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Abstract: Flavor  characteristics  significantly  influence  consumer  food  preferences  and  purchasing  behaviors,  constituting  a
vital research domain in food science. While traditional flavor assessment approaches rely primarily on sensory evaluations and
instrumental analyses, they face inherent limitations in processing large-scale datasets and generating comprehensive insights.
Advanced  machine  learning  (ML)  models  have  revolutionized  flavor  research  through  their  high-precision  predictive
capabilities,  effectively  addressing  conventional  methodological  constraints.  These  computational  approaches  enable
sophisticated  and  efficient  flavor  analysis  by  integrating  multiple  data  dimensions,  including  chemical  composition  (volatile
and  non-volatile  compounds),  sensory  attributes  (taste,  aroma,  texture),  temporal  dynamics  (flavor  release  patterns),  and
consumer responses.  ML models  demonstrate  remarkable capability  in simultaneously processing diverse data types,  such as
gas  chromatography-mass  spectrometry  results,  sensory  panel  evaluations,  and  real-time  flavor  release  measurements,  to
predict consumer preferences and optimize flavor formulations. This review examines state-of-the-art ML applications in flavor
science,  emphasizing  crucial  areas  such  as  flavor  database  development,  intelligent  sensory  detection,  and  food  traceability.
Through systematic  analysis  of  contemporary ML algorithms,  this  study critically  evaluates  their  potential  and limitations  in
decoding complex flavor dynamics, providing valuable insights for both researchers and industry practitioners while identifying
promising directions for future technological innovations in food flavor analysis and prediction. The comprehensive synthesis
presented here represents  a  significant  contribution to the field by establishing a theoretical  framework for  ML-driven flavor
research and offering practical guidelines for the implementation of computational approaches in food flavor analysis.
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1    Introduction
Food  flavor  serves  as  a  multifaceted  indicator,  encompassing

critical  attributes  like  product  categorization,  regional  provenance,
developmental  stage,  preservation  status,  and  organoleptic
characteristics[1].  These  nuanced  flavor  dimensions  fundamentally
shape consumer selection and dietary behaviors. Consumer demand
for  sophisticated  flavor  profiles  has  driven  significant  advances  in
food  science  research.  Analysis  of  Scopus-indexed  publications  in
flavor  chemistry  reveals  exponential  growth  from  the  1980s  to
2019,  with  annual  publications  reaching  approximately  700[2],
reflecting the field’s increasing research emphasis and underscoring
the field’s expanding research focus.

There  are  approximately  2500  naturally  occurring  flavor
compounds,  many  of  which  can  be  synthesized.  The  field  of  food
flavor  encompasses  extensive  data[3],  including  information  on
flavor compounds, their interactions, sensory evaluations, consumer
preferences,  and  food  formulations[4].  These  datasets  exhibit
nonlinear  characteristics  due  to  the  complex  relationships  among
various  factors  influencing  flavor  perception.  The  intricate
interactions between flavor compounds and the multifaceted nature

of  sensory  perception,  influenced  by  individual  differences  and
environmental  factors,  further  contribute  to  this  nonlinearity[5].  A
compelling  illustration  of  such  nonlinearity  is  manifested  in  the
mechanism by which glycerol affects the release and perception of
key  flavor  compounds  in  baijiu[6],  as  well  as  in  the  interactions
between  glycerol  and  specific  flavor  compounds.  Glycerol  can
selectively  enhance  the  release  of  certain  flavor  compounds  (e.g.,
dimethyl  trisulfide)  while  inhibiting  the  volatility  of  others  (e.g.,
ethyl acetate) and altering their olfactory detection thresholds. This
bidirectional  regulatory  effect  exhibits  nonlinear  behavior  that
cannot be predicted by simple linear relationships.

The  journey  of  flavor  analysis  in  food  science  encompasses
four  developmental  stages,  beginning  with  sensory  evaluation
methods,  progressing through instrumental  detection,  incorporating
integrated  analytical  approaches,  and  culminating  in  machine
learning-enhanced  automated  procedures[7,8].  Initially,  sensory
analysis  provided  a  comprehensive  flavor  profile  through  human
evaluation, offering an integrated assessment of food characteristics.
However,  this  method  suffers  from  inherent  limitations,  primarily
subjective  biases,  and  the  requirement  of  extensive  evaluator
training[9].  To  address  these  challenges,  instrumental  analysis
emerged, employing sophisticated instruments to quantify odor and
taste  compounds  with  greater  objectivity.  Instrumental  techniques
advanced  the  field  by  delivering  qualitative  and  quantitative
measurements  of  flavor  compounds.  Nevertheless,  these  methods
presented  their  own  constraints,  including  time-intensive
procedures, high costs,  and challenges in managing large, complex
datasets[10].  Recognizing  these  limitations,  researchers  began
developing  integrated  approaches  that  combined  sensory  and
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instrumental  methods  to  leverage  the  strengths  of  both  techniques.
The  most  recent  paradigm  shift  has  been  the  introduction  of
machine  learning  (ML)  models  in  sensory  analysis[5].  These
intelligent  techniques represent  a  significant  leap forward in flavor
prediction  and  adjustment.  Unlike  traditional  detection  methods,
ML  algorithms  excel  at  uncovering  latent,  previously  unknown
connections  within  extensive  datasets[11].  By  efficiently  processing
complex  data,  these  models  can  extract  nuanced  patterns,
correlations,  and  insights  that  were  previously  undetectable.  To
ensure  the  reliability  and  objectivity  of  ML-based  flavor  analysis,
researchers  have  developed  comprehensive  evaluation  metrics.
These include accuracy, precision, recall, error rate, robustness, and
computational  complexity,  providing a multifaceted framework for
assessing  the  predictive  capabilities  of[12].  This  evolutionary
progression demonstrates  the  continuous  refinement  of  food flavor
analysis techniques, highlighting the field’s ongoing commitment to
more precise, efficient, and insightful methodologies.

