,  forming  a  complete
pipeline  for  feature  extraction  and  segmentation.  The  overall
architecture is illustrated in Figure 11.

In  the  Backbone,  the  differentiated deployment  of  SCA-T and
SCA-F  modules  is  based  on  a  careful  analysis  of  the  feature

processing requirements at different hierarchical levels. The overall
design follows a progressive receptive field expansion strategy:

1)  In  the  shallow  layers,  the  SCA-F  modules  are  used  to
preserve  high  feature  fidelity  and  sensitivity  to  local  details,
preventing premature abstraction that could result in the loss of fine-
grained information;

2) As the network deepens, the SCA-T modules are introduced
to  capture  morphological  structures  and  spatial  context,  owing  to
their  larger  effective  receptive  fields  and  deeper  representation
capacity.  The  cascaded  Star-CAA  units  in  these  modules
progressively  refine  features—from  edge  textures  to  structural
forms  and,  finally,  semantic  information—establishing  a  complete
abstraction hierarchy.

In  the  Neck,  multi-scale  feature  fusion  and  enhancement  are
required  to  bridge  the  Backbone  outputs  with  the  segmentation
head. To this end, we construct a hierarchical fusion structure using
both  SCA-T  and  SCA-F  modules.  Their  complementary
characteristics  facilitate  a  balanced  integration  of  semantic
abstraction  and  detail  preservation  during  upsampling  and  feature
aggregation.  This  configuration  not  only  optimizes  computational
resource  allocation  but  also  enables  the  network  to  adaptively
handle  features  with  different  levels  of  abstraction  and  spatial
resolution,  ultimately  producing  unified  and  enriched  feature
representations for the segmentation head.
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Figure 11    Overall architecture of the proposed instance segmentation model
 

The  Segment_LADH  head  adopts  an  asymmetric  multi-path
architecture  that  decouples  classification,  localization,  and
segmentation  tasks.  This  task-specific  branching  effectively
overcomes  mutual  interference,  thereby  enhancing  the  overall
stability  of  predictions.  Its  unique  mask-generation  mechanism
allows  for  the  precise  delineation  of  fruit  boundaries  and  key
connection points.

Under  adverse  weather  conditions—such  as  fog,  rain,  or  their
combination—the  CPA  module  is  activated  at  the  input  stage  to
enhance  degraded  images,  ensuring  that  high-quality  visual
information is fed into the network.

Through  the  collaborative  integration  of  these  novel
components,  the  proposed model  demonstrates  strong performance
in  addressing  critical  challenges,  such  as  the  continuous  transition
between branch types, the detection of delicate structures, boundary
definition under complex lighting conditions, and the segmentation
of attachment points between fruits and branches. This architecture
thus establishes a robust and precise visual foundation for intelligent
harvesting systems in complex orchard environments.

 3    Experimental results and analysis
 3.1    Segmentation model training

The  model  training  in  this  study  was  conducted  on  a
workstation  equipped  with  an  Intel  Core  i9-14900KF  CPU  (32
cores),  128  GB  of  RAM,  and  an  NVIDIA  GeForce  RTX  4080
SUPER  GPU  (16  GB  memory).  The  training  environment  was
based on Python 3.10 and the PyTorch 2.1.0 framework, accelerated
by  CUDA  12.1  and  cuDNN  8.8.0.1.  The  detailed  training
parameters are listed in Table 1.
 
 

Table 1    Training parameters for the recognition model
Training parameters Values Training parameters Values

Optimizer SGD Epochs 300

Workers 12 Batch size 8

Mask_ratio 4 Size 640

lr0 0.01 lrf 0.01

 3.2    Evaluation metrics
Instance  segmentation  is  an  extension  of  object  detection  that

not only requires locating each target but also achieving pixel-wise
segmentation  for  each  instance.  Therefore,  this  study  employs
multiple  metrics  to  comprehensively  evaluate  the  segmentation
model.

To evaluate detection and segmentation accuracy, the following
metrics  are  employed:  Average  Precision  (AP),  mean  Average
Precision  (mAP),  Average  Precision  for  mask  segmentation
(AP_M),  and its  corresponding mean (mAP_M).  The mAP metric,
which balances precision and recall, is calculated as follows:

P =
TP

TP+FP
×100% (12)

R =
TP

TP+FN
×100% (13)

AP =
1w

0

P (R)dR×100% (14)

where,  TP,  FP,  and  FN  denote  true  positives,  false  positives,  and
false negatives, respectively.

