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Abstract: Mango firmness is one of the critical indicators for assessing internal quality and taste, as well as an indirect measure
of maturity and freshness during ripening. Acoustic vibration technology has been widely applied for nondestructive detection
of  fruit  firmness.  However,  existing  detection  systems face  the  risk  of  fruit  damage,  prediction  performance  limitations,  and
significant influence of fruit size. This study designed a nondestructive pneumatic-electromagnetic-driven impact device based
on  acoustic  vibration  technology  for  firmness  detection  of  different  sizes  of  mango  with  the  same  impact  force  control.
Vibration  signals  of  156  mangoes  were  acquired  using  an  embedded  accelerometer,  and  effective  vibration  signals  were
selected by comparing the excitation vibration response signals and the free vibration response signals. The correlation between
mango  reference  firmness  and  vibration  signal  features  was  then  analyzed.  Based  on  this  analysis,  a  prediction  model  for
mango  firmness  was  developed  using  partial  least  squares  regression  based  on  competitive  adaptive  reweighted  sampling
(CARS-PLSR).  The results  showed that  the  energy-type and amplitude-type statistical  features  in  the vibration signals  had a
good  correlation  with  the  reference  firmness  ( ≥0.45),  and  the  mango  firmness  prediction  model  based  on  the  vibration
frequency-domain signals (CARS-PLSR) had the optimal performance. The model’s prediction determination coefficient ( ),
root  mean  square  error  of  prediction  (RMSEP),  and  relative  percent  deviation  ( )  were  0.95,  0.29  N/mm,  and  4.20,
respectively.  Overall,  it  demonstrated  that  the  pneumatic-electromagnetic-driven  impact  device  integrated  with  an  embedded
accelerometer  enables  accurate  and  nondestructive  detection  of  mango  firmness.  The  innovative  combination  of  pneumatic
control  and electromagnetic  drive effectively minimizes the impact  of  fruit  size variations and enhances prediction accuracy,
demonstrating the significant potential for real-time fruit firmness sorting applications.
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1    Introduction
Mango  (Mangifera  indica  L.)  is  rich  in  nutrients,  containing

carbohydrates, vitamins, proteins, dietary fiber, and trace elements.
However,  it  is  a  typical  climacteric  fruit  that  will  transition  from
physiological to edible maturity after harvest. The fruit firmness is a
reliable  indicator  for  assessing  its  internal  quality[1],  as  it  is
significantly related to attributes such as flavor, maturity, shelf life,
and sensitivity to mechanical impacts[2]. By detecting firmness, fruit
can  be  classified  into  different  grades  or  specifications  to  meet

various  market  demands[3].  Therefore,  exploring  reliable
technologies or methods for detecting mango firmness and grading
early in the supply chain is crucial.

Over  the  years,  many  studies  have  explored  the  rapid  and
nondestructive  technologies  or  methods  to  detect  the  firmness  of
various  fruit,  including  optical  imaging  technologies[4],  spectral
technologies[5–7],  electrical  properties  methods[8–10],  micro-
deformation  methods[11],  ultrasound  technologies[12],  and  acoustic
vibration technologies[13–17]. Among these technologies and methods,
acoustic vibration technology has been recognized as a widely used
and  efficient  technology  for  detecting  the  firmness  of  agricultural
products owing to its rapid, nondestructive advantages and stronger
correlation with fruit  textural  attributes[18,19].  The vibration response
of  fruit  depends  on  its  elastic  modulus,  Poisson’s  ratio,  density,
mass,  and  shape.  At  the  microscopic  level,  the  mechanical  and
structural properties of fruit depend on the features of its cells (i.e.,
cell  size,  cell  wall  thickness,  and  turgor  pressure)  manifest  as
textural  attributes  (i.e.,  crispness,  juiciness,  firmness,  and
mealiness).

