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Improving the detection performance of mango firmness using a self-
designed pneumatic-electromagnetic-driven impact device with
the same impact force control
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Abstract: Mango firmness is one of the critical indicators for assessing internal quality and taste, as well as an indirect measure
of maturity and freshness during ripening. Acoustic vibration technology has been widely applied for nondestructive detection
of fruit firmness. However, existing detection systems face the risk of fruit damage, prediction performance limitations, and
significant influence of fruit size. This study designed a nondestructive pneumatic-electromagnetic-driven impact device based
on acoustic vibration technology for firmness detection of different sizes of mango with the same impact force control.
Vibration signals of 156 mangoes were acquired using an embedded accelerometer, and effective vibration signals were
selected by comparing the excitation vibration response signals and the free vibration response signals. The correlation between
mango reference firmness and vibration signal features was then analyzed. Based on this analysis, a prediction model for
mango firmness was developed using partial least squares regression based on competitive adaptive reweighted sampling
(CARS-PLSR). The results showed that the energy-type and amplitude-type statistical features in the vibration signals had a
good correlation with the reference firmness (|r|>0.45), and the mango firmness prediction model based on the vibration
frequency-domain signals (CARS-PLSR) had the optimal performance. The model’s prediction determination coefficient (R3),
root mean square error of prediction (RMSEP), and relative percent deviation (RPD,) were 0.95, 0.29 N/mm, and 4.20,
respectively. Overall, it demonstrated that the pneumatic-electromagnetic-driven impact device integrated with an embedded
accelerometer enables accurate and nondestructive detection of mango firmness. The innovative combination of pneumatic
control and electromagnetic drive effectively minimizes the impact of fruit size variations and enhances prediction accuracy,
demonstrating the significant potential for real-time fruit firmness sorting applications.
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1 Introduction

Mango (Mangifera indica L.) is rich in nutrients, containing
carbohydrates, vitamins, proteins, dietary fiber, and trace elements.
However, it is a typical climacteric fruit that will transition from
physiological to edible maturity after harvest. The fruit firmness is a
reliable indicator for assessing its internal quality!!, as it is
significantly related to attributes such as flavor, maturity, shelf life,
and sensitivity to mechanical impacts™”. By detecting firmness, fruit
can be classified into different grades or specifications to meet
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various market demands”. Therefore, exploring reliable
technologies or methods for detecting mango firmness and grading
early in the supply chain is crucial.

Over the years, many studies have explored the rapid and
nondestructive technologies or methods to detect the firmness of
various fruit, including optical imaging technologies, spectral
technologies®”,  electrical  properties  methods® ',
deformation methods!"", ultrasound technologies”, and acoustic
vibration technologies'*'”. Among these technologies and methods,
acoustic vibration technology has been recognized as a widely used
and efficient technology for detecting the firmness of agricultural
products owing to its rapid, nondestructive advantages and stronger
correlation with fruit textural attributes'*"”). The vibration response
of fruit depends on its elastic modulus, Poisson’s ratio, density,
mass, and shape. At the microscopic level, the mechanical and
structural properties of fruit depend on the features of its cells (i.e.,
cell size, cell wall thickness, and turgor pressure) manifest as
textural attributes (i.e., juiciness, firmness, and
mealiness).

In previous studies, Fathizadeh et al."" used a pendulum impact

mechanism combined with a microphone to receive sound signals

micro-

crispness,
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and a contact accelerometer to receive vibration signals from
apples. Results showed that the indicator F,, of acoustic vibration
signals was a promising choice for apple firmness detection.
However, the results are obtained on apples of approximately the
same size, which may cause damage to the fruit. Pourkhak et al.')
used a linear solenoid actuator to obtain kiwifruits’ forced impact
signals with load cell and acoustic impulse response with a
microphone, integrating multi-sensor data to predict the apparent
modulus of elasticity (E,) and Magness-Taylor firmness (MTf) of
kiwifruits. However, this method needs to adjust the height of the
impactor according to the size of the samples to ensure that the
samples of different sizes receive the same impact force. Zhang et
al.'"”! developed an acoustic vibration device using three identical
piezoelectric sensors in contact with pear samples: one excited the
pears (actuator), while the other two detected the pears’ vibration
response (sensor). Results showed that the resonant frequencies (f)
from the equator and f; from the calyx shoulder of the pear samples
were highly correlated with Magness-Taylor firmness (»=0.951).
Contact sensors can detect the vibration signals of fruit more stably.
However, complex system design may affect the detection
efficiency of fruit firmness and easily cause fruit surface damage. In
the team’s previous study, Tian et al.”” developed an online
system for kiwifruit firmness. It utilized an
electromagnetic-driven actuator as the excitation device, combined

