June, 2025

Int J Agric & Biol Eng Open Access at https://www.ijabe.org Vol. 18 No. 3

1

Integration of machine learning technologies in food flavor research:
Current applications, challenges, and future perspectives
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Abstract: Flavor characteristics significantly influence consumer food preferences and purchasing behaviors, constituting a
vital research domain in food science. While traditional flavor assessment approaches rely primarily on sensory evaluations and
instrumental analyses, they face inherent limitations in processing large-scale datasets and generating comprehensive insights.
Advanced machine learning (ML) models have revolutionized flavor research through their high-precision predictive
capabilities, effectively addressing conventional methodological constraints. These computational approaches enable
sophisticated and efficient flavor analysis by integrating multiple data dimensions, including chemical composition (volatile
and non-volatile compounds), sensory attributes (taste, aroma, texture), temporal dynamics (flavor release patterns), and
consumer responses. ML models demonstrate remarkable capability in simultaneously processing diverse data types, such as
gas chromatography-mass spectrometry results, sensory panel evaluations, and real-time flavor release measurements, to
predict consumer preferences and optimize flavor formulations. This review examines state-of-the-art ML applications in flavor
science, emphasizing crucial areas such as flavor database development, intelligent sensory detection, and food traceability.
Through systematic analysis of contemporary ML algorithms, this study critically evaluates their potential and limitations in
decoding complex flavor dynamics, providing valuable insights for both researchers and industry practitioners while identifying
promising directions for future technological innovations in food flavor analysis and prediction. The comprehensive synthesis
presented here represents a significant contribution to the field by establishing a theoretical framework for ML-driven flavor

research and offering practical guidelines for the implementation of computational approaches in food flavor analysis.

Keywords: machine learning, food flavor, prediction, flavor perception

DOI: 10.25165/j.ijabe.20251803.9623

Citation: Ling J, Heldman Dennis R. Integration of machine learning technologies in food flavor research: Current
applications, challenges, and future perspectives. Int J Agric & Biol Eng, 2025; 18(3): 1-11.

1 Introduction

Food flavor serves as a multifaceted indicator, encompassing
critical attributes like product categorization, regional provenance,
stage, status, and organoleptic
characteristics!". These nuanced flavor dimensions fundamentally

developmental preservation
shape consumer selection and dietary behaviors. Consumer demand
for sophisticated flavor profiles has driven significant advances in
food science research. Analysis of Scopus-indexed publications in
flavor chemistry reveals exponential growth from the 1980s to
2019, with annual publications reaching approximately 7009,
reflecting the field’s increasing research emphasis and underscoring
the field’s expanding research focus.

There are approximately 2500 naturally occurring flavor
compounds, many of which can be synthesized. The field of food
flavor encompasses extensive data’, including information on
flavor compounds, their interactions, sensory evaluations, consumer
preferences, and food formulations. These datasets exhibit
nonlinear characteristics due to the complex relationships among
factors intricate

various influencing flavor perception. The

interactions between flavor compounds and the multifaceted nature
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of sensory perception, influenced by individual differences and
environmental factors, further contribute to this nonlinearity™. A
compelling illustration of such nonlinearity is manifested in the
mechanism by which glycerol affects the release and perception of
key flavor compounds in baijiu, as well as in the interactions
between glycerol and specific flavor compounds. Glycerol can
selectively enhance the release of certain flavor compounds (e.g.,
dimethyl trisulfide) while inhibiting the volatility of others (e.g.,
ethyl acetate) and altering their olfactory detection thresholds. This
bidirectional regulatory effect exhibits nonlinear behavior that
cannot be predicted by simple linear relationships.

The journey of flavor analysis in food science encompasses
four developmental stages, beginning with sensory evaluation
methods, progressing through instrumental detection, incorporating
integrated analytical approaches, and culminating in machine
learning-enhanced automated procedures”®. Initially, sensory
analysis provided a comprehensive flavor profile through human
evaluation, offering an integrated assessment of food characteristics.
However, this method suffers from inherent limitations, primarily
subjective biases, and the requirement of extensive evaluator
training®. To address these challenges, instrumental analysis
emerged, employing sophisticated instruments to quantify odor and
taste compounds with greater objectivity. Instrumental techniques
advanced the field by delivering qualitative and quantitative
measurements of flavor compounds. Nevertheless, these methods
presented their own constraints, including time-intensive
procedures, high costs, and challenges in managing large, complex
datasets!"”. Recognizing these limitations, researchers began

developing integrated approaches that combined sensory and
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instrumental methods to leverage the strengths of both techniques.
The most recent paradigm shift has been the introduction of
machine learning (ML) models in sensory analysis®. These
intelligent techniques represent a significant leap forward in flavor
prediction and adjustment. Unlike traditional detection methods,
ML algorithms excel at uncovering latent, previously unknown
connections within extensive datasets''. By efficiently processing
complex data, these models can extract nuanced patterns,
correlations, and insights that were previously undetectable. To
ensure the reliability and objectivity of ML-based flavor analysis,
researchers have developed comprehensive evaluation metrics.
These include accuracy, precision, recall, error rate, robustness, and
computational complexity, providing a multifaceted framework for
assessing the predictive capabilities of!'”. This evolutionary
progression demonstrates the continuous refinement of food flavor
analysis techniques, highlighting the field’s ongoing commitment to
more precise, efficient, and insightful methodologies.