In previous studies, Fathizadeh et al.[15] used a pendulum impact
mechanism  combined  with  a  microphone  to  receive  sound  signals
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and  a  contact  accelerometer  to  receive  vibration  signals  from
apples. Results showed that the indicator Fsum of acoustic vibration
signals  was  a  promising  choice  for  apple  firmness  detection.
However,  the  results  are  obtained  on  apples  of  approximately  the
same size,  which may cause damage to the fruit.  Pourkhak et  al.[16]

used  a  linear  solenoid  actuator  to  obtain  kiwifruits’  forced  impact
signals  with  load  cell  and  acoustic  impulse  response  with  a
microphone,  integrating  multi-sensor  data  to  predict  the  apparent
modulus  of  elasticity  (Ea)  and  Magness-Taylor  firmness  (MTf)  of
kiwifruits.  However,  this  method  needs  to  adjust  the  height  of  the
impactor  according  to  the  size  of  the  samples  to  ensure  that  the
samples  of  different  sizes  receive the  same impact  force.  Zhang et
al.[17]  developed  an  acoustic  vibration  device  using  three  identical
piezoelectric  sensors  in  contact  with  pear  samples:  one excited the
pears  (actuator),  while  the  other  two  detected  the  pears’  vibration
response (sensor). Results showed that the resonant frequencies (f1)
from the equator and f2 from the calyx shoulder of the pear samples
were  highly  correlated  with  Magness-Taylor  firmness  (r=0.951).
Contact sensors can detect the vibration signals of fruit more stably.
However,  complex  system  design  may  affect  the  detection
efficiency of fruit firmness and easily cause fruit surface damage. In
the  team’s  previous  study,  Tian  et  al.[20]  developed  an  online
detection  system  for  kiwifruit  firmness.  It  utilized  an
electromagnetic-driven actuator  as  the  excitation  device,  combined
with a microphone sensor to detect the acoustic vibration signals of
kiwifruits.  However,  the  microphone  sensor  is  susceptible  to
interference from environmental noise, and the fruit size influences
the  impact  force  of  the  excitation  device.  In  addition,  several
commercial  devices  have  been  applied  to  fruit  quality  detection,

such  as  the  Intelligent  Firmness  Detector[21],  Sinclair  IQ  Firmness
Tester[1],  and  Acoustic  Firmness  Sensor[22].  These  commercial
detection devices have achieved rapid and continuous fruit firmness
detection  to  some  extent,  but  still  have  limitations  in  detection
accuracy. In summary of the above research, the existing detection
systems based on acoustic vibration technology face the risk of fruit
damage,  prediction  performance  limitations,  and  significant
influence of fruit size.

In  this  study,  a  nondestructive  pneumatic-electromagnetic-
driven impact device for mango firmness detection was designed to
reduce  the  effect  of  fruit  size.  The  effect  of  mango  firmness
characteristics and physical properties on vibration signals was then
analyzed, along with the correlation between reference firmness and
vibration  signal  features.  Based  on  this  analysis,  a  regression
prediction model for mango firmness was developed using vibration
signals. 