The  strengths  of  machine  learning  lie  in  its  advanced
capabilities:  handling  extensive  datasets,  detecting  intricate
relationships  within  multidimensional  spaces,  executing  self-
directed  learning  from  existing  information,  delivering  precise
forecasts  for  novel  inputs,  and  performing  swift  recognition  tasks
through  self-optimizing  computational  processes[5].  For  instance,
strategies such as manipulating microbial communities during wine
fermentation  to  achieve  desired  flavors[13],  improving  processing
technologies for juices to enhance freshness[14], and increasing trace
elements  during  vegetable  cultivation  to  alter  quality  and  flavor
exemplify the application of these techniques[15].

This  scholarly  review  critically  examines  the  recent
proliferation  of  machine  learning  (ML)  techniques  in  food  flavor
research,  offering  a  comprehensive  analysis  of  contemporary
methodological  innovations.  The  manuscript  provides  an  in-depth
exploration  of  ML  implementation  processes,  performance
evaluations, and critical challenges encountered in the field.

The  review  systematically  investigates  pivotal  research
domains, including: flavor database construction, intelligent sensory

detection methodologies, and advanced food traceability techniques.
By critically analyzing the current technological landscape, the

study aims to:
1) Elucidate emerging ML methodological trends;
2) Identify potential research trajectories;
3) Provide a robust theoretical framework for future food flavor

analysis and predictive research. 

2    Fundamental principles and techniques of machine
learning

Different  machine  learning  (ML)  methods  are  instrumental  in
extracting valuable  insights  from complex flavor  data,  establishing
ML  as  a  critical  tool  in  the  modern  food  industry  for  product
development, quality control, and sensory evaluation. By leveraging
ML  techniques,  researchers  can  gain  a  deeper  understanding  of
consumer preferences and develop targeted flavor profiles. Notably,
support  vector  machines  (SVM),  random  forests  (RF),  decision
trees  (DT),  and  artificial  neural  networks  (ANN)  have  emerged  as
key data processing tools and focal points of research in the field of
food flavor analysis[16].  The flowchart  depicted in Figure 1 outlines
the general process of applying machine learning (ML) methods in
food  flavor  analysis  and  prediction,  which  can  be  categorized  into
four  main  stages[17]:  data  collection  and  preprocessing,  feature
extraction,  algorithm design  and  training,  and  algorithm validation
and prediction. Machine learning has gained widespread application
in food flavor prediction and regulatory data analysis due to its self-
learning  capabilities,  adaptability,  strong  fault  tolerance,  and
robustness in mapping complex dynamic nonlinear structures[18].

Implementing machine learning begins with collecting relevant
raw  data,  typically  sourced  from  advanced  analytical  techniques
such as  electronic  noses[19],  gas  chromatography-olfactometry  (GC-
O),  machine vision,  near-infrared spectroscopy (NIR),  and spectral
imaging[5,19].  These  datasets  form  the  foundation  for  model
development.  Following  data  collection,  preprocessing  steps  are
undertaken,  which include data cleaning,  dimensionality reduction,
and  data  balancing  to  ensure  consistency  and  quality.  Feature

 

Electronic-nose

Electronic-tongue

GC

GC-O

GC-MS

NIR

Machine vision

Spectral imaging

Acoustic 

technology

Others

Vectors

3D-

dimensional

Matrix

Hypercube

RGB image

Training dataset

Testing dataset

Data rebalancing

Harmonization

Data cleansing

Normalization

Scaling

(Algorithm

selection) 

Training 

dataset

Testing dataset

SVR

SVM

KNN

LR

RF

DT

ANN

RNN

CNN

Others

(Datasets from new

samples)

(Flavor prediction and

regulation)

Food flavor database 

M-Based intelligent

sensory

Authenticity 

identification 

Origin traceability 

testing
Data acquisition and 

processing

Model building

Filter method

Wrapper method

Embedded method

Auto-stack encoder

Dimensionality 

reduction

Orthers

Feature construction

Feature transformation

In strumental 

analysis techniques

Data format

Input data

Data pre-

processing step

Internal and 

external validation

New input data

Prediction

model

Learning 

algorithm
Feature selection

Training step

Applications

Deployment and 

application

Figure 1    Machine learning workflow for food flavor analysis and prediction
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extraction  focuses  on  identifying  the  most  informative  variables
within  the  dataset.  This  process  often  employs  machine  learning
algorithms  such  as  random  forests,  autoencoders,  and  gradient
boosting  to  extract  key  features  that  will  enhance  model
performance[20].

During the model training phase,  the selected algorithms learn
from  the  processed  data  to  recognize  patterns  and  establish
connections between input data and outcome variables. The model’s
performance is evaluated using a validation set, allowing for further
optimization  to  improve  predictive  accuracy.  The  resulting
predictive  models  are  then  utilized  for  forecasting  new  input  data
outcomes,  which  may  include  food  flavor  quality  assessment,
freshness detection based on flavor factors, authenticity verification
related to food flavor, or traceability of sources.