The strengths of machine learning lie in its advanced
capabilities: handling extensive datasets, detecting intricate
relationships within multidimensional spaces, executing self-
directed learning from existing information, delivering precise
forecasts for novel inputs, and performing swift recognition tasks
through self-optimizing computational processes”. For instance,
strategies such as manipulating microbial communities during wine
fermentation to achieve desired flavors!, improving processing
technologies for juices to enhance freshness', and increasing trace
elements during vegetable cultivation to alter quality and flavor
exemplify the application of these techniques'".

This scholarly review critically examines the
proliferation of machine learning (ML) techniques in food flavor
research, offering a comprehensive analysis of contemporary
methodological innovations. The manuscript provides an in-depth

recent

exploration of ML implementation processes, performance

evaluations, and critical challenges encountered in the field.
The review investigates pivotal

domains, including: flavor database construction, intelligent sensory

systematically research

detection methodologies, and advanced food traceability techniques.

By critically analyzing the current technological landscape, the
study aims to:

1) Elucidate emerging ML methodological trends;

2) Identify potential research trajectories;

3) Provide a robust theoretical framework for future food flavor
analysis and predictive research.

2 Fundamental principles and techniques of machine
learning

Different machine learning (ML) methods are instrumental in
extracting valuable insights from complex flavor data, establishing
ML as a critical tool in the modern food industry for product
development, quality control, and sensory evaluation. By leveraging
ML techniques, researchers can gain a deeper understanding of
consumer preferences and develop targeted flavor profiles. Notably,
support vector machines (SVM), random forests (RF), decision
trees (DT), and artificial neural networks (ANN) have emerged as
key data processing tools and focal points of research in the field of
food flavor analysis"®. The flowchart depicted in Figure 1 outlines
the general process of applying machine learning (ML) methods in
food flavor analysis and prediction, which can be categorized into
four main stages''”: data collection and preprocessing, feature
extraction, algorithm design and training, and algorithm validation
and prediction. Machine learning has gained widespread application
in food flavor prediction and regulatory data analysis due to its self-
learning capabilities, adaptability, strong fault tolerance, and
robustness in mapping complex dynamic nonlinear structures!®.

Implementing machine learning begins with collecting relevant
raw data, typically sourced from advanced analytical techniques
such as electronic noses'”, gas chromatography-olfactometry (GC-
0O), machine vision, near-infrared spectroscopy (NIR), and spectral
imaging™". These datasets form the foundation for model
development. Following data collection, preprocessing steps are
undertaken, which include data cleaning, dimensionality reduction,
and data balancing to ensure consistency and quality. Feature
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Figure 1

Machine learning workflow for food flavor analysis and prediction
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extraction focuses on identifying the most informative variables
within the dataset. This process often employs machine learning
algorithms such as random forests, autoencoders, and gradient
boosting to extract key features that will enhance model
performance™”.

During the model training phase, the selected algorithms learn
from the processed data to recognize patterns and establish
connections between input data and outcome variables. The model’s
performance is evaluated using a validation set, allowing for further
optimization to improve predictive accuracy. The resulting
predictive models are then utilized for forecasting new input data
outcomes, which may include food flavor quality assessment,
freshness detection based on flavor factors, authenticity verification
related to food flavor, or traceability of sources.

In summary, machine learning methodologies provide a power-
ful approach for enhancing food flavor analysis, offering rapid, non-
destructive, and reliable quality assessment capabilities. By lever-
aging comprehensive databases of flavor compounds and sensory
profiles, these models can effectively predict various food charac-
teristics including aroma, taste, and textural properties'®.The sign-
ificant advantages of machine learning have led to its widespread
adoption in food quality applications, including honey adulteration
detection!, wine authentication”, and milk quality evaluation®.
These applications demonstrate the practical value of machine lear-
ning in routine quality control throughout the food production chain.