2    Materials and methods
 

2.1    Design  and  construction  of  the  nondestructive  detection
system 

2.1.1    Mango firmness detection system set-up
Based  on  the  previous  study[20],  a  novel  pneumatic-

electromagnetic-driven  impact  detection  system  was  designed  to
detect the vibration of mangoes, as shown in Figure 1. The system
consisted  of  a  pneumatic-electromagnetic-driven  impact  detection
device,  a  static  vibration  response  detection  unit,  and  a  data
acquisition  unit.  The  impact  detection  device  consisted  of  an
external  elastic  bellow  motion  unit,  an  internal  impactor  motion
unit,  and  an  impactor  cover  unit.  Under  air  pressure  change,  the
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Figure 1    Schematic diagram of mango firmness detection system
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elastic  bellow  could  extend  and  retract  with  a  range  of  0-25  mm.
The  internal  impactor  motion  unit  included  two  ring  magnets,  an
active  shaft,  an  accelerometer,  a  flexible  impact  head,  and  an
electromagnet  structure  formed  by  an  insulation  sleeve,  solenoids,
and  an  iron  core.  The  ring  magnets  were  neodymium-iron-boron
magnets  installed  at  both  ends  of  the  active  shaft.  The  interaction
between two ring magnets and the electromagnet structure allowed
the  active  shaft  to  move up and down with  the  reversal  of  electric
current  in  the  range  of  0-20  mm.  The  flexible  impact  head  was
molded  and  cured  from  rubber.  The  accelerometer  (YK-YD50,
Shanghai  Yankun,  China)  was  connected  to  the  flexible  impact
head,  directly  detecting  the  vibration  signals  of  the  fruit  and
transmitting  them  to  the  acquisition  card  (YK-ALM8,  Shanghai
Yankun,  China).  The  accelerometer  had  a  measurement  range  of
±50  g,  a  sensitivity  of  100  mV/g,  and  a  frequency  range  of  0.5-
5000 Hz. The sampling rate of the data acquisition card was set to
10 240 Hz, with a sampling duration of 2 s.

In  addition,  to  further  analyze  and  select  effective  vibration
response  signals,  the  detection  system  was  equipped  with  a  static
vibration  response  detection  unit,  which  was  used  as  a  vibration
pickup  device  to  detect  the  response  characteristics  of  mango
samples  under  free  vibration.  The  unit  consisted  of  a  movable
sliding table and an acceleration sensor of the same type as the main
system,  and  the  sensor  on  the  sliding  table  could  be  close  to  the
surface of  the other  side of  the mango sample to stably collect  the
free vibration response of the sample. 

2.1.2    The procedure of vibration signals detection
As shown in Figure 2, the procedure of mango vibration signal

detection was divided into five states. In the initial state, the mango
sample  was  placed  on  the  tray  to  be  detected.  In  the  pre-contact
state,  the  pressurized  air  started  flowing  into  the  detection  device
through  the  pneumatic  quick  connector,  and  the  elastic  bellow
expanded downwards in the vertical direction, bringing the internal
impactor  unit  close  to  the  surface  of  the  mango  sample.  In  the
contact state, the pressurized air continued to flow into the detection
device.  As  the  downward  expansion  of  the  elastic  bellow  was
obstructed,  the  internal  air  pressure  increased  rapidly.  The  internal
air pressure is monitored by the air pressure sensor to determine that
the detection device has been attached to the mango sample. In the
acquisition  state,  the  pressurized  air  stopped  flowing  into  the
detection  device,  and  the  PLC  sent  signals  to  the  electromagnet
control module for impact detection. In the reset state, the PLC sent
signals  to the electromagnet  control  module for  impactor reset  and
to the pneumatic control system to activate the vacuum generator to
fast reset the elastic bellow.

The  pneumatic  control  system  described  mainly  includes:  air
compressor,  air  supply  triplex  (air  filter,  air  filter  mist,  and  air
regulator),  2-position  3-way  solenoid  valve,  2-position  2-way
solenoid valve, vacuum generator, speed control valve, air pressure
sensor  and  actuator  (pneumatic-electromagnetic-driven  impact
detection  device),  and  its  overall  configuration  and  connection  are
shown  in Figure  3.  The  output  pressure  of  the  air  regulator  in  the
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Figure 2    Procedure of mango vibration signals detection
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system  is  set  to  0.2  MPa,  the  trigger  air  pressure  threshold  of  the
actuator  is  set  to  0.02  MPa,  and  the  opening  of  the  speed  control
valve is set to 50%.