detection

with a microphone sensor to detect the acoustic vibration signals of
kiwifruits. However, the microphone sensor is susceptible to
interference from environmental noise, and the fruit size influences
the impact force of the excitation device. In addition, several
commercial devices have been applied to fruit quality detection,

Tubular
support

Elastic
bellow

Upper ring
magnet

Active shaft

Rubber ring

Lower ring
magnet

such as the Intelligent Firmness Detector””’, Sinclair IQ Firmness
Tester, and Acoustic Firmness Sensor®. These commercial
detection devices have achieved rapid and continuous fruit firmness
detection to some extent, but still have limitations in detection
accuracy. In summary of the above research, the existing detection
systems based on acoustic vibration technology face the risk of fruit
damage, prediction performance limitations, and significant
influence of fruit size.

In this study, a nondestructive pneumatic-electromagnetic-
driven impact device for mango firmness detection was designed to
reduce the effect of fruit size. The effect of mango firmness
characteristics and physical properties on vibration signals was then
analyzed, along with the correlation between reference firmness and
vibration signal features. Based on this analysis, a regression
prediction model for mango firmness was developed using vibration
signals.

2 Materials and methods

2.1 Design and construction of the nondestructive detection
system

2.1.1 Mango firmness detection system set-up

study™, a novel pneumatic-
electromagnetic-driven impact detection system was designed to

Based on the previous

detect the vibration of mangoes, as shown in Figure 1. The system
consisted of a pneumatic-electromagnetic-driven impact detection
device, a static vibration response detection unit, and a data
acquisition unit. The impact detection device consisted of an
external elastic bellow motion unit, an internal impactor motion
unit, and an impactor cover unit. Under air pressure change, the
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elastic bellow could extend and retract with a range of 0-25 mm.
The internal impactor motion unit included two ring magnets, an
active shaft, an accelerometer, a flexible impact head, and an
electromagnet structure formed by an insulation sleeve, solenoids,
and an iron core. The ring magnets were neodymium-iron-boron
magnets installed at both ends of the active shaft. The interaction
between two ring magnets and the electromagnet structure allowed
the active shaft to move up and down with the reversal of electric
current in the range of 0-20 mm. The flexible impact head was
molded and cured from rubber. The accelerometer (YK-YDS50,
Shanghai Yankun, China) was connected to the flexible impact
head, directly detecting the vibration signals of the fruit and
transmitting them to the acquisition card (YK-ALMS, Shanghai
Yankun, China). The accelerometer had a measurement range of
+50 g, a sensitivity of 100 mV/g, and a frequency range of 0.5-
5000 Hz. The sampling rate of the data acquisition card was set to
10 240 Hz, with a sampling duration of 2 s.

In addition, to further analyze and select effective vibration
response signals, the detection system was equipped with a static
vibration response detection unit, which was used as a vibration
pickup device to detect the response characteristics of mango
samples under free vibration. The unit consisted of a movable
sliding table and an acceleration sensor of the same type as the main
system, and the sensor on the sliding table could be close to the
surface of the other side of the mango sample to stably collect the
free vibration response of the sample.
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2.1.2  The procedure of vibration signals detection