Machine supervised,
unsupervised, learning and deep learning
methodologies, have emerged as paradigm-shifting computational
strategies in food processing industries, as shown in Figure 2.
Supervised learning techniques, including decision trees (DT),

learning  algorithms, integrating

reinforcement

support vector machines (SVM), and logistic regression, utilize
labeled datasets to create accurate predictive models. These
methods effectively map chemical compositions to sensory
attributes, enabling precise flavor predictions, quality control
enhancements, and detailed flavor profile classifications®!.
Unsupervised Learning methods, including k-means clustering
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Figure 2 Composition and classification of machine learning

and principal component analysis, explore hidden structures within
unlabeled data. They excel at revealing intrinsic patterns,
uncovering complex relationships, and identifying emerging
consumer preferences. Reinforcement Learning optimizes food
formulations through iterative interactions with the environment™!.
This approach helps develop adaptive marketing strategies, improve
consumer satisfaction, and drive innovative product development.
Deep learning models, leveraging neural networks and advanced
feature extraction techniques, enable sophisticated flavor prediction
and characterization by processing complex multimodal data and
identifying intricate relationships between chemical composition,
sensory attributes, and consumer perception.
2.1 Traditional machine learning algorithms

Traditional machine learning algorithms have emerged as
powerful analytical tools for food flavor analysis, demonstrating
distinct algorithmic advantages in processing complex sensory data
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Figure 3  Schematic diagram of SVM, SVR, XGBoost, and ELM models



4 June, 2025 Int J Agric & Biol Eng

Open Access at https://www.ijabe.org

Vol. 18 No. 3

(Figure 3). Logistic Regression enables probabilistic modeling of
sensory attributes, providing interpretable predictions of flavor
characteristics based on processing parameters and ingredient
compositions"®. Support Vector Machines (SVM) and Support
Vector Regression (SVR) optimize hyperplane separation in high-
dimensional feature spaces, facilitating robust classification and
regression of flavor profiles derived from volatile compound data®.
Gradient Boosting (GB) methods, particularly through ensemble
learning and regularization techniques, excel at capturing non-linear
interactions between chemical features while mitigating
overfitting””. Extreme Learning Machines (ELM) offer efficient
pattern recognition in spectroscopic and chromatographic data
through rapid neural network training®. These approaches
successfully process multimodal sensor data from electronic noses,
mass spectrometry, and spectral imaging for product development
applications.
2.1.1 Logistic regression

Given the complex matrix of compounds and physical

properties in food systems, univariate regression methods (e.g.,
[ANOVA]) are often
insufficient to elucidate the relationships between physicochemical

Single-Factor Analysis of Variance

properties, sensory attributes, and distinctive flavors®. Several
multivariate techniques have been established for analyzing the
correlations between flavor compounds and microbial interactions,
including Principal Component Analysis (PCA), Partial Least
Squares regression (PLS), Ridge regression, and Orthogonal Partial
Least Squares regression (OPLS). The selection of regression
methods largely depends on the nature of the collected data and
computational resource availability. While Logistic regression
represents one of the earliest machine learning approaches, its
fundamental principles continue to inform and guide the
development of contemporary methodologies, particularly in
handling binary classification problems in flavor analysis. The key
advantages and limitations of these modeling techniques are

summarized in Table 1.

Table 1 Recent studies on the application of logistic regression in food flavor analysis

Method Advantages Limitations Sample and measured properties Reference
: . Lo . Beer:
Pa;ual Least Suitable for high-dimensional and small Mod.el interpretation is relatively Correlate sensory profile and higher alcohol and ester [29]
>quares sample data; poor; . production during fermentation.
Discriminant Sy . May have overfitting risk; .
. Can build predictive models; : . Liquor:
Analysis . . . . Needs appropriate latent variable ) . . .
(PLS) Considers relationships between variables. selection Identification of liquor brands with the same flavor and [30]
) alcohol content.
Craft beers: B31]
Principal ~ Reduces data dimensionality, simplifies May lose some information; Determine the composition and content of amino acids
Component analysis; Component interpretation is poor; in craft beers.
Analysis  Extracts main components, reduces noise; Not suitable for non-linear Turkish honeybee:
(PCA) Visualizes data, shows sample differences. relationships. Analyze the organic acids, sugars, minerals, and [32]
attributes to antioxidant activities of pollen.
Huangjiu:
Orthogonal Analyze the correlation of aroma compounds and

Partial Least Separates predictive and non-predictive
Squares  variables; Improves model prediction and

Regression interpretation; Suitable for complex systems.
(OPLS)

parameter selection;

Computationally intensive; Complex identify four major markers (diethyl succinate, furfural,

High data requirements.

[33]
nonanal, and isoamyl alcohol) for aged samples.

Yak milk,
Investigate the effect of lipoprotein lipase (LPL) on the [34]
flavor of yak milk under various storage temperatures.