IoU =
|A∩B|
|A∪B| (15)

where, A represents the predicted bounding box; and B is the ground
truth  bounding  box.  In  instance  segmentation,  IoU  measures  the
pixel-level overlap between predicted and ground truth masks.

mAP =
1
n

n∑
i=1

APi ×100%(IoU ≥ 0.5) (16)

where, n refers to the number of target categories, which is 3 in this
study.

For evaluating the inference efficiency of the model, this study
uses  the  average  processing  time  per  image  and  estimates  the
complexity  and  computational  cost  through  Giga  Floating-point
Operations (GFLOPs). Model size and the number of parameters is
also  included  for  a  comprehensive  evaluation.  The  corresponding
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calculations are as follows:

GFlops = λ

(
n∑

i=1

Kernel2
i C

2
i−1Ci +

n∑
i=1

θ2Ci

)
(17)

Params = λ

(
n∑

i=1

θ2Kernel2
i C

2
i−1Ci

)
(18)

where, λ is a constant coefficient; Kernel denotes the kernel size of
each convolution layer; n  is the number of layers; C  is the number
of channels; θ represents the input image’s height or width; and i is
the index of the ith layer.
 3.3    Effectiveness validation of Star-CAA

In  this  study,  the  proposed  Star-CAA  module  integrates  the
contextual  perception capabilities  of  the CAA mechanism with the
nonlinear high-dimensional feature representation of Star Operation,
thereby enabling enhanced structural perception and regional focus
in  instance  segmentation  tasks.  To  evaluate  its  effectiveness,
systematic  comparative  experiments  were  conducted.  In  these
experiments,  ‘CAA’  and  ‘StarBlock’  refer  to  models  integrating
only  the  respective  components  individually.  The  experimental
results are presented in Table 2.
 
 

Table 2    Performance comparison of Star-CAA
Model AP/% mAP/% AP_M/% mAP_M/%

YOLOv11s 88.7 90.3 88.3 90.5

CAA 91.0 91.7 91.0 92.0

StarBlock 89.9 90.4 90.2 90.9

Star-CAA 92.8 93.8 93.0 93.9
 

Compared to YOLOv11s, the Star-CAA module improved AP,
mAP,  AP_M,  and  mAP_M  by  4.1%,  3.5%,  4.7%,  and  3.4%,

respectively, indicating notable enhancements in both detection and
segmentation  performance.  Furthermore,  relative  to  the  individual
integration  of  either  CAA  or  StarBlock,  Star-CAA  consistently
achieved  superior  results.  Specifically,  it  outperformed  CAA  by
1.8%, 2.1%, 2.0%, and 1.9%, and outperformed StarBlock by 2.9%,
3.4%,  2.0%,  and  2.0%  across  the  four  metrics,  validating  the
complementary integration of combining contextual anchoring with
nonlinear high-dimensional feature modeling.

To  further  evaluate  performance  across  different  target
categories, a category-level assessment of AP_M was conducted for
apples (A), main branches (PB), and fruit-bearing branches (FB), as
displayed in Table 3.
  

Table 3    Category-wise segmentation accuracy
Model Evaluation metrics A/% PB/% FB/%

YOLOv11s AP_M 92.2 87.3 85.4
CAA AP_M 94.7 90.0 88.3

Star-CAA AP_M 96.5 91.5 91.0
 

As  shown,  Star-CAA  achieves  improvements  of  4.3%,  4.2%,
and  5.6%  over  YOLOv11s  for  A,  PB,  and  FB,  respectively,
demonstrating  superior  segmentation  performance,  particularly  for
the  structurally  complex  and  intertwined  PB  and  FB  targets.
Compared to CAA, Star-CAA achieves further gains of 1.8% for A
and 2.7% for FB, suggesting that the Star operation enhances local
detail  representation  when  combined  with  contextual  attention
mechanisms.

To  further  evaluate  the  segmentation  performance  across
categories,  Grad-CAM[28]  was  applied  to  visualize  the  heatmaps
generated  by  the  three  models  (Figure  12).  Three  heatmaps  from
layers  associated  with  the  segmentation  head  were  selected  to
compare each model’s regional focus on the target objects.
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Figure 12    Comparative heatmaps in different models
 

As observed in Figure 12, the segmentation heatmaps illustrate
distinct differences among the three models across target categories.