As shown in Figure 2, the procedure of mango vibration signal
detection was divided into five states. In the initial state, the mango
sample was placed on the tray to be detected. In the pre-contact
state, the pressurized air started flowing into the detection device
through the pneumatic quick connector, and the elastic bellow
expanded downwards in the vertical direction, bringing the internal
impactor unit close to the surface of the mango sample. In the
contact state, the pressurized air continued to flow into the detection
device. As the downward expansion of the elastic bellow was
obstructed, the internal air pressure increased rapidly. The internal
air pressure is monitored by the air pressure sensor to determine that
the detection device has been attached to the mango sample. In the
acquisition state, the pressurized air stopped flowing into the
detection device, and the PLC sent signals to the electromagnet
control module for impact detection. In the reset state, the PLC sent
signals to the electromagnet control module for impactor reset and
to the pneumatic control system to activate the vacuum generator to
fast reset the elastic bellow.

The pneumatic control system described mainly includes: air
compressor, air supply triplex (air filter, air filter mist, and air
regulator), 2-position 3-way solenoid valve, 2-position 2-way
solenoid valve, vacuum generator, speed control valve, air pressure
sensor and actuator (pneumatic-electromagnetic-driven impact
detection device), and its overall configuration and connection are
shown in Figure 3. The output pressure of the air regulator in the
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system is set to 0.2 MPa, the trigger air pressure threshold of the
actuator is set to 0.02 MPa, and the opening of the speed control
valve is set to 50%.

During the entire procedure of vibration signals detection,
pneumatic control enables the bellow to quickly contact the detected
mango and controls the internal impactor motion unit to maintain a
fixed impact distance from the mango surface, while electrom-
agnetic drive enables the impact detection of the detected mango
and controls the constant impact force, which is calibrated to 13.16+
0.12 N. So, the pneumatic-electromagnetic-driven impact device
can apply a consistent and stable input to fruits of different sizes.

2.2 Mango samples and measurement process

On April 15, 2024, 120 green mangoes at the green mature
stage were purchased, which corresponds to a growth cycle of
approximately 120 days after the fruit set. In addition, to enhance
the representativeness of the firmness data of the mango samples
and to improve the generalizability of the mango firmness
prediction model, on November 1, 2024, 36 green mangoes at the
full mature stage were purchased, which were matured by the
distributor for 2 days after harvesting under hot room conditions
with the aid of ethylene. All mango samples were immediately
transported to the laboratory after purchase and stored in an
artificial climate chamber at 15°C and 80% relative humidity to
prevent spoilage.

Six measurements were conducted within two one-week
periods to obtain mango samples with different firmness, in which
20 and 6 mango samples were randomly chosen each day for the
measurement. Before the measurements, the samples were taken
from the artificial climate chamber to recover to room temperature
(25°C). Firstly, the weight and size of each mango sample were
measured using an electronic balance and caliper, with results
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Fruit shoulder

Fruit cheek

Detection position

a. Puncture measurement position on the mango

Force/N

recorded in Table 1. Subsequently, vibration signals were detected
three times on each side of the cheek for each mango sample. By
averaging the six detected signals for each mango sample, 156
vibration signals were obtained. Finally, the reference firmness
value of each mango sample was measured using a texture analyzer
(TA-XT2i, Stable Micro Systems Ltd., England).

Table 1 Statistics of physical characteristics of mango samples

Physical parameters Range Average  Standard deviation
Longitudinal diameter/mm  161.7-235.0 196.5 13.2
Transverse diameter/mm 79.7-125.0 93.9 5.5
Weight/g 511.4-1095.2 741.6 101.3

In the puncture experiment, three measurement points were
consistent with the vibration signals detection points on both cheeks
of the mango samples. Figure 4a shows the puncture measurement
position on the mango. The average of the three values of one cheek
represents the firmness of each side of the mango, while the average
of the six values represents its overall firmness. During
measurement, a cylindrical probe with a diameter of 2 mm was
steadily inserted into the unpeeled mango flesh at a speed of
1 mm/s, with a penetration depth of 10 mm™. The typical force-
displacement curve of the mango is shown in Figure 4b. By
analyzing this curve, three relevant firmness indicators can be
extracted for puncture initial slope, puncture maximum force, and
puncture stabilized mean force, which are characterized as stiffness
(S), peel rupture maximum force (F,), and flesh puncture mean
force (F,), respectively. To determine the best reference of mango
firmness, five samples of different maturities were selected from the
total mango samples (three stored for two days and two stored for
four days) to analyze their force-displacement curves and extract
three firmness indicators.
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Figure 4 Mango firmness puncture experiment set-up and results