2.1.2 SVM and SVR

Support Vector Machine (SVM)
Regression (SVR), pioneered by Cortes and Vapnik®, have evolved
widely

algorithms

and Support Vector

into well-established machine learning algorithms
These

in handling nonlinear

implemented in food flavor prediction.
demonstrate exceptional
relationships, small-sample scenarios, and high-dimensional pattern
recognition tasks®".

In food science applications, SVM coupled with sensor arrays

has shown remarkable effectiveness in beef flavor prediction. The

performance

implementation of radial basis function (RBF) kernels following
Principal Component Analysis (PCA) preprocessing has achieved
of  90%"".
sensitivity of SVM/SVR to parameter selection necessitates

classification accuracies However, the inherent
systematic hyperparameter optimization. Common optimization
strategies include grid search with cross-validation for tuning RBF
kernel parameters (C and y), Bayesian optimization for
computational efficiency, and evolutionary algorithms for handling
complex parameter spaces. Recent studies have explored various
optimization strategies to enhance model performance. Han et al.
developed a novel non-destructive technique for rice flavor
detection by integrating hyperspectral imaging with an improved
particle swarm optimization SVM algorithm (GISPSO-SVM),
achieving a prediction accuracy of 96%"%. Wang et al. employed

genetic algorithms to optimize SVR parameters for predicting
tobacco leaf aroma quality and body, establishing prediction models
through variable screening and evaluating performance via
modeling validation, leave-one-out cross-validation, and prediction
set assessment. The proportion of samples with an absolute error
within 0.5 ranged from 84.94% to 97.61%, while the absolute error
ranged from 0.16 to 0.27.

These advanced optimization techniques have significantly
enhanced the practical applicability of SVM/SVR in food flavor
prediction, effectively addressing the fundamental challenge of
parameter sensitivity while improving model generalization across
diverse flavor profiles. The integration of these optimization
methods has demonstrated substantial improvements in prediction
accuracy across various food matrices, marking a significant
advancement in machine learning applications for food flavor
analysis.

2.1.3  Gradient Boosting

Gradient Boosting (GB) is an ensemble learning approach that
mitigates individual decision trees’ limitations by integrating
multiple trees to capture complex feature interactions™’.
Specifically, Gradient Boosting Decision Tree (GBDT) iteratively
adjusts sample weights to minimize residual errors, progressively
enhancing predictive performance. Extreme Gradient Boosting
(XGBoost), an advanced GB variant, further optimizes this
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approach by minimizing objective functions and improving
modeling accuracy™!.

In wine sensory prediction, XGBoost demonstrates remarkable
potential by integrating spectral grape extract features with 22
sensory descriptors (color, aroma, flavor, taste, mouthfeel). This
methodology successfully predicted 15 sensory descriptors with R
values exceeding 0.5, showcasing GB’s effectiveness in complex
flavor recognition and analysis!**.

2.1.4 Extreme Learning Machine

Extreme Learning Machine (ELM) has shown promise in food
flavor research due to its simplified training process'*!. By randomly
assigning input weights and biases, and subsequently calculating
output weights via least-squares, ELM offers computational
advantages over traditional backpropagation (BP)™*.

In recent years, ELM has been successfully applied to food
flavor classification. For example, in beer flavor prediction using
electronic tongue and nose data, ELM achieved 98.33% accuracy,
outperforming SVM (96.67%) and RF (94.44%)*. ELM also
achieved 93.75% accuracy in predicting cocoa bean roasting degree
using image-derived color and texture features'.

While ELM’s speed and ease of use are appealing, its reliance
on random initialization can lead to performance instability".

Hidden layer Output layer

— 1
—{2
—3
— 1

Backward

a. Backpropagation neural networks (BPNNs)

Convolution
(feature extraction)

Output

(dimensionality
reduction)

Ensemble methods, such as bagging, boosting, or random subspace,
offer a potential solution to this limitation“”. For instance, Cheng et
al. proposed a multi-disturbance bagging ELM (MdbaggingELM) to
improve the robustness and accuracy of the regression model. Their
application to cadmium contamination detection in rapeseed
achieved a coefficient of determination R* of 0.9830 and RMSE of
2.8963 mg/kg.
ensemble framework mitigates the variance introduced by random
initialization, enhances model robustness, and

Combining multiple ELM models within an

improves
generalization performance, particularly for the complex and high-
dimensional flavor datasets common in food science!”.
2.2 Deep learning algorithm

Deep learning (DL) represents a sophisticated machine learning
paradigm, leveraging neural network architectures to extract
sophisticated features from expansive datasets. As an advanced
extension of artificial neural networks, deep learning (DL) has
emerged as a robust methodology for addressing highly intricate
classification and regression challenges, with prominent algorithms
including artificial neural networks, convolutional neural networks
(CNNs), recurrent neural networks (RNNs), and backpropagation
neural networks (BPNNs). The structural diagrams of these
networks are illustrated in Figure 4.