In summary, machine learning methodologies provide a power-
ful approach for enhancing food flavor analysis, offering rapid, non-
destructive,  and  reliable  quality  assessment  capabilities.  By  lever-
aging  comprehensive  databases  of  flavor  compounds  and  sensory
profiles,  these  models  can  effectively  predict  various  food  charac-
teristics  including  aroma,  taste,  and  textural  properties[16].The  sign-
ificant  advantages  of  machine  learning  have  led  to  its  widespread
adoption in  food quality  applications,  including honey adulteration
detection[21],  wine  authentication[22],  and  milk  quality  evaluation[23].
These applications demonstrate the practical value of machine lear-
ning in routine quality control throughout the food production chain.

Machine  learning  algorithms,  integrating  supervised,
unsupervised,  reinforcement  learning  and  deep  learning
methodologies,  have  emerged  as  paradigm-shifting  computational
strategies  in  food  processing  industries,  as  shown  in  Figure  2.
Supervised  learning  techniques,  including  decision  trees  (DT),
support  vector  machines  (SVM),  and  logistic  regression,  utilize
labeled  datasets  to  create  accurate  predictive  models.  These
methods  effectively  map  chemical  compositions  to  sensory
attributes,  enabling  precise  flavor  predictions,  quality  control
enhancements, and detailed flavor profile classifications[24].

Unsupervised  Learning  methods,  including k-means  clustering

and principal component analysis,  explore hidden structures within
unlabeled  data.  They  excel  at  revealing  intrinsic  patterns,
uncovering  complex  relationships,  and  identifying  emerging
consumer  preferences.  Reinforcement  Learning  optimizes  food
formulations  through iterative  interactions  with  the  environment[25].
This approach helps develop adaptive marketing strategies, improve
consumer  satisfaction,  and  drive  innovative  product  development.
Deep  learning  models,  leveraging  neural  networks  and  advanced
feature extraction techniques, enable sophisticated flavor prediction
and  characterization  by  processing  complex  multimodal  data  and
identifying  intricate  relationships  between  chemical  composition,
sensory attributes, and consumer perception. 

2.1    Traditional machine learning algorithms
Traditional  machine  learning  algorithms  have  emerged  as

powerful  analytical  tools  for  food  flavor  analysis,  demonstrating
distinct algorithmic advantages in processing complex sensory data
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(Figure  3).  Logistic  Regression  enables  probabilistic  modeling  of
sensory  attributes,  providing  interpretable  predictions  of  flavor
characteristics  based  on  processing  parameters  and  ingredient
compositions[16].  Support  Vector  Machines  (SVM)  and  Support
Vector  Regression  (SVR)  optimize  hyperplane  separation  in  high-
dimensional  feature  spaces,  facilitating  robust  classification  and
regression of flavor profiles derived from volatile compound data[26].
Gradient  Boosting  (GB)  methods,  particularly  through  ensemble
learning and regularization techniques, excel at capturing non-linear
interactions  between  chemical  features  while  mitigating
overfitting[27].  Extreme  Learning  Machines  (ELM)  offer  efficient
pattern  recognition  in  spectroscopic  and  chromatographic  data
through  rapid  neural  network  training[5].  These  approaches
successfully process multimodal sensor data from electronic noses,
mass  spectrometry,  and  spectral  imaging  for  product  development
applications. 

2.1.1    Logistic regression
Given  the  complex  matrix  of  compounds  and  physical

properties  in  food  systems,  univariate  regression  methods  (e.g.,
Single-Factor  Analysis  of  Variance  [ANOVA])  are  often
insufficient  to  elucidate  the  relationships  between physicochemical
properties,  sensory  attributes,  and  distinctive  flavors[28].  Several
multivariate  techniques  have  been  established  for  analyzing  the
correlations  between  flavor  compounds  and  microbial  interactions,
including  Principal  Component  Analysis  (PCA),  Partial  Least
Squares regression (PLS), Ridge regression, and Orthogonal Partial
Least  Squares  regression  (OPLS).  The  selection  of  regression
methods  largely  depends  on  the  nature  of  the  collected  data  and
computational  resource  availability.  While  Logistic  regression
represents  one  of  the  earliest  machine  learning  approaches,  its
fundamental  principles  continue  to  inform  and  guide  the
development  of  contemporary  methodologies,  particularly  in
handling binary classification problems in flavor analysis.  The key
advantages  and  limitations  of  these  modeling  techniques  are
summarized in Table 1.

 
 

Table 1    Recent studies on the application of logistic regression in food flavor analysis
Method Advantages Limitations Sample and measured properties Reference

Partial Least
Squares

Discriminant
Analysis
(PLS)

Suitable for high-dimensional and small
sample data;
Can build predictive models;
Considers relationships between variables.

Model interpretation is relatively
poor;
May have overfitting risk;
Needs appropriate latent variable
selection.

Beer:
Correlate sensory profile and higher alcohol and ester
production during fermentation. [29]

Liquor:
Identification of liquor brands with the same flavor and
alcohol content.

[30]

Principal
Component
Analysis
(PCA)

Reduces data dimensionality, simplifies
analysis;
Extracts main components, reduces noise;
Visualizes data, shows sample differences.

May lose some information;
Component interpretation is poor;
Not suitable for non-linear
relationships.

Craft beers:
Determine the composition and content of amino acids
in craft beers.

[31]

Turkish honeybee:
Analyze the organic acids, sugars, minerals, and
attributes to antioxidant activities of pollen.