2.3 Vibration signals composition analysis

The vibration signals were directly transmitted to the
accelerometer after the flexible impact head contacted the mango
surface. As shown in Figure 5, the detected mango vibration time-
domain signal lasted 0.277 s and exhibited a maximum peak. This
vibration signal characteristic was similar to the results obtained by
other researchers®” . Time-domain analysis provided direct
observation of the signal shape. The entire signal period could be
divided into two phases based on the start moment, the end moment,
and the maximum peak moment of the vibration response.
2.4 Feature extraction of mango vibration signals

In the detected mango vibration signals, the time-domain
information reflected the variation of the signals over time. The
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initial time-domain signals were transformed into frequency-domain
signals using the Fast Fourier Transform (FFT) algorithm™!, which
reflected the energy distribution of the signals at different
frequencies. Vibration signals are often nonstationary, and their
frequency components may change over time. The extraction of
time and frequency domain features combines the advantages of
both domains, providing a more comprehensive signal description.
Several statistical features were extracted from the vibration signals
in the time and frequency domain, respectively.

In these features, the mean absolute value and root mean square
reflect the energy level of the signals; kurtosis reflects the sharpness
of the signal waveform; skewness measures the position of the
signal peak relative to the mean; variance, max amplitude, and
waveform factor all reflect the variability of the signals; peak factor
reflects the relationship between the signal peak and the average
energy level; impulse factor describes the pulse feature of the
signals; margin factor reflects the degree of variation in the signal
amplitude; resonant frequency refers to the frequency at which the
system produces maximum amplitude response, reflecting the
inherent characteristics of the system; half-peak width is the width
of the frequency spectrum peak, reflecting the bandwidth of the
signals and the damping characteristics of the system; and peak area
is related to the energy or power of the signals and can reflect the
total energy of the signals within a specific frequency range.

2.5 Data analysis
2.5.1 Correlation analysis

In the firmness measurement of mango, the force-displacement
curve was used to obtain the reference firmness. Furthermore,
extracting the time and frequency domain features of the mango’s
vibration signals provided a more comprehensive description of the
vibration signals. To analyze the feasibility of mango firmness
detection using the detected vibration signals, Pearson correlation
analysis was used to assess the correlation between reference
firmness and vibration signal features. The formula for the Pearson
correlation coefficient is shown in Equation (1), which measures the
linear correlation between two variables, with values ranging from
—1to 1.

> X-%r-7)

N V=07 [ o-vy

where, X is the signal feature of the samples, X is the mean value of
X, Y is the reference firmness value of the samples, and ¥ is the
mean value of Y.

(1

2.5.2  Signal denoising methods

In practical detection, the raw vibration signals often contain
noise due to environmental interference, equipment issues, and
signal distortion, which may introduce sharp jumps or spikes in the
raw signals, thereby affecting the accuracy of the analysis results.
Thus, preprocessing the raw signals is vital for enhancing the signal-
to-noise ratio (SNR) and eliminating interference®. In this study,
the raw vibration time and frequency domain signals were
preprocessed using moving average smoothing (MAS), multivariate
scatter correction (MSC)P", standard normal variate transformation
(SNV) 28 and Savitzky-Golay smoothing (SG).
2.5.3 Regression modeling

Partial least squares regression (PLSR) is a multivariate
statistical analysis method primarily used to establish a regression
model between a dependent variable (response variable) and a set of
independent variables (explanatory variables)®. PLSR has been
shown to effectively handle high-dimensional datasets and address

multicollinearity issues in fields such as chemometrics. This study
employed the PLSR algorithm to perform regression analysis on
both vibration time and frequency domain signals to determine the
accuracy of vibration signals in predicting mango firmness. Before
modeling, all samples were divided into calibration and prediction
sets in a 3:1 ratio based on gradient. During the modeling process,
the optimal number of latent variables (LV) was determined using a
5-fold Monte Carlo cross-validation method, with the maximum LV
set at 25 to avoid overfitting. The PLSR analysis was performed
using MATLAB 2023b.
2.5.4 Feature variable selection methods