Hidden layer

Output layer|

Input layer

b. Recurrent neural networks (RNNs)

Pool

c. Convolutional neural networks (CNNs)

Figure 4 Schematic diagram of BPNNs, RNNs, and CNNs models

In the field of food flavor analysis, Traditional Machine
Learning (TML) and Deep Learning (DL) architectures exhibit
fundamental differences in their computational strategies, as
illustrated in Figure 5. DL requires extensive datasets for optimal
performance, while TML demonstrates efficacy with limited to
moderate data volumes'. In order to solve this problem, developing
inexpensive parallel computing hardware in the form of graphics
processing units (GPUs) is a common way to save model training
Sl)

time for DL algorithms®™”
Training duration represents a significant distinction, with DL

frameworks requiring extended periods due to architectural
complexity, while TML exhibits shorter training cycles suitable for
time-sensitive applications. In task execution, DL excels in
concurrent processing, particularly in computer vision applications,
achieving superior accuracy in object detection, classification, and
segmentation. TML, employing sequential processing, shows
optimal performance in focused applications with defined
parameters. DL’s strengths lie in generalization capabilities and
adaptability to novel datasets, while TML offers advantages through

reduced computational requirements and expedited training.
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Table 2 showcases recent applications of mainstream deep
learning algorithms in food flavor analysis. A key challenge in this
field has been the traditional reliance on large, labeled sensory
datasets. However, emerging research in semi-supervised and self-
supervised learning offers promising solutions. Semi-supervised
approaches effectively combine limited expert sensory evaluations
with abundant unlabeled data, leveraging both taste panel data and
unlabeled instrumental measurements, such as electronic nose or

dataset

s & S

Grain Fish Meat

Y e

Vegetable Beverage  Herb

Oil Alcohol Input '
dataset

[0}
=/
Input # \"ﬁj q q Output
Feature engineering
(Manual extraction)

mass spectrometry readings. Self-supervised learning provides an
alternative by learning representations from unlabeled data through
pretext tasks, like predicting masked sensory information or
distinguishing variations within food samples”. For instance, Wen
et al. proposed an active self-semi-supervised learning (AS3L)
framework that achieves comparable accuracy to baseline methods
in approximately one-third of the training time, demonstrating the
potential of these techniques®.

Machine learning

Classification

Feature extraction+learning-+classifier

(End-to-end learning)

4 Output

Deep learning

Figure 5 Main structural distinctions between traditional machine learning and deep learning

Table 2 Recent studies on the application of deep learning in food flavor analysis

Method Advantages Limitations Aim of the study Reference
Good at'processmg image data, can effectively extract spatial Requires a large amount of PFCdl(Ft the olfactory assessment results of peanut (53]
features; . oil using the CNN method.

. labeled data for training;
CNNs In flavor component analysis, it can be used to process spectral Complex model structure, large A 2D chemical dasthe i for th
data, chromatograms, etc., extract features, and perform amo pn ¢ of calculation » T8 C emllca map was used as the 1np1{t or the [54]
classification or prediction. u u . CNN model to predict taste (sweet and bitter).
Good at prf)ce‘ssmg sequential data, can capture time Difficult to parallelize, long The RNN model was established to identify milk [55]
dependencies; training time: adulteration.
RNNs In flavor analysis, it can be used to process time series data, Prone tgo vani,shin or exploding The RNN model blished to identif
such as electronic nose and electronic tongue data, and analyze radient roblemsg P g del N 5“0 © Was.lesta 1shed to 1dentify [56]
flavor change trends. g p - adulterated sesame oil.
E fall into local optimal Utilizing the BPNN model for pear quality grading, [57]
aIS};'to ?leo_ oca 10p tima an accuracy rate of 97.4% was achieved.
Simple model structure, easy to implement; Can be used to SOHIONS; MequIres a 'arge Utilize the Back Propagation Atrtificial Neural

BPNNs . td ith i amount of labeled data for 3 ’ . .

process various types of data, with strong versatility. training; Poor model Network (BP-ANN) in conjunction with an [58]

interpretability.

electronic nose and GC-IMS to predict the optimal
fermentation stage of fermented golden pomfret.

3 Recent advances of machine learning in food flavor
analysis

3.1 Food flavor database utilizing machine learning and big
data

The Food Flavor Network, initially developed by Ahn and
Ahnert, provided an early platform for data sharing. However,
limitations in ingredient coverage highlighted the need for more
comprehensive databases. FlavorDB®., developed by IIT Delhi,
addresses this need by cataloging 25595 spice molecules,
encompassing both natural (2254) and synthetic (13 869)
compounds®. This database integrates molecular characteristics,
flavor attributes, and sourcing information, representing a
significant expansion in scope.