During  the  entire  procedure  of  vibration  signals  detection,
pneumatic control enables the bellow to quickly contact the detected
mango and controls the internal impactor motion unit to maintain a
fixed  impact  distance  from  the  mango  surface,  while  electrom-
agnetic  drive  enables  the  impact  detection  of  the  detected  mango
and controls the constant impact force, which is calibrated to 13.16±
0.12  N.  So,  the  pneumatic-electromagnetic-driven  impact  device
can apply a consistent and stable input to fruits of different sizes. 

2.2    Mango samples and measurement process
On  April  15,  2024,  120  green  mangoes  at  the  green  mature

stage  were  purchased,  which  corresponds  to  a  growth  cycle  of
approximately  120  days  after  the  fruit  set.  In  addition,  to  enhance
the  representativeness  of  the  firmness  data  of  the  mango  samples
and  to  improve  the  generalizability  of  the  mango  firmness
prediction  model,  on  November  1,  2024,  36  green  mangoes  at  the
full  mature  stage  were  purchased,  which  were  matured  by  the
distributor  for  2  days  after  harvesting  under  hot  room  conditions
with  the  aid  of  ethylene.  All  mango  samples  were  immediately
transported  to  the  laboratory  after  purchase  and  stored  in  an
artificial  climate  chamber  at  15°C  and  80%  relative  humidity  to
prevent spoilage.

Six  measurements  were  conducted  within  two  one-week
periods to obtain mango samples with different  firmness,  in  which
20  and  6  mango  samples  were  randomly  chosen  each  day  for  the
measurement.  Before  the  measurements,  the  samples  were  taken
from the artificial  climate chamber to recover to room temperature
(25°C).  Firstly,  the  weight  and  size  of  each  mango  sample  were
measured  using  an  electronic  balance  and  caliper,  with  results

recorded in Table  1.  Subsequently,  vibration signals  were  detected
three  times  on  each  side  of  the  cheek  for  each  mango  sample.  By
averaging  the  six  detected  signals  for  each  mango  sample,  156
vibration  signals  were  obtained.  Finally,  the  reference  firmness
value of each mango sample was measured using a texture analyzer
(TA-XT2i, Stable Micro Systems Ltd., England).
  

Table 1    Statistics of physical characteristics of mango samples
Physical parameters Range Average Standard deviation

Longitudinal diameter/mm 161.7-235.0 196.5 13.2
Transverse diameter/mm 79.7-125.0 93.9 5.5

Weight/g 511.4-1095.2 741.6 101.3
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In  the  puncture  experiment,  three  measurement  points  were
consistent with the vibration signals detection points on both cheeks
of the mango samples. Figure 4a shows the puncture measurement
position on the mango. The average of the three values of one cheek
represents the firmness of each side of the mango, while the average
of  the  six  values  represents  its  overall  firmness.  During
measurement,  a  cylindrical  probe  with  a  diameter  of  2  mm  was
steadily  inserted  into  the  unpeeled  mango  flesh  at  a  speed  of
1  mm/s,  with  a  penetration  depth  of  10  mm[19].  The  typical  force-
displacement  curve  of  the  mango  is  shown  in  Figure  4b.  By
analyzing  this  curve,  three  relevant  firmness  indicators  can  be
extracted  for  puncture  initial  slope,  puncture  maximum  force,  and
puncture stabilized mean force, which are characterized as stiffness
(S),  peel  rupture  maximum  force  ( ),  and  flesh  puncture  mean
force ( ),  respectively. To determine the best reference of mango
firmness, five samples of different maturities were selected from the
total  mango samples  (three  stored for  two days  and two stored for
four  days)  to  analyze  their  force-displacement  curves  and  extract
three firmness indicators.
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Figure 4    Mango firmness puncture experiment set-up and results
 
 

2.3    Vibration signals composition analysis
The  vibration  signals  were  directly  transmitted  to  the

accelerometer  after  the  flexible  impact  head  contacted  the  mango
surface.  As shown in Figure 5,  the detected mango vibration time-
domain signal  lasted 0.277 s  and exhibited a  maximum peak.  This
vibration signal characteristic was similar to the results obtained by
other  researchers[2,23–24].  Time-domain  analysis  provided  direct
observation  of  the  signal  shape.  The  entire  signal  period  could  be
divided into two phases based on the start moment, the end moment,
and the maximum peak moment of the vibration response. 