The establishment of multivariate calibration models typically
includes all detected signals, and such a full-variable model will
inevitably contain a lot of redundant information, which may reduce
the accuracy and stability of the model®”. Both experimental and
theoretical evidence have demonstrated that using feature variable
selection methods can optimize the predictive performance of
calibration models. The competitive adaptive reweighted sampling
(CARS)P" algorithm simulates a "biological evolution" process,
adaptively reweighting and selecting all variables while gradually
eliminating redundant and unimportant variables. This study
employed the CARS algorithm to extract feature variables.
2.5.5 Evaluation of models

The predictive capability of different models was compared
using the coefficient of determination (R:. and R}) for the
calibration set and prediction set, the root mean square error
(RMSEC and RMSEP) for the calibration set and prediction set, and
the relative percent deviation (RPD,) for the prediction set.
Generally, higher R* and RPD values, along with lower RMSE
values, indicate better prediction model performance. The formulas
for the above parameters are as follows:

i(y,- -

R=1--5 2)

> -y

l @ .
RMSE = ; Z(yf—yz)z (3)
i=1
rPD= P @)
RMSE

where, 7 is the number of samples, y is the reference firmness value,
y; is the reference firmness value in fruit number i, y is the mean
value of reference firmness, and y, is the firmness value predicted
by the model. SD represents the standard deviation of the firmness
values in the dataset.

3 Results and discussion

3.1 Statistics of firmness of mango samples

The firmness indicators of five mango samples, including
stiftness (S), peel rupture maximum force (F,), and flesh puncture
mean force (F,), were obtained through the puncture experiment.
As shown in Figure 6, for the stiffness, the difference between the
mean values of the measurements of both cheeks of the mango
samples was small, with a mean error of 0.18 N/mm, and the
coefficients of variation of the measurements were generally low
(CV<15%), which indicated that the indicator had high
measurement stability and low dispersion. For the peel rupture
maximum force, the difference between the mean values of the
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measurements of both cheeks of the samples was large, with a mean
error of 0.94 N, and the coefficient of variation of some samples
appeared to be too large (CV>15%), which indicated that the
indicator had a certain degree of volatility and poor repeatability.
For the flesh puncture mean force, the difference between the mean
values of the measurements of both cheeks of the samples was the
smallest, with a mean error of 0.15 N. However, the coefficients of
variation of the measurements were generally high, indicating that
this indicator has a large overall dispersion, although the differences
within individual samples were small. Specifically, for the flesh
puncture mean force, the measurement values on both fruit cheeks
of the mango samples did not correspond to the actual maturity of
the mango samples, further suggesting that the stability of the
indicator was low.

According to the analysis, the stiffness indicator demonstrated
high precision and repeatability, effectively reflecting the firmness
differences among mango samples of different maturity. Therefore,
the stiffness was chosen to represent the reference firmness of
the mango.

The statistical results of the reference firmness values for 156
mango samples are listed in Table 2. The reference firmness on both
sides of the mango samples was close. By averaging the reference
firmness values from both cheeks of each sample, the overall
reference firmness values were obtained, ranging from 1.97 to
8.76 N/mm. The relatively large range of reference firmness values
facilitated the establishment of a robust predictive model.

Table 2 Statistics of reference firmness values
of mango samples
Stiffness/N-mm'

Position
Range Mean Standard deviation
First cheek 1.92-9.34 3.45 1.32
Second cheek 2.01-8.75 3.52 1.31
Overall 1.97-8.76 3.48 1.30

3.2 Vibration signals analysis
3.2.1 Effective vibration signal selection

The mango vibration signals detected by the nondestructive
impact device and the static vibration response detection unit are
shown in Figure 7a.