Complementing FlavorDB are several specialized databases.

Food-bridging®’ appears to focus on interactions between food
components, although further details are required for a complete
assessment. BitterDB'** specializes in bitter-tasting compounds,
providing detailed information on their chemical structures and
associated receptors. VirtualTaste!*” computational
methods to predict taste profiles from molecular structures, offering

employs

insights into taste perception.

These databases, while related, serve distinct purposes, as
shown in Table 3. FlavorDB’s broad coverage of flavor compounds,
particularly spices, makes it well-suited for general flavor
investigations and the identification of potential flavor
combinations®). The inclusion of both natural and synthetic
molecules is valuable for both culinary innovation and flavor
chemistry research. BitterDB’s in-depth focus on bitterness is
crucial for understanding and modulating this specific taste!”. It is
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an essential resource for research on bitter taste receptors and the
development of strategies to reduce bitterness in foods. VirtualTaste’
s predictive capabilities enable rapid screening of potential flavor
compounds, reducing the reliance on extensive sensory evaluation
in early-stage flavor development.

The integration of machine learning and big data, exemplified
by McCormick’s collaboration with IBM™, further demonstrates

the potential of these resources. By analyzing extensive datasets,
including flavor profiles and consumer preferences, predictive
systems can generate novel flavor combinations, accelerating
product development and responding to evolving consumer tastes.
These data-driven approaches, in conjunction with the specialized
knowledge provided by databases like FlavorDB, BitterDB, and
VirtualTaste, are transforming food flavor research and innovation.

Table 3 Comparison of food flavor databases

Database Data sources Focus Features URL
“Fenaroli’s Handbook of Chemical composition of Chemical composition of ingredients; Sensory
FlavorDB ingredients; Sensory attributes attributes of compounds; Flavor profiles of food  https://cosylab.iiitd.edu.in/flavordb2/

Flavor Ingredients,” FooDB
of compounds

ingredients

“Fenaroli’s Handbook of
BitterDB Flavor Ingredients,” PubChem, Bitter taste compounds
UniProtKB, Merck Index

Comprehensive collection of bitter compounds;
Chemical structures of bitter compounds;
Taste properties and associated receptors

http://bitterdb.agri.huji.ac.il/bitterdb/

Integration of computational models and machine

Virtual

Protein Databases Taste sensation prediction
Taste

learning algorithms; Prediction and simulation of
taste sensations;
Chemical properties, sensory data, and human

https://insilico-cyp.charite.de/Virtual Taste/

taste responses

3.2 Machine learning-based intelligent sensory technologies
The confluence of analytical instrumentation and machine
learning methodologies has transformed modern food flavor
analysis. Common instrumental analysis methods include gas
chromatography (GC), gas chromatography-olfactometry (GC-O),
gas chromatography-mass spectrometry (GC-MS), and high-

performance liquid chromatography (HPLC), all of which are
utilized to analyze flavor compounds in food*”. These technologies
enable comprehensive characterization of flavor compounds,
generating  sophisticated chemical signatures encompassing
chromatographic profiles, mass spectral data, and quantitative

compound distributions, as demonstrated in Table 4.

Table 4 Recent studies on the application of ML combined with instrumental analysis or flavor database in food flavor analysis

Analysis technologies Methods Applications Reference
Electronic nose, electronic tongue ANN, RF,SVR,XGBoost Prediction of the freshness of horse mackerel during frozen storag [66]
ANN Prediction of coffee aroma profile and intensity [67]
Electronic nose ANN Prediction of beer aroma [68]
CNN Prediction of odor pleasantness [69]
CNN, PLSR Prediction of flavor in peanut oil samples [53]
GC-MS Radio Frequency Regression Prediction of flavor in sweet peppers at different harvest times [70]
ANN Prediction of wine aroma profile [71]
GC-IMS PCA-LDA, PLS-DA, KNN, SVM, XGBoost, ANN Prediction of sensory quality grading in wine [72]
GCxGC/TOF-MS RF, SVM Prediction of flavor types in Chinese liquor [73]
GC ANN, PLS Prediction of flavor intensity in black currant concentrate [74]
Near-infrared hyperspectral imaging PLS, SVM, ELM, CNN Prediction of off-flavors in farmed salmon [75]
Raman spectroscopy SVM Prediction of flavor in wine [76]

Notes: The abbreviations are as follows: Support Vector Machine (SVM); Random Forest (RF); Extreme Learning Machine (ELM); Linear Discriminant Analysis (LDA);
Back Propagation Artificial Neural Network (BP-ANN); Artificial Neural Network (ANN); Convolutional Neural Network (CNN); Partial Least Squares Regression
(PLSR); Principal Component-Linear Discriminant Analysis (PCA-LDA); Partial Least Squares Discriminant Analysis (PLS-DA); k-Nearest Neighbors (KNN); Extreme
Gradient Boosting (XGBoost); Partial Least Squares (PLS); Dynamic Programming (DP).