2.4    Feature extraction of mango vibration signals
In  the  detected  mango  vibration  signals,  the  time-domain

information  reflected  the  variation  of  the  signals  over  time.  The
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initial time-domain signals were transformed into frequency-domain
signals using the Fast Fourier Transform (FFT) algorithm[25],  which
reflected  the  energy  distribution  of  the  signals  at  different
frequencies.  Vibration  signals  are  often  nonstationary,  and  their
frequency  components  may  change  over  time.  The  extraction  of
time  and  frequency  domain  features  combines  the  advantages  of
both  domains,  providing a  more  comprehensive  signal  description.
Several statistical features were extracted from the vibration signals
in the time and frequency domain, respectively.

In these features, the mean absolute value and root mean square
reflect the energy level of the signals; kurtosis reflects the sharpness
of  the  signal  waveform;  skewness  measures  the  position  of  the
signal  peak  relative  to  the  mean;  variance,  max  amplitude,  and
waveform factor all reflect the variability of the signals; peak factor
reflects  the  relationship  between  the  signal  peak  and  the  average
energy  level;  impulse  factor  describes  the  pulse  feature  of  the
signals;  margin  factor  reflects  the  degree  of  variation  in  the  signal
amplitude;  resonant  frequency refers  to the frequency at  which the
system  produces  maximum  amplitude  response,  reflecting  the
inherent  characteristics  of  the system; half-peak width is  the width
of  the  frequency  spectrum  peak,  reflecting  the  bandwidth  of  the
signals and the damping characteristics of the system; and peak area
is  related to  the energy or  power of  the signals  and can reflect  the
total energy of the signals within a specific frequency range. 

2.5    Data analysis 

2.5.1    Correlation analysis
In the firmness measurement of mango, the force-displacement

curve  was  used  to  obtain  the  reference  firmness.  Furthermore,
extracting  the  time  and  frequency  domain  features  of  the  mango’s
vibration signals provided a more comprehensive description of the
vibration  signals.  To  analyze  the  feasibility  of  mango  firmness
detection  using  the  detected  vibration  signals,  Pearson  correlation
analysis  was  used  to  assess  the  correlation  between  reference
firmness and vibration signal features. The formula for the Pearson
correlation coefficient is shown in Equation (1), which measures the
linear  correlation between two variables,  with values  ranging from
−1 to 1.

r =

∑
(X− X̄)(Y − Ȳ)√∑

(X− X̄)2
√∑

(Y − Ȳ)2
(1)

X̄
Ȳ

where, X is the signal feature of the samples,   is the mean value of
X, Y  is  the  reference  firmness  value  of  the  samples,  and    is  the
mean value of Y. 

2.5.2    Signal denoising methods
In  practical  detection,  the  raw  vibration  signals  often  contain

noise  due  to  environmental  interference,  equipment  issues,  and
signal distortion, which may introduce sharp jumps or spikes in the
raw  signals,  thereby  affecting  the  accuracy  of  the  analysis  results.
Thus, preprocessing the raw signals is vital for enhancing the signal-
to-noise  ratio  (SNR)  and  eliminating  interference[26].  In  this  study,
the  raw  vibration  time  and  frequency  domain  signals  were
preprocessed using moving average smoothing (MAS), multivariate
scatter  correction (MSC)[27],  standard normal variate  transformation
(SNV) [28], and Savitzky-Golay smoothing (SG). 