[32]

Orthogonal
Partial Least
Squares

Regression
(OPLS)

Separates predictive and non-predictive
variables; Improves model prediction and
interpretation; Suitable for complex systems.

Computationally intensive; Complex
parameter selection;
High data requirements.

Huangjiu:
Analyze the correlation of aroma compounds and
identify four major markers (diethyl succinate, furfural,
nonanal, and isoamyl alcohol) for aged samples.

[33]

Yak milk,
Investigate the effect of lipoprotein lipase (LPL) on the
flavor of yak milk under various storage temperatures.

[34]

 
 

2.1.2    SVM and SVR
Support  Vector  Machine  (SVM)  and  Support  Vector

Regression (SVR), pioneered by Cortes and Vapnik[35], have evolved
into  well-established  machine  learning  algorithms  widely
implemented  in  food  flavor  prediction.  These  algorithms
demonstrate  exceptional  performance  in  handling  nonlinear
relationships, small-sample scenarios, and high-dimensional pattern
recognition tasks[36].

In  food science applications,  SVM coupled with  sensor  arrays
has  shown  remarkable  effectiveness  in  beef  flavor  prediction.  The
implementation  of  radial  basis  function  (RBF)  kernels  following
Principal  Component  Analysis  (PCA)  preprocessing  has  achieved
classification  accuracies  of  90%[37].  However,  the  inherent
sensitivity  of  SVM/SVR  to  parameter  selection  necessitates
systematic  hyperparameter  optimization.  Common  optimization
strategies include grid search with cross-validation for  tuning RBF
kernel  parameters  (C  and  γ),  Bayesian  optimization  for
computational efficiency, and evolutionary algorithms for handling
complex  parameter  spaces.  Recent  studies  have  explored  various
optimization  strategies  to  enhance  model  performance.  Han  et  al.
developed  a  novel  non-destructive  technique  for  rice  flavor
detection  by  integrating  hyperspectral  imaging  with  an  improved
particle  swarm  optimization  SVM  algorithm  (GISPSO-SVM),
achieving  a  prediction  accuracy  of  96%[38].  Wang  et  al.  employed

genetic  algorithms  to  optimize  SVR  parameters  for  predicting
tobacco leaf aroma quality and body, establishing prediction models
through  variable  screening  and  evaluating  performance  via
modeling validation,  leave-one-out  cross-validation,  and prediction
set  assessment.  The  proportion  of  samples  with  an  absolute  error
within 0.5 ranged from 84.94% to 97.61%, while the absolute error
ranged from 0.16 to 0.27[39].

These  advanced  optimization  techniques  have  significantly
enhanced  the  practical  applicability  of  SVM/SVR  in  food  flavor
prediction,  effectively  addressing  the  fundamental  challenge  of
parameter  sensitivity  while  improving  model  generalization  across
diverse  flavor  profiles.  The  integration  of  these  optimization
methods  has  demonstrated  substantial  improvements  in  prediction
accuracy  across  various  food  matrices,  marking  a  significant
advancement  in  machine  learning  applications  for  food  flavor
analysis. 

2.1.3    Gradient Boosting
Gradient Boosting (GB) is an ensemble learning approach that

mitigates  individual  decision  trees’  limitations  by  integrating
multiple  trees  to  capture  complex  feature  interactions[40].
Specifically,  Gradient  Boosting  Decision  Tree  (GBDT)  iteratively
adjusts  sample  weights  to  minimize  residual  errors,  progressively
enhancing  predictive  performance.  Extreme  Gradient  Boosting
(XGBoost),  an  advanced  GB  variant,  further  optimizes  this
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approach  by  minimizing  objective  functions  and  improving
modeling accuracy[41].

In wine sensory prediction, XGBoost demonstrates remarkable
potential  by  integrating  spectral  grape  extract  features  with  22
sensory  descriptors  (color,  aroma,  flavor,  taste,  mouthfeel).  This
methodology successfully  predicted 15 sensory descriptors  with R2

values  exceeding  0.5,  showcasing  GB’s  effectiveness  in  complex
flavor recognition and analysis[42]. 

2.1.4    Extreme Learning Machine
Extreme Learning Machine (ELM) has shown promise in food

flavor research due to its simplified training process[43]. By randomly
assigning  input  weights  and  biases,  and  subsequently  calculating
output  weights  via  least-squares,  ELM  offers  computational
advantages over traditional backpropagation (BP)[44].

In  recent  years,  ELM  has  been  successfully  applied  to  food
flavor  classification.  For  example,  in  beer  flavor  prediction  using
electronic  tongue  and  nose  data,  ELM achieved  98.33% accuracy,
outperforming  SVM  (96.67%)  and  RF  (94.44%)[45].  ELM  also
achieved 93.75% accuracy in predicting cocoa bean roasting degree
using image-derived color and texture features[46].

While ELM’s speed and ease of use are appealing, its reliance
on  random  initialization  can  lead  to  performance  instability[16].

Ensemble methods, such as bagging, boosting, or random subspace,
offer a potential solution to this limitation[47]. For instance, Cheng et
al. proposed a multi-disturbance bagging ELM (MdbaggingELM) to
improve the robustness and accuracy of the regression model. Their
application  to  cadmium  contamination  detection  in  rapeseed
achieved a coefficient of determination R2 of 0.9830 and RMSE of
2.8963  mg/kg[48].  Combining  multiple  ELM  models  within  an
ensemble  framework  mitigates  the  variance  introduced  by  random
initialization,  enhances  model  robustness,  and  improves
generalization performance,  particularly  for  the  complex and high-
dimensional flavor datasets common in food science[47]. 