1)  Apple  segmentation:  YOLOv11s  can  roughly  identify  most
apple regions but exhibits weak and dispersed activation, indicating
limited  focus.  The  CAA  model  enhances  attention  through
contextual  anchoring,  resulting  in  more  concentrated  activations
near fruit boundaries; however, it still fails to achieve full coverage
of  the  fruit  areas.  In  contrast,  Star-CAA  demonstrates  improved
edge  and  contour  sensitivity,  yielding  nearly  complete  coverage
with stronger edge responses and more precise segmentation.

2)  Main  branch  (PB)  segmentation:  The  targets  are  linear  and
morphologically  diverse.  YOLOv11s  displays  discontinuous  and
incomplete  responses,  attending  only  to  fragmented  parts  of  the
branches.  CAA  improves  spatial  continuity  via  context  modeling
and  directional  enhancement,  but  the  resulting  heatmaps  remain
either  fragmented  or  overly  diffuse.  Star-CAA  generates  strong
activations at branch junctions and along continuous structures, with
heatmaps  more  closely  aligned  with  the  true  branch  contours,
indicating superior spatial modeling and continuity perception.

3) Fruit-bearing branch (FB) segmentation: These structures are
small,  complex,  and  often  occluded  by  apples.  YOLOv11s  shows
weak  and  discontinuous  responses  with  poor  edge  focus.  While
CAA  increases  regional  sensitivity,  it  still  struggles  to  accurately
delineate  FB  contours  or  differentiate  them  from  nearby  PB
structures  and  apples.  Star-CAA  shows  markedly  improved
responses,  with  heatmaps  that  effectively  capture  fine-scale
branches  and  junctions.  This  suggests  enhanced  capability  in
modeling fine-grained structures and local interactions.

Although  the  CAA  mechanism  improves  attention  focus  and
direction  awareness  in  complex  backgrounds  through  contextual
anchoring,  its  reliance  on  linear  relationships  and  spatial  attention
limits its capacity to capture nonlinear feature interactions and high-
dimensional  semantics.  These  limitations  are  particularly
pronounced  when  processing  structurally  complex  or
morphologically  variable  targets.  The Star  operation addresses  this
shortcoming by nonlinearly combining multi-scale features, thereby
expanding the representational space and enhancing local semantic
expressiveness.  This  complementary  integration  allows  the  Star
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operation to compensate for the CAA module’s deficiencies in fine-
grained  modeling.  Both  quantitative  results  and  visualizations
demonstrate  that  Star-CAA  more  accurately  attends  to  object
boundaries  and  connection  points,  facilitating  improved  modeling
of  structural  continuity,  topological  relationships,  and  fine  local
details.
 3.4    Ablation experiment with different improved models

To  systematically  evaluate  the  effectiveness  of  each  proposed
enhancement, stepwise ablation experiments were conducted. In this
setting, ‘A’ represents the replacement of the original C3k2 module
with the SCA-T/F module, while ‘B’ denotes the substitution of the
original segmentation head with the Segment_LADH head.

As  listed  in  Table  4,  the  integration  of  SCA-T/F  modules  at
multiple  network  levels  led  to  notable  performance  improvements
over  YOLOv11s.  Specifically,  AP,  mAP,  AP_M,  and  mAP_M
improved  by  5.3%,  4.4%,  6.0%,  and  4.3%,  respectively.  These
results  demonstrate  that  a  hierarchical  deployment  of  SCA-T/F
enhances  the  model’s  capacity  for  deep  feature  extraction  and
improves  its  adaptability  to  features  across  varying  levels  of
abstraction  and  resolution.  Although  this  integration  introduced  a
slight increase in computational cost, as measured by GFLOPs and
parameter  count,  the  performance  gains  clearly  outweighed  the
added resource demands.
  