2.5.3    Regression modeling
Partial  least  squares  regression  (PLSR)  is  a  multivariate

statistical  analysis  method  primarily  used  to  establish  a  regression
model between a dependent variable (response variable) and a set of
independent  variables  (explanatory  variables)[29].  PLSR  has  been
shown to  effectively  handle  high-dimensional  datasets  and address

multicollinearity  issues  in  fields  such  as  chemometrics.  This  study
employed  the  PLSR  algorithm  to  perform  regression  analysis  on
both vibration time and frequency domain signals to determine the
accuracy of vibration signals in predicting mango firmness. Before
modeling,  all  samples  were  divided  into  calibration  and  prediction
sets in a 3:1 ratio based on gradient.  During the modeling process,
the optimal number of latent variables (LV) was determined using a
5-fold Monte Carlo cross-validation method, with the maximum LV
set  at  25  to  avoid  overfitting.  The  PLSR  analysis  was  performed
using MATLAB 2023b. 

2.5.4    Feature variable selection methods
The  establishment  of  multivariate  calibration  models  typically

includes  all  detected  signals,  and  such  a  full-variable  model  will
inevitably contain a lot of redundant information, which may reduce
the  accuracy  and  stability  of  the  model[30].  Both  experimental  and
theoretical  evidence  have  demonstrated  that  using  feature  variable
selection  methods  can  optimize  the  predictive  performance  of
calibration  models.  The  competitive  adaptive  reweighted  sampling
(CARS)[31]  algorithm  simulates  a  "biological  evolution"  process,
adaptively  reweighting  and  selecting  all  variables  while  gradually
eliminating  redundant  and  unimportant  variables.  This  study
employed the CARS algorithm to extract feature variables. 

2.5.5    Evaluation of models

R2
C R2

P

RPDP

The  predictive  capability  of  different  models  was  compared
using  the  coefficient  of  determination  (   and  )  for  the
calibration  set  and  prediction  set,  the  root  mean  square  error
(RMSEC and RMSEP) for the calibration set and prediction set, and
the  relative  percent  deviation  ( )  for  the  prediction  set.
Generally,  higher  R²  and  RPD  values,  along  with  lower  RMSE
values, indicate better prediction model performance. The formulas
for the above parameters are as follows:

R2 = 1−

n∑
i=1

(yi − ŷl)
2

n∑
i=1

(yi − ȳ)2

(2)

RMS E =

√
1
n

n∑
i=1

(yi − ŷl)
2 (3)

RPD =
S D

RMS E
(4)

yi ȳ
ŷl

where, n is the number of samples, y is the reference firmness value,
  is  the  reference  firmness  value  in  fruit  number  i,    is  the  mean

value  of  reference  firmness,  and    is  the  firmness  value  predicted
by the model. SD represents the standard deviation of the firmness
values in the dataset. 

3    Results and discussion
 

3.1    Statistics of firmness of mango samples

Fs

F f

The  firmness  indicators  of  five  mango  samples,  including
stiffness  (S),  peel  rupture maximum force ( ),  and flesh puncture
mean  force  ( ),  were  obtained  through  the  puncture  experiment.
As shown in Figure 6,  for the stiffness,  the difference between the
mean  values  of  the  measurements  of  both  cheeks  of  the  mango
samples  was  small,  with  a  mean  error  of  0.18  N/mm,  and  the
coefficients  of  variation  of  the  measurements  were  generally  low
(CV<15%),  which  indicated  that  the  indicator  had  high
measurement  stability  and  low  dispersion.  For  the  peel  rupture
maximum  force,  the  difference  between  the  mean  values  of  the
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measurements of both cheeks of the samples was large, with a mean
error  of  0.94  N,  and  the  coefficient  of  variation  of  some  samples
appeared  to  be  too  large  (CV>15%),  which  indicated  that  the
indicator  had  a  certain  degree  of  volatility  and  poor  repeatability.
For the flesh puncture mean force, the difference between the mean
values of the measurements of both cheeks of the samples was the
smallest, with a mean error of 0.15 N. However, the coefficients of
variation  of  the  measurements  were  generally  high,  indicating  that
this indicator has a large overall dispersion, although the differences
within  individual  samples  were  small.  Specifically,  for  the  flesh
puncture mean force,  the measurement  values on both fruit  cheeks
of the mango samples did not  correspond to the actual  maturity of
the  mango  samples,  further  suggesting  that  the  stability  of  the
indicator was low.