These analytical data undergo preprocessing before integration
into machine learning models. The integrated analytical framework
encompasses four essential elements: instrumental data acquisition,
systematic preprocessing (including signal optimization and data
normalization), feature extraction coupled with model development,
and analytical task execution for compound identification and
prediction. This framework requires sophisticated hardware
infrastructure, including high-resolution analytical instruments for
detecting trace flavor compounds and high-performance computing
systems equipped with GPU accelerators for processing large-scale
datasets and complex model architectures”. The acceleration in
performance compared to traditional central processing units
typically ranges from 10 to 40 times, enabling the training of
intricate models with up to 10 million parameters to be completed
within days rather than weeks or months!”.

A representative example is the electronic nose (e-nose)

system, as shown in Figure 6", which emulates mammalian
olfactoryperception. Thee-nosearchitectureintegratesthreecriticalcom-
ponents: a sensor array (comprising MOS, MOSFET, conductive
polymer, and piezoelectric sensors®*”), data preprocessing to remove
environmental artifacts, and analytical task execution incorporating
pattern recognition algorithms (PCA, PLS, and neural networks) for
sample classification and volatile compound identification. This
system enables rapid and reproducible analysis of complex flavor
profiles in food samples.

These integrated analytical systems demonstrate versatile
applications across food science disciplines, particularly in flavor
profiling and classification, quality assurance, and geographical
origin authentication. Furthermore, these systems facilitate
consumer preference analysis through the correlation of analytical
data with sensory evaluation, providing valuable insights for

product development strategies.
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Figure 6 Electronic nose system emulating human
olfactory function

3.3 Food authenticity identification and origin traceability
testing

The intersection of machine learning algorithms and food
flavor analysis has emerged as a promising research domain,
particularly in establishing the authenticity and origin of food
products. In the domain of beverage authentication, researchers
explored the complex volatile compounds in Pinot Noir wines,
examining their origins, impact on aroma, and how viticultural,
enological, and geographical factors influence the wine’s sensory
characteristics®®. Tian et al. investigated meat adulteration using
advanced statistical modeling techniques, including Multiple Linear
Regression (MLR), Partial Least Squares (PLS), and Least Squares
Support Vector Machine (LS-SVM) models. By systematically
preparing meat samples with varying proportions of pork/chicken
they demonstrated the robust predictive
capabilities of MLR and PLS regression in determining meat
composition®®. Sabilla et al. advanced the field by integrating deep
neural networks (DNN) with electronic nose technologies,
successfully differentiating meat types (beef, chicken, and pork) and
their anatomical origins (upper body and lower limbs)*”

These studies collectively underscore the transformative
potential of machine learning algorithms in food science, offering
unprecedented precision in flavor analysis, quality assessment, and
origin verification across diverse food categories.

mixed with lamb,

4 Challenges and future perspectives of machine
learning algorithms in food flavor prediction

4.1 Intelligent analysis of consumer feedback

The convergence of machine learning (ML) and advanced big
data analytics has revolutionized the approach to understanding
consumer flavor perceptions. pioneered a
breakthrough in sensory attribute analysis through natural language
processing (NLP) techniques, effectively addressing the subjectivity
inherent in traditional sensory evaluation methods.
whiskey non-standard text as a case study, the research developed
an innovative tool capable of efficiently processing massive

Hamilton et al.

Utilizing

volumes of free-text data®. Through correspondence analysis and
hierarchical clustering, the researchers systematically integrated
analysis results into a flavor wheel.

While the ML-driven approach demonstrates significant
potential in sensory analysis, several ethical considerations warrant
examination. Primary concerns center on data privacy and
algorithmic bias®™®!. The processing of consumer feedback data
necessitates explicit consent protocols and robust anonymization
procedures to comply with data protection regulations®®!. Moreover,
the ML algorithms may exhibit cultural biases in language
processing, potentially skewing sensory descriptions across
different cultural contexts.

This study transcends traditional methodological boundaries,
demonstrating significant academic and practical value across
multiple dimensions, including big data processing, research
methodology innovation, and machine learning applications.

4.2 Intelligent ingredient optimization

In the domain of flavor formulation innovation, machine
learning has demonstrated exceptional optimization potential. Al-
Rifaie et al. employed evolutionary computation techniques to
innovatively map brewers’ desired sensory characteristics to
quantity and

combination methods, they precisely designed beer formulations

specific ingredients. By simulating various
meeting specific sensory requirements®”. Veeramachaneni et al.
further expanded this approach, utilizing machine learning models
to predict novel flavor combinations from identical ingredients,
successfully gaining validation from sensory evaluation panels®™!.