Table 4    Results of the ablation experiments

A B AP/
%

mAP/
%

AP_M/
%

mAP_M/
%

GFLOPs/
G

Parameters/
M

Model
size/MB

Speed/
ms

× × 88.7 90.3 88.3 90.5 35.3 100 679 77 20.6 2.2
√ × 94.0 94.7 94.3 94.8 41.6 116 806 97 23.9 3.8
× √ 92.2 93.1 92.5 93.5 32.6 929 501 7 19.1 3.7
√ √ 94.9 95.1 94.9 95.1 38.8 109 077 37 22.4 3.3

 

When  replacing  only  the  segmentation  head  with  the
Segment_LADH, a reduction in both parameter count and GFLOPs
was  observed,  primarily  due  to  the  use  of  depthwise  separable
convolutions  in  place  of  standard  convolutions.  Furthermore,  the
asymmetric multi-stage compression architecture and the decoupled
mask  generation  mechanism  improved  segmentation  performance
for main branches, fruit-bearing branches, and apples. In detail, AP,
mAP,  AP_M,  and  mAP_M  increased  by  3.5%,  2.8%,  4.2%,  and
4.3%,  respectively,  indicating  a  balanced  improvement  in  both
accuracy  and  computational  efficiency.  When  both  modules  were
integrated  to  form  the  complete  SCAL  model,  the  performance
improved  further,  achieving  the  best  results  across  all  metrics:
AP=94.9%,  mAP=95.1%,  AP_M=94.9%,  and  mAP_M=95.1%.
Compared to YOLOv11s, these represent absolute improvements of
6.2%, 4.8%, 6.6%, and 4.9%, respectively.

To  visually  illustrate  the  performance  impact  of  each  module,
the  evaluation  results  were  normalized  and  presented  in  a  3D  bar
chart  (Figure  13).  The  figure  reveals  a  consistent  upward  trend
across  all  metrics  as  each component  was  incrementally  integrated
into the model. Notably, the improvements in segmentation-related
metrics (AP_M and mAP_M) were particularly pronounced.

These  findings  confirm  the  strong  complementarity  and
synergistic  effects  between  the  SCA-T/F  module  and  the
Segment_LADH  head.  Their  integration  enhances  the  model’s
robustness and accuracy in addressing critical challenges, including
structural continuity modeling of branches, inference of connections
between  fruits  and  branches,  fine-grained  detail  extraction,  and
boundary  recognition  under  complex  lighting  conditions.  This
integrated  design  offers  a  reliable  technical  foundation  for
intelligent visual perception in orchard environments.
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Figure 13    Performance comparison of the ablation models
 

 3.5    Comparison with different models
To  comprehensively  evaluate  the  performance  advantages  of

the  proposed  SCAL  model  in  both  detection  and  segmentation
tasks,  several  mainstream  YOLO-based  models  were  selected  as
baselines,  including  YOLOv5s[29],  YOLOv8s[30],  YOLOv10s[31],  and
YOLOv11s[32].  All  models  were  trained  and  evaluated  on  the  same
unified  dataset.  The  detailed  performance  metrics  are  presented  in
Table 5.
  

Table 5    Comparative experimental results

Model AP/
%

mAP/
%

AP_M/
%

mAP_M/
%

GFLOPs/
G

Parameters/
M

Model
size/MB

YOLOv5s 85.3 87.3 85.4 87.7 37.8 976 671 3 19.8

YOLOv8s 88.7 89.7 87.6 89.7 42.4 117 807 61 22.7

YOLOv10s 85.5 88.4 86.0 88.6 40.5 917 109 7 18.7

YOLOv11s 88.7 90.3 88.3 90.5 35.3 100 679 77 20.6

SCAL 94.9 95.1 94.9 95.1 38.8 109 077 37 22.4
 

As  listed  in  Table  5,  the  SCAL  model  achieves  the  highest
accuracy  across  all  metrics.  Compared  to  the  second-best  model,
YOLOv11s, SCAL improves mAP by 4.8% and mAP_M by 4.6%,
while increasing the computational cost by only 9.9% (from 35.3 to
38.8 GFLOPs). In contrast, YOLOv10s exhibits significantly higher
computational  overhead  (40.5  GFLOPs)  with  only  marginal
performance  gains,  indicating  a  suboptimal  performance-to-cost
ratio. YOLOv8s achieves higher accuracy than both YOLOv5s and
YOLOv10s,  with  an  AP  of  88.7%.  However,  despite  consuming
9.3%  more  computational  resources  (42.4  GFLOPs),  it
underperforms  SCAL  by  6.2%  in  AP.  These  comparisons  further
validate  SCAL’s  favorable  balance  between  performance  and
efficiency,  demonstrating  its  ability  to  deliver  substantial  accuracy
improvements with relatively low computational overhead.