According to the analysis,  the stiffness  indicator  demonstrated
high  precision  and  repeatability,  effectively  reflecting  the  firmness
differences among mango samples of different maturity. Therefore,
the  stiffness  was  chosen  to  represent  the  reference  firmness  of
the mango.

The  statistical  results  of  the  reference  firmness  values  for  156
mango samples are listed in Table 2. The reference firmness on both
sides  of  the  mango samples  was close.  By averaging the  reference
firmness  values  from  both  cheeks  of  each  sample,  the  overall
reference  firmness  values  were  obtained,  ranging  from  1.97  to
8.76 N/mm. The relatively large range of reference firmness values
facilitated the establishment of a robust predictive model.
  

Table 2    Statistics of reference firmness values
of mango samples

Position
Stiffness/N∙mm−1

Range Mean Standard deviation
First cheek 1.92-9.34 3.45 1.32
Second cheek 2.01-8.75 3.52 1.31

Overall 1.97-8.76 3.48 1.30
  

3.2    Vibration signals analysis 

3.2.1    Effective vibration signal selection
The  mango  vibration  signals  detected  by  the  nondestructive

impact  device  and  the  static  vibration  response  detection  unit  are
shown in Figure 7a.

The detection signals from the two piezoelectric accelerometers
served  as  the  excitation  vibration  response  signal  and  the  free
vibration  response  signal,  respectively.  In  the  excitation  vibration
response signal, the signal response reached the starting point of the
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Figure 6    Statistics of three firmness indicators of five
mango samples
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Figure 7    Signals detected and processed by the nondestructive impact device
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peak process at 0.048 s, with a maximum peak occurring at 0.052 s,
which decayed and disappeared after approximately 0.200 s. In the
free  vibration  response  signal,  the  signal  began  to  respond  after
0.049  s,  with  the  decay  disappearing  after  approximately  0.200  s.
By analyzing the timing of the signal response, it could be observed
that  the  second  stage  of  the  vibration  signal  detected  by  the
nondestructive  detection  device  for  mango  firmness  (excitation
vibration response signal) almost corresponded to the free vibration
signal  of  the  mango  sample  (free  vibration  response  signal).
Therefore, the signal range from the maximum peak moment to the

moment  the  signal  decayed  and  disappeared  was  selected  as  the
effective  vibration  signal  for  the  mango  sample,  as  shown  in
Figure 7b.
 

3.2.2    Vibration  signal  analysis  of  mango  samples  with  different
firmness

Figure  8  reveals  the  vibration  time  and  frequency  domain
signals  of  mango  samples  with  different  firmness.  The  softest
mango  sample  had  a  firmness  value  of  2.43  N/mm,  while  the
hardest had a firmness value of 8.75 N/mm.
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Figure 8    Vibration signals for mango samples with different firmness
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In the vibration time-domain signals shown in Figure 8a, as the
firmness of the mango samples increased, both the maximum peak
and  the  second  peak  values  of  the  vibration  time-domain  signals
showed  an  increasing  trend.  The  maximum peaks  of  the  vibration
time-domain  signals  for  the  three  mango  samples  were  22.47 
(1  =9.806 65  m/s²),  32.20  ,  and  36.89  ,  while  the  second
peaks were 2.76  , 4.93  , and 8.97  , respectively. Additionally,
as the sample firmness increases from low (2.43 N/mm) to medium
(5.20 N/mm), the arrival time point of the second peak of the time-
domain signals tends to increase, reflecting the effect of the sample
firmness on the vibration decay process. In the vibration frequency-
domain  signals  shown  in Figure  8b,  as  the  firmness  of  the  mango
samples  increased,  both  the  magnitudes  of  the  first  resonant  peaks
and  the  second  resonant  peaks  exhibited  an  upward  trend.  The

resonant  frequencies  also  showed  a  rightward  shift.  Mangoes  with
higher firmness value had a tighter cellular structure, enabling them
to resist deformation effectively. Thus, higher resonant frequencies
and  lower  damping  rates  characterized  their  vibration  frequency-
domain features.