2.2    Deep learning algorithm
Deep learning (DL) represents a sophisticated machine learning

paradigm,  leveraging  neural  network  architectures  to  extract
sophisticated  features  from  expansive  datasets.  As  an  advanced
extension  of  artificial  neural  networks,  deep  learning  (DL)  has
emerged  as  a  robust  methodology  for  addressing  highly  intricate
classification and regression challenges, with prominent algorithms
including  artificial  neural  networks,  convolutional  neural  networks
(CNNs),  recurrent  neural  networks  (RNNs),  and  backpropagation
neural  networks  (BPNNs).  The  structural  diagrams  of  these
networks are illustrated in Figure 4.
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In  the  field  of  food  flavor  analysis,  Traditional  Machine
Learning  (TML)  and  Deep  Learning  (DL)  architectures  exhibit
fundamental  differences  in  their  computational  strategies,  as
illustrated  in  Figure  5.  DL  requires  extensive  datasets  for  optimal
performance,  while  TML  demonstrates  efficacy  with  limited  to
moderate data volumes[49]. In order to solve this problem, developing
inexpensive  parallel  computing  hardware  in  the  form  of  graphics
processing  units  (GPUs)  is  a  common  way  to  save  model  training
time for DL algorithms[50].

Training  duration  represents  a  significant  distinction,  with  DL

frameworks  requiring  extended  periods  due  to  architectural
complexity, while TML exhibits shorter training cycles suitable for
time-sensitive  applications.  In  task  execution,  DL  excels  in
concurrent processing, particularly in computer vision applications,
achieving  superior  accuracy  in  object  detection,  classification,  and
segmentation.  TML,  employing  sequential  processing,  shows
optimal  performance  in  focused  applications  with  defined
parameters.  DL’s  strengths  lie  in  generalization  capabilities  and
adaptability to novel datasets, while TML offers advantages through
reduced computational requirements and expedited training.
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Table  2  showcases  recent  applications  of  mainstream  deep
learning algorithms in food flavor analysis. A key challenge in this
field  has  been  the  traditional  reliance  on  large,  labeled  sensory
datasets.  However,  emerging research in  semi-supervised  and self-
supervised  learning  offers  promising  solutions.  Semi-supervised
approaches  effectively  combine  limited  expert  sensory  evaluations
with abundant unlabeled data,  leveraging both taste panel data and
unlabeled  instrumental  measurements,  such  as  electronic  nose  or

mass  spectrometry  readings.  Self-supervised  learning  provides  an
alternative by learning representations from unlabeled data through
pretext  tasks,  like  predicting  masked  sensory  information  or
distinguishing variations within food samples[51].  For instance, Wen
et  al.  proposed  an  active  self-semi-supervised  learning  (AS3L)
framework that  achieves comparable  accuracy to  baseline methods
in  approximately  one-third  of  the  training  time,  demonstrating  the
potential of these techniques[52].
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Table 2    Recent studies on the application of deep learning in food flavor analysis
Method Advantages Limitations Aim of the study Reference

CNNs

Good at processing image data, can effectively extract spatial
features;
In flavor component analysis, it can be used to process spectral
data, chromatograms, etc., extract features, and perform
classification or prediction.

Requires a large amount of
labeled data for training;
Complex model structure, large
amount of calculation.

Predict the olfactory assessment results of peanut
oil using the CNN method. [53]

A 2D chemical map was used as the input for the
CNN model to predict taste (sweet and bitter). [54]

RNNs

Good at processing sequential data, can capture time
dependencies;
In flavor analysis, it can be used to process time series data,
such as electronic nose and electronic tongue data, and analyze
flavor change trends.

Difficult to parallelize, long
training time;
Prone to vanishing or exploding
gradient problems.

The RNN model was established to identify milk
adulteration. [55]

The RNN model was established to identify
adulterated sesame oil. [56]

BPNNs Simple model structure, easy to implement; Can be used to
process various types of data, with strong versatility.

Easy to fall into local optimal
solutions; Requires a large
amount of labeled data for
training; Poor model
interpretability.

Utilizing the BPNN model for pear quality grading,
an accuracy rate of 97.4% was achieved. [57]

Utilize the Back Propagation Artificial Neural
Network (BP-ANN) in conjunction with an
electronic nose and GC-IMS to predict the optimal
fermentation stage of fermented golden pomfret.

[58]

 
 

3    Recent advances of machine learning in food flavor
analysis
 

3.1    Food  flavor  database  utilizing  machine  learning  and  big
data

The  Food  Flavor  Network,  initially  developed  by  Ahn  and
Ahnert,  provided  an  early  platform  for  data  sharing.  However,
limitations  in  ingredient  coverage  highlighted  the  need  for  more
comprehensive  databases.  FlavorDB[59],  developed  by  IIT  Delhi,
addresses  this  need  by  cataloging  25 595  spice  molecules,
encompassing  both  natural  (2254)  and  synthetic  (13 869)
compounds[60].  This  database  integrates  molecular  characteristics,
flavor  attributes,  and  sourcing  information,  representing  a
significant expansion in scope.

Complementing  FlavorDB  are  several  specialized  databases.