To  visually  demonstrate  the  segmentation  quality  and
generalization capability of each model under complex conditions, a
set  of  raw  orchard  images  was  used  as  the  test  set,  and  the
corresponding  segmentation  outputs  were  then  visualized  for
comparative  analysis,  as  shown  in  Figure  14.  The  figure  presents
the  segmentation  performance  of  different  models  on  three  target
categories—main  branches,  fruit-bearing  branches,  and  apples—in
typical orchard scenes.

As shown in the figure, YOLOv5s, YOLOv8s, YOLOv10s, and
YOLOv11s  exhibit  varying  degrees  of  under-segmentation,  mis-
segmentation,  and  target  adhesion  (i.e.,  the  merging  of  distinct
objects  into  a  single  instance),  particularly  under  conditions
involving  occlusion,  blurred  boundaries,  and  complex  structural
overlaps.  In  contrast,  the  SCAL  model  demonstrates  enhanced

　210 　 August, 2025 Int J Agric & Biol Eng　　　Open Access at https://www.ijabe.org Vol. 18 No. 4　

https://www.ijabe.org


feature  extraction,  spatial  structure  discrimination,  and  boundary
delineation  across  all  three  target  categories.  It  consistently  shows

better  adaptability  to  real-world  challenges,  including  variable
lighting conditions, occlusions, and background clutter.

 
 

a.

b.

c.

d.

e.

f.

Original YOLOv5s YOLOv8s YOLOv10s YOLOv11s SCAL

Note: a. Front lighting1; b. Front lighting2; c. Front lighting3; d. Backlighting1; e. Backlighting2; f. Nighttime with auxiliary lighting. In the images, red bounding boxes
indicate  missed  segmentations,  yellow  bounding  boxes  represent  false  segmentations,  and  orange  bounding  boxes  denote  target  adhesion,  where  separate  objects  are
incorrectly merged into a single instance.

Figure 14    Comparison of segmentation results across models in representative orchard scenes
 

Specifically,  YOLOv5s  struggles  in  high-density  fruit  regions
(Figures 14a and 14b), exhibiting blind spots due to limited capacity
for handling scale variation and object overlap. YOLOv8s achieves
improved  performance  through  an  enhanced  feature  pyramid
structure  but  continues  to  suffer  from boundary  blurring  and mask
adhesion  in  areas  where  fruits  and  branches  overlap  (Figures  14c
and  14d).  In  low-light  environments  (Figures  14e  and  14f),  its
ability  to  distinguish  features  deteriorates,  resulting  in  poor
segmentation.  YOLOv10s  and  YOLOv11s  leverage  stronger
backbone networks and attention mechanisms to enhance structural
modeling,  but  still  struggle  to  differentiate  texture-similar  targets
under  challenging  lighting  conditions  and  cluttered  backgrounds
(Figures  14e and 14f).  In  contrast,  SCAL consistently  outperforms
the  other  models  across  all  six  representative  scenes,  especially  in
scenarios  with  significant  scale  variance  (Figures  14b  and 14d).  It
produces smooth and complete mask boundaries, maintains internal
mask  consistency,  and  avoids  the  fragmented  segmentation
commonly observed in other YOLO-based models.

This  advantage  is  primarily  attributed  to  SCAL’s  multi-scale
feature  fusion  mechanism,  which  enhances  global  semantic
understanding  while  preserving  critical  local  details.  Even  under
extreme  conditions  such  as  uneven  illumination  or  low-light
environments  (Figures  14e and 14f),  SCAL maintains  high-quality

segmentation and mask coherence, demonstrating strong robustness
and  adaptability  in  extracting  features  under  variable  field
conditions. This coherence and environmental adaptability facilitate
the  generation  of  accurate,  continuous  contour  information,
significantly  enhancing  the  operational  stability  and  grasping
precision  of  robotic  picking  systems  in  complex  orchard
environments.
 3.6    Comparison of models under adverse weather conditions

To comprehensively evaluate the segmentation performance of
different models under adverse weather conditions, a composite test
set was constructed, encompassing three representative challenging
scenarios:  Rainy,  Foggy,  and  Mixed  (a  combination  of  rain  and
fog). Based on this dataset, a systematic comparison was conducted
among  four  models:  YOLOv11s,  SCAL,  AirNet-SCAL,  and  the
proposed  CPA-SCAL.  AirNet-SCAL  refers  to  a  SCAL  variant
integrated  with  the  AirNet  module[33],  specifically  designed  for
image  restoration  under  adverse  weather  conditions.  This  variant
serves  as  a  weather-adaptive  baseline  for  evaluating  the
effectiveness  and  robustness  of  the  proposed  method  in  complex
environmental scenarios.