The detection signals from the two piezoelectric accelerometers
served as the excitation vibration response signal and the free
vibration response signal, respectively. In the excitation vibration
response signal, the signal response reached the starting point of the
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Figure 7 Signals detected and processed by the nondestructive impact device
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peak process at 0.048 s, with a maximum peak occurring at 0.052 s,
which decayed and disappeared after approximately 0.200 s. In the
free vibration response signal, the signal began to respond after
0.049 s, with the decay disappearing after approximately 0.200 s.
By analyzing the timing of the signal response, it could be observed
that the second stage of the vibration signal detected by the
nondestructive detection device for mango firmness (excitation
vibration response signal) almost corresponded to the free vibration
signal of the mango sample (free vibration response signal).
Therefore, the signal range from the maximum peak moment to the
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moment the signal decayed and disappeared was selected as the
effective vibration signal for the mango sample, as shown in

Figure 7b.

3.2.2 Vibration signal analysis of mango samples with different
firmness

Figure 8 reveals the vibration time and frequency domain
signals of mango samples with different firmness. The softest
mango sample had a firmness value of 2.43 N/mm, while the

hardest had a firmness value of 8.75 N/mm.
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Figure 8 Vibration signals for mango samples with different firmness

In the vibration time-domain signals shown in Figure 8a, as the
firmness of the mango samples increased, both the maximum peak
and the second peak values of the vibration time-domain signals
showed an increasing trend. The maximum peaks of the vibration
time-domain signals for the three mango samples were 22.47 g,
(1 g,=9.806 65 m/s?), 32.20 g,, and 36.89 g,, while the second
peaks were 2.76 g,,4.93 g,, and 8.97 g,, respectively. Additionally,
as the sample firmness increases from low (2.43 N/mm) to medium
(5.20 N/mm), the arrival time point of the second peak of the time-
domain signals tends to increase, reflecting the effect of the sample
firmness on the vibration decay process. In the vibration frequency-
domain signals shown in Figure 8b, as the firmness of the mango
samples increased, both the magnitudes of the first resonant peaks
and the second resonant peaks exhibited an upward trend. The
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resonant frequencies also showed a rightward shift. Mangoes with
higher firmness value had a tighter cellular structure, enabling them
to resist deformation effectively. Thus, higher resonant frequencies
and lower damping rates characterized their vibration frequency-
domain features.

Overall, the firmness difference of mango samples has a more
significant effect on the vibration time and frequency domain
signals, and both types of signals can provide rich firmness
discriminative information, which provides an effective database for
the construction of the mango firmness prediction model.

3.2.3 Vibration signal analysis of mango samples with similar
firmness but different sizes

Figure 9 reveals the vibration time and frequency domain
signals of mango samples with similar firmness but different sizes.
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Note: F and AR represent the mango firmness (N/mm) and aspect ratio, respectively.

Figure 9 Vibration signals for mango samples with similar firmness but different sizes
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The six mango samples were divided into three groups, including
high firmness (8.75-8.76 N/mm), medium firmness (5.20-
5.22 N/mm), and low firmness (2.41-2.43 N/mm), with different
fruit sizes and aspect ratios (4R=longitudinal diameter/transverse
diameter) ranging from 1.87 to 2.36.

In the vibration time-domain signals shown in Figure 9a, the
maximum peak values and the second peak values increased with
the firmness of the samples, and the time to reach the second peaks
also increased with firmness. Although the samples had similar
firmness but different fruit sizes in the different firmness groups, the
waveforms and amplitudes of the vibration time-domain signals
exhibited no significant variations. In the vibration frequency-
domain signals shown in Figure 9b, as the firmness of the samples
increased, the magnitudes of the first, second, and third resonant
peaks all exhibited an upward trend, and the resonant frequencies
also showed a rightward shift. Among the different firmness groups,
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the variations in the magnitude of the first resonant peaks were
relatively more significant. In contrast, the variations in the second
and third resonant peaks were minor, and the resonant frequency
changes were insignificant.