Food-bridging[61]  appears  to  focus  on  interactions  between  food
components,  although  further  details  are  required  for  a  complete
assessment.  BitterDB[62]  specializes  in  bitter-tasting  compounds,
providing  detailed  information  on  their  chemical  structures  and
associated  receptors.  VirtualTaste[63]  employs  computational
methods to predict taste profiles from molecular structures, offering
insights into taste perception.

These  databases,  while  related,  serve  distinct  purposes,  as
shown in Table 3. FlavorDB’s broad coverage of flavor compounds,
particularly  spices,  makes  it  well-suited  for  general  flavor
investigations  and  the  identification  of  potential  flavor
combinations[61].  The  inclusion  of  both  natural  and  synthetic
molecules  is  valuable  for  both  culinary  innovation  and  flavor
chemistry  research.  BitterDB’s  in-depth  focus  on  bitterness  is
crucial  for  understanding and modulating this  specific  taste[62].  It  is

　6 　 June, 2025 Int J Agric & Biol Eng　　　Open Access at https://www.ijabe.org Vol. 18 No. 3　

https://www.ijabe.org


an  essential  resource  for  research  on  bitter  taste  receptors  and  the
development of strategies to reduce bitterness in foods. VirtualTaste’
s  predictive  capabilities  enable  rapid  screening  of  potential  flavor
compounds,  reducing  the  reliance  on  extensive  sensory  evaluation
in early-stage flavor development.

The integration of  machine  learning and big  data,  exemplified
by  McCormick’s  collaboration  with  IBM[64],  further  demonstrates

the  potential  of  these  resources.  By  analyzing  extensive  datasets,
including  flavor  profiles  and  consumer  preferences,  predictive
systems  can  generate  novel  flavor  combinations,  accelerating
product  development  and  responding  to  evolving  consumer  tastes.
These  data-driven  approaches,  in  conjunction  with  the  specialized
knowledge  provided  by  databases  like  FlavorDB,  BitterDB,  and
VirtualTaste, are transforming food flavor research and innovation.

 
 

Table 3    Comparison of food flavor databases
Database Data sources Focus Features URL

FlavorDB “Fenaroli’s Handbook of
Flavor Ingredients,” FooDB

Chemical composition of
ingredients; Sensory attributes
of compounds

Chemical composition of ingredients; Sensory
attributes of compounds; Flavor profiles of food
ingredients

https://cosylab.iiitd.edu.in/flavordb2/

BitterDB
“Fenaroli’s Handbook of
Flavor Ingredients,” PubChem,
UniProtKB, Merck Index

Bitter taste compounds
Comprehensive collection of bitter compounds;
Chemical structures of bitter compounds;
Taste properties and associated receptors

http://bitterdb.agri.huji.ac.il/bitterdb/

Virtual
Taste Protein Databases Taste sensation prediction

Integration of computational models and machine
learning algorithms; Prediction and simulation of
taste sensations;
Chemical properties, sensory data, and human
taste responses

https://insilico-cyp.charite.de/VirtualTaste/

 
 

3.2    Machine learning-based intelligent sensory technologies
The  confluence  of  analytical  instrumentation  and  machine

learning  methodologies  has  transformed  modern  food  flavor
analysis.  Common  instrumental  analysis  methods  include  gas
chromatography  (GC),  gas  chromatography-olfactometry  (GC-O),
gas  chromatography-mass  spectrometry  (GC-MS),  and  high-

performance  liquid  chromatography  (HPLC),  all  of  which  are
utilized to analyze flavor compounds in food[65]. These technologies
enable  comprehensive  characterization  of  flavor  compounds,
generating  sophisticated  chemical  signatures  encompassing
chromatographic  profiles,  mass  spectral  data,  and  quantitative
compound distributions, as demonstrated in Table 4.

 
 

Table 4    Recent studies on the application of ML combined with instrumental analysis or flavor database in food flavor analysis
Analysis technologies Methods Applications Reference

Electronic nose, electronic tongue ANN, RF,SVR,XGBoost Prediction of the freshness of horse mackerel during frozen storag [66]

Electronic nose

ANN Prediction of coffee aroma profile and intensity [67]

ANN Prediction of beer aroma [68]

CNN Prediction of odor pleasantness [69]

GC-MS

CNN, PLSR Prediction of flavor in peanut oil samples [53]

Radio Frequency Regression Prediction of flavor in sweet peppers at different harvest times [70]

ANN Prediction of wine aroma profile [71]

GC-IMS PCA-LDA, PLS-DA, KNN, SVM, XGBoost, ANN Prediction of sensory quality grading in wine [72]

GC×GC/TOF-MS RF, SVM Prediction of flavor types in Chinese liquor [73]

GC ANN, PLS Prediction of flavor intensity in black currant concentrate [74]

Near-infrared hyperspectral imaging PLS, SVM, ELM, CNN Prediction of off-flavors in farmed salmon [75]
Raman spectroscopy SVM Prediction of flavor in wine [76]

Notes: The abbreviations are as follows: Support Vector Machine (SVM); Random Forest (RF); Extreme Learning Machine (ELM); Linear Discriminant Analysis (LDA);
Back Propagation Artificial Neural Network (BP-ANN); Artificial Neural Network (ANN); Convolutional Neural Network (CNN); Partial Least Squares Regression
(PLSR); Principal Component-Linear Discriminant Analysis (PCA-LDA); Partial Least Squares Discriminant Analysis (PLS-DA); k-Nearest Neighbors (KNN); Extreme
Gradient Boosting (XGBoost); Partial Least Squares (PLS); Dynamic Programming (DP).
 