As  listed  in  Table  6,  CPA-SCAL  outperforms  all  comparison
models  across  all  key  metrics.  It  achieves  an  AP  of  88.7%  and
AP_M  of  88.0%,  with  mAP  and  mAP_M  reaching  90.5%  and
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90.7%,  respectively,  demonstrating  substantial  improvements.
While  AirNet-SCAL  shows  modest  gains  over  the  original  SCAL
model,  it  remains  inferior  to  CPA-SCAL,  further  validating  the
effectiveness of the proposed weather-aware compensation module.

To  visually  compare  model  performance  under  varying
meteorological  conditions, Figure  15 presents  segmentation  results
across the three representative scenarios.

Under  rainy  conditions,  reduced  brightness  and  uneven
illumination  caused  by  light  drizzle  significantly  degrade
segmentation  quality.  YOLOv11s  produces  fragmented  and
incomplete  masks,  whereas  CPA-SCAL,  equipped  with  context-

aware  enhancement  and  adaptive  feature  compensation
mechanisms,  effectively  mitigates  these  adverse  effects,  yielding
coherent and well-defined segmentation results.
 
 

Table 6    Performance comparison under weather variations

Model AP/
%

mAP/
%

AP_M/
%

mAP_M/
%

Parameters/
M

Model
size/MB

YOLOv11s 84.5 87.3 84.5 87.1 100 679 77 20.6
SCAL 85.5 87.6 85.4 87.9 109 077 37 22.4

AirNet-SCAL 84.9 87.6 84.8 87.8 138 844 26 23.1
CPA-SCAL 88.7 90.5 88.0 90.7 144 077 37 23.6

 
 

Weather YOLOv11s SCAL AirNet-SCAL CPA-SCALOriginal

Figure 15    Visual comparison of segmentation results
 

Under  foggy  conditions,  atmospheric  scattering  reduces
contrast  and  significantly  impairs  visibility,  particularly  for  distant
objects.  YOLOv11s  exhibits  noticeable  missed  detections,  while
SCAL  and  AirNet-SCAL  show  acceptable  performance  in  nearby
regions but struggle in distant low-visibility zones. In contrast, CPA-
SCAL  successfully  detects  and  accurately  segments  all  targets,
including main branches heavily occluded by dense fog, exhibiting
superior adaptability to visibility loss.

Under  mixed  rain-fog  conditions,  where  compounded
degradation  causes  severe  quality  loss,  target  boundaries  become
increasingly  blurred,  and  structural  information  is  heavily
diminished.  Most  models  suffer  significant  performance  drops  in
this  scenario.  However,  CPA-SCAL  maintains  high  segmentation
accuracy,  especially  in  handling  multi-target  occlusions  and
boundary ambiguities. The generated masks retain high consistency
and shape integrity, highlighting the model’s exceptional robustness
and  generalization  capability  under  extreme  environmental
conditions.
 3.7    Edge deployment and inference optimization of SCAL

The  NVIDIA  Jetson  series  represents  a  class  of  low-power,
GPU-driven edge computing devices that have been widely adopted
in various AI applications. To evaluate the inference performance of
the  SCAL  model  on  resource-constrained  platforms,  it  was
deployed  on  the  NVIDIA  Jetson  AGX  Xavier,  and  experiments
were  conducted  to  verify  its  feasibility  within  an  edge  computing
environment.

Figure  16  shows  the  trade-off  between  inference  speed  (FPS)
and  normalized  segmentation  accuracy,  including  AP_M  and
mAP_M, across five models.  For clarity,  the accuracy values were

normalized  to  the  80%-100%  range  to  highlight  the  balance
between speed and accuracy for each model.