The analysis of vibration time and frequency domain signals
from samples with similar firmness but different fruit sizes
demonstrated that the pneumatic-electromagnetic-driven impact
device designed in this study can effectively reduce the influence of
fruit size on vibration signals, ensuring that the detected signal
features primarily reflect the firmness of the fruit rather than being
significantly affected by the size difference.

3.3 Correlation of vibration signal features with reference
firmness

Figure 10 shows the Pearson correlation coefficients between
mango reference firmness and the features of its vibration signals in
the time and frequency domain.
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Figure 10 Pearson correlation coefficients between mango firmness and vibration signal features

As shown in Figure 10a, the correlation between reference
firmness and vibration time-domain signal features showed that the
reference firmness correlated well with the max value, mean
absolute value, variance, standard deviation, and root mean square
of the vibration time-domain signal features (|r|>0.62). However,
other time-domain features such as kurtosis, skewness, waveform
factor, peak factor, impulse factor, and margin factor exhibited
weak correlations, reflecting that the energy intensity and volatility
features in the time-domain signals were more effective in
characterizing mango firmness, while the waveform morphology
features were relatively less sensitive to firmness. As shown in
Figure 10b, the correlation between reference firmness and
vibration frequency-domain signal features indicated that the
reference firmness correlated well with the max value, variance,
standard deviation, root mean square, energy, kurtosis, and
skewness of the vibration frequency-domain signal features (|r|>
0.45), reflecting that the energy intensity and frequency structure
features of the frequency-domain signals could better reflect the
firmness variations of the mango samples.

Overall, the energy-type and amplitude-type statistical features
in the mango vibration signals correlate well with the firmness
indicator, suggesting that the collected vibration signals have good
potential for firmness prediction.

3.4 Mango firmness prediction using PLSR
Table 3 shows the results of the PLSR model combined with

different signal preprocessing methods for predicting mango
firmness on different full-variable datasets of vibration signals.

Table 3 Results of PLSR models combined with different
preprocessing methods in different datasets

RMSEC/ RMSEP/
2 2
Dataset Preprocess LV R Nemm™! R P Ne-mm-' RPDp
Raw 6 080 057 075 069  2.04
MAS 7 081 054 076 0.68  2.07
Time-domain —yq~ 5 081 055 074 070  2.03
signal
SNV 4 074 065 073 073 1.95
SG 4 079 056 074 071 1.99
Raw 6 08 052 077 067 212
MAS 7 085 050 078 0.66  2.16
Frequency- MSC 5 08 054 076 068 207
domain signal
SNV 4 074 064 066 081 1.75
SG 4 078 059 071 075 1.88

In the vibration time-domain signal modeling, the R, RMSEP,
and RPD, of the prediction model based on the raw time-domain
signals were 0.75, 0.69 N/mm, and 2.04, respectively. The use of
preprocessing methods MSC, SNV, and SG did not significantly
improve the model performance, while the MAS preprocessing
method performed the best. The R3, RMSEP, and RPD, of the
prediction model based on the MAS preprocessed time-domain
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signals were 0.76, 0.68 N/mm, and 2.07, respectively. In the
vibration frequency-domain signal modeling, the R}, RMSEP, and
RPD; of the prediction model based on the raw frequency-domain
signals were 0.77, 0.67 N/mm, and 2.12, respectively. Similar to the
modeling results based on the time-domain signals, the prediction
model based on the MAS preprocessed frequency-domain signals
performed optimally, with the R2, RMSEP, and RPD, of 0.78,
0.66 N/mm, and 2.16, respectively.

Overall, MAS preprocessing can provide a certain magnitude
of performance improvement in both time and frequency domain
signal modeling compared to the original signals, with an average
SNR improvement of 19.65 dB and 22.09 dB for all time and
frequency domain signals, respectively. This is mainly due to its
suppression of random noise, which can reduce the interference of
redundant information between variables and enhance the trend
interpretability and modeling robustness of the signals.