These analytical data undergo preprocessing before integration
into machine learning models. The integrated analytical framework
encompasses four essential elements: instrumental data acquisition,
systematic  preprocessing  (including  signal  optimization  and  data
normalization), feature extraction coupled with model development,
and  analytical  task  execution  for  compound  identification  and
prediction.  This  framework  requires  sophisticated  hardware
infrastructure,  including  high-resolution  analytical  instruments  for
detecting trace flavor compounds and high-performance computing
systems equipped with GPU accelerators for processing large-scale
datasets  and  complex  model  architectures[77].  The  acceleration  in
performance  compared  to  traditional  central  processing  units
typically  ranges  from  10  to  40  times,  enabling  the  training  of
intricate  models  with  up to  10 million parameters  to  be  completed
within days rather than weeks or months[78].

A  representative  example  is  the  electronic  nose  (e-nose)

system,  as  shown  in  Figure  6[79],  which  emulates  mammalian
olfactory perception. The e-nose architecture integrates three critical com-
ponents:  a  sensor  array  (comprising  MOS,  MOSFET,  conductive
polymer, and piezoelectric sensors[80]), data preprocessing to remove
environmental artifacts, and analytical task execution incorporating
pattern recognition algorithms (PCA, PLS, and neural networks) for
sample  classification  and  volatile  compound  identification.  This
system  enables  rapid  and  reproducible  analysis  of  complex  flavor
profiles in food samples.

These  integrated  analytical  systems  demonstrate  versatile
applications  across  food  science  disciplines,  particularly  in  flavor
profiling  and  classification,  quality  assurance,  and  geographical
origin  authentication.  Furthermore,  these  systems  facilitate
consumer  preference  analysis  through  the  correlation  of  analytical
data  with  sensory  evaluation,  providing  valuable  insights  for
product development strategies.
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Figure 6    Electronic nose system emulating human
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3.3    Food  authenticity  identification  and  origin  traceability
testing

The  intersection  of  machine  learning  algorithms  and  food
flavor  analysis  has  emerged  as  a  promising  research  domain,
particularly  in  establishing  the  authenticity  and  origin  of  food
products.  In  the  domain  of  beverage  authentication,  researchers
explored  the  complex  volatile  compounds  in  Pinot  Noir  wines,
examining  their  origins,  impact  on  aroma,  and  how  viticultural,
enological,  and  geographical  factors  influence  the  wine’s  sensory
characteristics[81].  Tian  et  al.  investigated  meat  adulteration  using
advanced statistical modeling techniques, including Multiple Linear
Regression (MLR), Partial Least Squares (PLS), and Least Squares
Support  Vector  Machine  (LS-SVM)  models.  By  systematically
preparing  meat  samples  with  varying  proportions  of  pork/chicken
mixed  with  lamb,  they  demonstrated  the  robust  predictive
capabilities  of  MLR  and  PLS  regression  in  determining  meat
composition[82]. Sabilla et al. advanced the field by integrating deep
neural  networks  (DNN)  with  electronic  nose  technologies,
successfully differentiating meat types (beef, chicken, and pork) and
their anatomical origins (upper body and lower limbs)[83].

These  studies  collectively  underscore  the  transformative
potential  of  machine  learning  algorithms  in  food  science,  offering
unprecedented precision in flavor analysis,  quality assessment,  and
origin verification across diverse food categories. 

4    Challenges  and  future  perspectives  of  machine
learning algorithms in food flavor prediction
 

4.1    Intelligent analysis of consumer feedback
The convergence  of  machine  learning (ML) and advanced big

data  analytics  has  revolutionized  the  approach  to  understanding
consumer  flavor  perceptions.  Hamilton  et  al.  pioneered  a
breakthrough in sensory attribute analysis through natural language
processing (NLP) techniques, effectively addressing the subjectivity
inherent  in  traditional  sensory  evaluation  methods.  Utilizing
whiskey  non-standard  text  as  a  case  study,  the  research  developed
an  innovative  tool  capable  of  efficiently  processing  massive
volumes  of  free-text  data[84].  Through  correspondence  analysis  and
hierarchical  clustering,  the  researchers  systematically  integrated
analysis results into a flavor wheel.

While  the  ML-driven  approach  demonstrates  significant
potential in sensory analysis, several ethical considerations warrant
examination.  Primary  concerns  center  on  data  privacy  and
algorithmic  bias[85].  The  processing  of  consumer  feedback  data
necessitates  explicit  consent  protocols  and  robust  anonymization
procedures to comply with data protection regulations[86]. Moreover,
the  ML  algorithms  may  exhibit  cultural  biases  in  language
processing,  potentially  skewing  sensory  descriptions  across
different cultural contexts.

This  study  transcends  traditional  methodological  boundaries,
demonstrating  significant  academic  and  practical  value  across
multiple  dimensions,  including  big  data  processing,  research
methodology innovation, and machine learning applications. 

4.2    Intelligent ingredient optimization
In  the  domain  of  flavor  formulation  innovation,  machine

learning  has  demonstrated  exceptional  optimization  potential.  Al-
Rifaie  et  al.  employed  evolutionary  computation  techniques  to
innovatively  map  brewers’  desired  sensory  characteristics  to
specific  ingredients.  By  simulating  various  quantity  and
combination  methods,  they  precisely  designed  beer  formulations
meeting  specific  sensory  requirements[87].  Veeramachaneni  et  al.
further  expanded  this  approach,  utilizing  machine  learning  models
to  predict  novel  flavor  combinations  from  identical  ingredients,
successfully gaining validation from sensory evaluation panels[88].