  
16.0

15.8

15.6

15.4

F
P

S

15.2

15.0

14.8

0.3 0.4 0.5

Normalized accuracy

0.6 0.7

YOLOv5s

YOLOv8s

YOLOvl0s

YOLOv11s

SCAL (Ours)

16.0 fps

15.0 fps

14.8 fps
14.9 fps

15.3 fps

Figure 16    Comparison of inference speed and normalized
accuracy across models on NVIDIA Jetson AGX Xavier

 
As shown in Figure 16, the SCAL model achieves an inference

speed  of  15.3  fps  while  maintaining  high  accuracy,  demonstrating
strong  real-time  performance.  In  contrast,  YOLOv5s  achieves  the
highest  inference speed (16.0 fps) but exhibits  a notable decline in
accuracy.  Although  YOLOv8s  and  YOLOv11s  offer  improved
accuracy,  their  relatively  slower  inference  speeds  reduce  their
suitability  for  real-time  applications  that  require  strict  latency
constraints.

To  further  enhance  inference  efficiency  and  deployment
performance, two mainstream low-precision optimization strategies
were  applied  during  model  export:  FP16  (half-precision  floating
point) and INT8 (8-bit integer quantization). FP16 reduces memory
consumption  and  can  accelerate  inference  on  Tensor  Core-enabled
GPUs,  whereas  INT8  provides  further  compression  of  model  size
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and increases inference speed. Moreover, the model was optimized
using  the  TensorRT  framework  to  enable  hardware-aware
acceleration and runtime efficiency.

Applying FP16 quantization reduced the model size to 18 MB
and  increased  the  inference  speed  to  43.2  fps,  approximately  2.8
times  faster  than  the  unoptimized  model.  With  INT8  quantization,
inference  speed  further  improved  to  47.2  fps  (approximately  3.1
times acceleration), while the model size was reduced to 14.5 MB,
significantly  lowering  storage  requirements  and  computational
overhead.

In  practical  orchard-harvesting  scenarios,  commonly  used
depth  cameras  (e.g.,  ZED  2i)  typically  operate  at  30.0  fps  with
1080P resolution. Thus, the quantized SCAL model is fully capable
of  processing  such  image  streams  in  real  time.  Combined  with  its
high-precision  segmentation  capability,  SCAL  is  well-suited  for

deployment  on  edge  computing  devices  used  in  fruit-harvesting
robots  operating under  resource constraints  and requiring real-time
performance.
 3.8    Laboratory  evaluation  of  SCAL  in  a  simulated  orchard
environment

To  evaluate  the  effectiveness  and  generalization  capability  of
the  proposed  SCAL model  in  orchard  fruit-harvesting  scenarios,  a
simulated  orchard  environment  was  constructed  in  a  laboratory
setting  for  real-machine  experiments.  As  shown  in  Figure  17,  the
experimental  setup  includes  15  artificial  apple  models  along  with
simulated main branches and fruit-bearing branches.  Among them,
five  apples  are  occluded  by  main  branches  to  replicate  typical
complex  occlusion  conditions  observed  in  real  orchard
environments.  Figure  17b  shows  an  RGB  image  captured  by  the
ZED 2i depth camera.

 
 

a. Setup of the experimental environment b. Images acquired by the ZED2i camera

Figure 17    Experimental environment setup
 

Within  this  experimental  environment,  the  SCAL  model
successfully identified and accurately segmented the contours of all
15  apple  samples,  including  the  five  occluded  by  main  branches.
Additionally,  it  effectively  segmented  both  the  main  branches  and
fruit-bearing  branches  located  in  the  apple-bearing  areas.  As

illustrated in Figure 18, the model performed exceptionally well in
segmenting  the  boundaries  of  fruit-bearing  branches,  even  at
junctions  where  they  overlap  with  main  branches  and  apples—an
essential capability for improving the success rate of robotic picking
operations.

 
 

Nvidia Jeston AGX Xavier Monitor

Note: In the images, the red circles indicate the five apples occluded by the main branches.

Figure 18    Segmentation result visualization
 

This experiment demonstrates the robustness and generalization
capability  of  the  SCAL  model  under  complex  conditions.  It
successfully  achieved  effective  segmentation  of  multiple  target
categories,  providing  precise  and  stable  information  to  support
subsequent  robotic  arm  tasks  such  as  obstacle  avoidance,  path
planning, and picking pose estimation. These results further validate
the model’s potential for effectively utilizing multi-class perception

information in practical orchard harvesting applications.

 4    Discussion

In  complex  orchard  environments,  the  proposed  model
demonstrated  the  capability  to  perform  instance  segmentation  of
apples,  main  branches,  and  fruit-bearing  branches  using  a  single
visual  sensor.  It  effectively  perceived  comprehensive  visual
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information relevant to fruit harvesting tasks, thereby establishing a
solid foundation for automated harvesting and offering considerable
practical value.