3.5 Feature variable selection and validation
The results in the previous section indicated that the PLSR
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Figure 11

As shown in Figures 11c and 11d, in the vibration time-domain
signal modeling, the R?. and RMSEC of the prediction model were
0.98 and 0.22 N/mm, respectively, and the R3, RMSEP, and RPD,
were 0.94, 0.30 N/mm, and 4.15, respectively. Compared with the
PLSR model based on the full variables of vibration time-domain
signals, R3 was improved by 0.18, RMSEP was reduced by 0.38
N/mm, and RPD, was improved by 2.08. In the vibration frequency-
domain signal modeling, the R. and RMSEC of the prediction
model were 0.97 and 0.22 N/mm, respectively, and the R%, RMSEP,
and RPD, were 0.95, 0.29 N/mm, and 4.20, respectively. Compared
with the PLSR model based on the full variables of vibration
frequency-domain signals, R} was improved by 0.17, RMSEP was

mango firmness prediction models based on the vibration signals
after MAS preprocessing had better performance. On this basis, to
further improve the model performance, the CARS algorithm was
used to optimize the feature variables of the preprocessed vibration
signals, and the CARS-PLSR mango firmness prediction models
based on the selected feature variables were constructed.

As shown in Figures 11a and 11b, the CARS algorithm selected
the feature variables that were highly correlated with the firmness of
the mango samples from the vibration time-domain signals and the
frequency-domain signals, respectively. Among them, the number
of selected variables from the time-domain signals was 132, which
were mainly distributed near the minimum wave valley and the
second wave peak of the signals, and the number of selected
variables from the frequency-domain signals was 82, which were
mainly distributed near the second resonance peak and the third
resonance peak of the signals. The selected time-domain signal and
frequency-domain signal feature variables were then used as inputs
to build the PLSR mango firmness prediction models, respectively.
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d. Firmness prediction results of vibration frequency-domain signal dataset

Feature variable selection and prediction results by CARS-PLSR model

reduced by 0.37 N/mm, and RPD, was improved by 2.04.

The results show that the CARS algorithm can effectively
eliminate redundant variables and noise information, retain the
feature variables that are highly correlated with the firmness of
mango, improve the prediction accuracy and robustness of the
models, as well as reduce the input dimension, which is helpful for
the rapid deployment of the model and practical application.

Comparing the results of fruit firmness detection in this study
with the data published in the literature using acoustic vibration
detection technology, the best result (R3=0.95) obtained for mango
firmness in this study was similar to the result (R%=0.951) for peach
reported by Chen et al.’%, and was slightly lower than the result
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(R2=0.956) for kiwifruit reported by Nouri et al.”’. However, it was
higher than the result (R%=0.841) for kiwifruit reported by Pourkhak
et al.') the result (r,=0.951) for pear reported by Zhang et al.!'”,
and the result (r,=0.832) for pear reported by Ding et al.®’. In
summary, these comparisons demonstrate that high-precision
prediction of mango firmness can be achieved using vibration
signals collected by the pneumatic-electromagnetic-driven impact
device, in combination with the CARS-PLSR modeling approach.

4 Conclusions

This  study
electromagnetic-driven impact device based on acoustic vibration

designed a nondestructive  pneumatic-
technology for fruit firmness detection with the same impact force
control for different-sized fruit. The innovative combination of
pneumatic control and electromagnetic drive for the impact device
with an embedded accelerometer can effectively address the
influence of fruit size and improve prediction performance.

This study collected the vibration response signals and
reference firmness values of 156 green mangoes at different storage
periods, and effective vibration signals were subsequently selected.
The correlation between mango reference firmness and vibration
signal features was then analyzed. Based on this analysis, a
prediction model for mango firmness was developed using CARS-
PLSR. The results indicated that the mango firmness prediction
model based on the vibration frequency-domain signals had the
optimal performance, and the R, RMSEP, and the RPD, of the
model were 0.95, 0.29 N/mm, and 4.20, respectively.

In summary, the detection device designed in this study
demonstrated high accuracy in predicting mango firmness,
providing technical support for the quality detection and sorting of
postharvest mangoes. Future research directions include further
optimizing the detection device and applying this technology to
other fruits, aiming to advance the application of acoustic vibration
technology in the nondestructive detection of fruit quality.
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