By  leveraging  machine-learning-assisted  algorithms,
researchers can elucidate the intricate relationship between
molecular chemical properties and the evoked flavor sensations®’.
This approach enables the rational design and in silico prediction of
novel flavor molecules, thereby circumventing the need for labor-
intensive empirical synthesis.
4.3 Multimodal deep learning for flavor analysis and
prediction

Multimodal  deep

learning cutting-edge

offering an

represents a

technological breakthrough in food science,
unprecedented approach to flavor analysis and prediction®. This
innovative methodology constructs a comprehensive, dynamic
flavor perception system by integrating heterogeneous data sources,
including spectral information, image data, acoustic features, and
chemical composition analyses. Shen et al. employed a suite of
advanced sensory technologies, including HS-SPME-GC/MS, e-
noses, e-tongues, computer vision, and texture analyzers, to
shashliks. They

compounds and developed a cross-channel sensory transformer

characterize lamb identified key volatile
model that accurately predicts sensory attributes across various
roasting methods. This research highlights the potential of
multimodal deep learning to simulate and enhance sensory
evaluation techniques®'.

Unlike  traditional

multimodal deep learning can capture the intricate internal

single-modal  analysis  techniques,
relationships of food flavors, transcending the limitations of single
data types.

technology in food quality inspection as an example, hyperspectral

Taking the application of hyperspectral imaging

imaging (HSI) provides more highly localized spectral and spatial
information in the image domain as compared to visible/infrared
spectroscopy (VIS/IR).

According to most studies utilizing HSI technology, data fusion

94].

exists at three distinct levels (see Figure 7)*!: sensor-level fusion,

which simply integrates two variables as inputs; feature-level

Final Sensor-level
decision fusion

Y ——— N
|

| - R
[Predict label 1 | [Predict label 2 Final Decision-level
[ ——— S ! decision fusion

Figure 7 Multimodal data fusion: a general structure diagram
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fusion, which combines features after their respective selection; and
decision-level fusion, which considers model results built on each
data source to make final decisions. The hierarchical data fusion
strategy can effectively improve prediction accuracy when applying
supervised and unsupervised algorithms for classification when
using HSI®.

5 Conclusions

Despite the considerable potential of machine learning in food
flavor prediction, several critical challenges persist. Data
heterogeneity and the complexity of cross-modal integration
necessitate the development of advanced feature extraction and
integration methodologies, alongside rigorous data quality and
model reliability assurance. Computational complexity, model
interpretability, and algorithmic generalization remain primary
bottlenecks. Therefore, future research must prioritize the following
five critical domains, ranked according to their urgency in
addressing current limitations and their potential to advance the
field:

1) Development of robust cross-modal learning algorithms

Food flavor perception is inherently a multi-sensory
experience, integrating visual, olfactory, gustatory, and tactile
information. Cross-modal learning offers a promising avenue for
synthesizing these diverse modalities and exploring their intricate
associations, leading to more accurate and nuanced flavor
predictions. Effective integration of diverse sensory modalities is
foundational for comprehensive prediction systems, making this
area the highest priority.

2) Enhancement of model interpretability

Understanding how models extract flavor features from
complex data is crucial for validating predictions and elucidating
the biological mechanisms of flavor perception. Improved
interpretability will foster scientifically sound flavor prediction
models and support personalized food development.

3) Establishment of precise flavor component association
mechanisms

Accurately defining interactions between flavor components at
molecular and perceptual levels is essential for enhancing prediction
accuracy. This requires integrating chemical analysis, sensory
evaluation, and computational modeling to build comprehensive
association models.

4) Development of universal prediction frameworks across
food categories

While appealing, the significant variation in flavor profiles
across food categories suggests that initially, highly optimized
models for specific categories may be more effective. Universal
framework development can be progressively pursued in subsequent
research.

5) Optimization of computational efficiency

Although important for practical applications, computational
efficiency is typically a post-development optimization. Initial
research should prioritize model accuracy and interpretability.

Implementation of these research priorities will bridge the gap
between computational modeling and practical food industry
applications, enhancing product development and consumer
experiences. This focused approach will facilitate the transition
from theoretical understanding to practical innovation in food
science and sensory technologies. The advancement of cross-modal
learning algorithms, which underpins all other priorities, is
paramount. Effective integration of diverse modalities is critical for
accurate and comprehensive flavor prediction, driving innovation in

food science and personalized food experiences. This research
paradigm has the potential to transform flavor research and provide
scientific wvalidation for personalized food development and
consumer experience optimization.
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