Despite  its  high  segmentation  accuracy  across  multiple  target
categories,  the  model  was  not  integrated  with  depth  information
captured  by  visual  sensors.  As  a  result,  a  three-dimensional
perception  of  targets  remained  absent,  which  limited  the
construction of obstacle maps incorporating main and fruit-bearing
branches.  To  enable  precise  fruit  picking  and  effective  obstacle
avoidance,  future  research  should  incorporate  depth  cameras  to
capture  real-time  spatial  information,  thereby  facilitating  scene
reconstruction  and  mapping.  In  addition,  the  development  of
integrated  algorithms  for  picking  pose  estimation  and  obstacle-
avoidance  path  planning—taking  into  account  the  motion
characteristics and kinematics of robotic arms—would contribute to
improved harvesting success rates and operational safety[34,35].

Environmental  dynamics  such  as  wind  or  branch  vibrations
induced  by  picking  actions  may  also  disrupt  the  visual  scene,
adversely  affecting  segmentation  stability  and  potentially  resulting
in  recognition  failures  or  mechanical  damage[36].  Therefore,  future
investigations  should  examine  the  impact  of  such  vibrations  on
visual  recognition  and  localization  systems.  The  incorporation  of
temporal  modeling  techniques—such  as  lightweight  temporal
convolutions  or  spatio-temporal  feature  fusion  mechanisms—may
enhance the robustness of segmentation under dynamic conditions,
thereby improving the model’s adaptability in real-world harvesting
scenarios.

Experimental  results  also  revealed  limitations  of  the  SCAL
model  under  extreme  lighting  conditions.  For  instance,  in  the
strongly  shadowed  region  of  scene  (f)  in  Figure  14  the  model
exhibited  discontinuous  mask  generation  for  main  branches,
indicating  instability  in  feature  representation  under  uneven
illumination.  Although  the  SCAL  model  outperformed  existing
models  in  detecting  extremely  small  or  blurred  targets  (e.g.,  the
slender  fruit-bearing  branch  in  scene  (a)),  this  issue  was  not  fully
resolved.  This  suggests  that  improvements  to  the  hierarchical
feature  fusion  strategy  remain  necessary.  Future  studies  may
explore the integration of multimodal segmentation approaches and
the  optimization  of  multi-level  feature  fusion  to  enhance  the
recognition of weak-feature targets[37].

 5    Conclusions
This  study  proposed  a  multi-category  instance  segmentation

model,  SCAL,  which  achieves  accurate  segmentation  of  apples,
main  branches,  and  fruit-bearing  branches  in  unstructured  orchard
environments. The main conclusions are summarized as follows:

1)  A  Star-CAA  module  was  developed  to  jointly  capture
feature  and  spatial  dimensions.  By  integrating  the  mathematical
properties  of  the  Star  operation  with  the  contextual  reasoning
capability  of  the  CAA  attention  mechanism,  the  module  enables
nonlinear  feature  fusion,  enhances  boundary  gradient
representation,  and  strengthens  directional  perception.  These
advancements  collectively  improve  fine-grained  modeling  of
structural continuity, topological relationships, and local details.

2)  Through  the  integration  of  the  SCA-T/F  modules  and  the
Segment_LADH  head,  the  SCAL  model  demonstrated  superior
segmentation  performance  compared  with  existing  algorithms.  On
the dataset, it achieved a detection/segmentation mAP_M of 95.1%,
representing improvements of 4.8% in detection mAP and 4.6% in
segmentation mAP_M over the YOLOv11s. Under adverse weather
conditions,  the  CPA-SCAL  model  achieved  a  segmentation

accuracy of 90.7%, which is 3.6% higher than that of YOLOv11s.
3)  To  further  validate  the  model’s  applicability  in  real-world

production  scenarios,  the  SCAL  model  was  deployed  on  an
NVIDIA  Jetson  AGX  Xavier  edge  device.  Following  FP16  and
INT8  quantization,  it  achieved  real-time  segmentation  frame  rates
of  43.2-47.2  fps.  Validation  experiments  in  a  simulated  orchard
environment further demonstrated its ability to accurately detect and
segment  apples  under  occlusion,  providing  reliable  3D  structural
information  to  support  robotic  arm  path  planning  and  obstacle
avoidance in automated harvesting systems.
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