By  leveraging  machine-learning-assisted  algorithms,
researchers  can  elucidate  the  intricate  relationship  between
molecular  chemical  properties  and  the  evoked  flavor  sensations[89].
This approach enables the rational design and in silico prediction of
novel  flavor  molecules,  thereby  circumventing  the  need  for  labor-
intensive empirical synthesis. 

4.3    Multimodal  deep  learning  for  flavor  analysis  and
prediction

Multimodal  deep  learning  represents  a  cutting-edge
technological  breakthrough  in  food  science,  offering  an
unprecedented  approach  to  flavor  analysis  and  prediction[90].  This
innovative  methodology  constructs  a  comprehensive,  dynamic
flavor perception system by integrating heterogeneous data sources,
including  spectral  information,  image  data,  acoustic  features,  and
chemical  composition  analyses.  Shen  et  al.  employed  a  suite  of
advanced  sensory  technologies,  including  HS-SPME-GC/MS,  e-
noses,  e-tongues,  computer  vision,  and  texture  analyzers,  to
characterize  lamb  shashliks.  They  identified  key  volatile
compounds  and  developed  a  cross-channel  sensory  transformer
model  that  accurately  predicts  sensory  attributes  across  various
roasting  methods.  This  research  highlights  the  potential  of
multimodal  deep  learning  to  simulate  and  enhance  sensory
evaluation techniques[91].

Unlike  traditional  single-modal  analysis  techniques,
multimodal  deep  learning  can  capture  the  intricate  internal
relationships of  food flavors,  transcending the limitations of  single
data  types[92].  Taking  the  application  of  hyperspectral  imaging
technology in food quality inspection as an example, hyperspectral
imaging  (HSI)  provides  more  highly  localized  spectral  and  spatial
information  in  the  image  domain  as  compared  to  visible/infrared
spectroscopy (VIS/IR).

According to most studies utilizing HSI technology, data fusion
exists at three distinct levels (see Figure 7)[93,94]: sensor-level fusion,
which  simply  integrates  two  variables  as  inputs;  feature-level
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fusion, which combines features after their respective selection; and
decision-level  fusion,  which  considers  model  results  built  on  each
data  source  to  make  final  decisions.  The  hierarchical  data  fusion
strategy can effectively improve prediction accuracy when applying
supervised  and  unsupervised  algorithms  for  classification  when
using HSI[94]. 

5    Conclusions
Despite the considerable potential of machine learning in food

flavor  prediction,  several  critical  challenges  persist.  Data
heterogeneity  and  the  complexity  of  cross-modal  integration
necessitate  the  development  of  advanced  feature  extraction  and
integration  methodologies,  alongside  rigorous  data  quality  and
model  reliability  assurance.  Computational  complexity,  model
interpretability,  and  algorithmic  generalization  remain  primary
bottlenecks. Therefore, future research must prioritize the following
five  critical  domains,  ranked  according  to  their  urgency  in
addressing  current  limitations  and  their  potential  to  advance  the
field:

1) Development of robust cross-modal learning algorithms
Food  flavor  perception  is  inherently  a  multi-sensory

experience,  integrating  visual,  olfactory,  gustatory,  and  tactile
information.  Cross-modal  learning  offers  a  promising  avenue  for
synthesizing  these  diverse  modalities  and  exploring  their  intricate
associations,  leading  to  more  accurate  and  nuanced  flavor
predictions.  Effective  integration  of  diverse  sensory  modalities  is
foundational  for  comprehensive  prediction  systems,  making  this
area the highest priority.

2) Enhancement of model interpretability
Understanding  how  models  extract  flavor  features  from

complex  data  is  crucial  for  validating  predictions  and  elucidating
the  biological  mechanisms  of  flavor  perception.  Improved
interpretability  will  foster  scientifically  sound  flavor  prediction
models and support personalized food development.

3)  Establishment  of  precise  flavor  component  association
mechanisms

Accurately defining interactions between flavor components at
molecular and perceptual levels is essential for enhancing prediction
accuracy.  This  requires  integrating  chemical  analysis,  sensory
evaluation,  and  computational  modeling  to  build  comprehensive
association models.

4)  Development  of  universal  prediction  frameworks  across
food categories

While  appealing,  the  significant  variation  in  flavor  profiles
across  food  categories  suggests  that  initially,  highly  optimized
models  for  specific  categories  may  be  more  effective.  Universal
framework development can be progressively pursued in subsequent
research.

5) Optimization of computational efficiency
Although  important  for  practical  applications,  computational

efficiency  is  typically  a  post-development  optimization.  Initial
research should prioritize model accuracy and interpretability.

Implementation of these research priorities will  bridge the gap
between  computational  modeling  and  practical  food  industry
applications,  enhancing  product  development  and  consumer
experiences.  This  focused  approach  will  facilitate  the  transition
from  theoretical  understanding  to  practical  innovation  in  food
science and sensory technologies. The advancement of cross-modal
learning  algorithms,  which  underpins  all  other  priorities,  is
paramount. Effective integration of diverse modalities is critical for
accurate and comprehensive flavor prediction, driving innovation in

food  science  and  personalized  food  experiences.  This  research
paradigm has the potential to transform flavor research and provide
scientific  validation  for  personalized  food  development  and
consumer experience optimization. 
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