Overall,  the firmness difference of mango samples has a more
significant  effect  on  the  vibration  time  and  frequency  domain
signals,  and  both  types  of  signals  can  provide  rich  firmness
discriminative information, which provides an effective database for
the construction of the mango firmness prediction model. 

3.2.3    Vibration  signal  analysis  of  mango  samples  with  similar
firmness but different sizes

Figure  9  reveals  the  vibration  time  and  frequency  domain
signals of mango samples with similar firmness but different sizes.
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Figure 9    Vibration signals for mango samples with similar firmness but different sizes
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The  six  mango  samples  were  divided  into  three  groups,  including
high  firmness  (8.75-8.76  N/mm),  medium  firmness  (5.20-
5.22  N/mm),  and  low  firmness  (2.41-2.43  N/mm),  with  different
fruit  sizes  and  aspect  ratios  (AR=longitudinal  diameter/transverse
diameter) ranging from 1.87 to 2.36.

In  the  vibration  time-domain  signals  shown  in  Figure  9a,  the
maximum  peak  values  and  the  second  peak  values  increased  with
the firmness of the samples, and the time to reach the second peaks
also  increased  with  firmness.  Although  the  samples  had  similar
firmness but different fruit sizes in the different firmness groups, the
waveforms  and  amplitudes  of  the  vibration  time-domain  signals
exhibited  no  significant  variations.  In  the  vibration  frequency-
domain signals shown in Figure 9b, as the firmness of the samples
increased,  the  magnitudes  of  the  first,  second,  and  third  resonant
peaks  all  exhibited  an  upward  trend,  and  the  resonant  frequencies
also showed a rightward shift. Among the different firmness groups,

the  variations  in  the  magnitude  of  the  first  resonant  peaks  were
relatively more significant. In contrast, the variations in the second
and  third  resonant  peaks  were  minor,  and  the  resonant  frequency
changes were insignificant.

The  analysis  of  vibration  time  and  frequency  domain  signals
from  samples  with  similar  firmness  but  different  fruit  sizes
demonstrated  that  the  pneumatic-electromagnetic-driven  impact
device designed in this study can effectively reduce the influence of
fruit  size  on  vibration  signals,  ensuring  that  the  detected  signal
features primarily reflect the firmness of the fruit rather than being
significantly affected by the size difference. 

3.3    Correlation  of  vibration  signal  features  with  reference
firmness

Figure  10  shows  the  Pearson  correlation  coefficients  between
mango reference firmness and the features of its vibration signals in
the time and frequency domain.
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Figure 10    Pearson correlation coefficients between mango firmness and vibration signal features
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As  shown  in  Figure  10a,  the  correlation  between  reference
firmness and vibration time-domain signal features showed that the
reference  firmness  correlated  well  with  the  max  value,  mean
absolute  value,  variance,  standard  deviation,  and root  mean square
of  the  vibration  time-domain  signal  features  ( ≥0.62).  However,
other  time-domain  features  such  as  kurtosis,  skewness,  waveform
factor,  peak  factor,  impulse  factor,  and  margin  factor  exhibited
weak correlations, reflecting that the energy intensity and volatility
features  in  the  time-domain  signals  were  more  effective  in
characterizing  mango  firmness,  while  the  waveform  morphology
features  were  relatively  less  sensitive  to  firmness.  As  shown  in
Figure  10b,  the  correlation  between  reference  firmness  and
vibration  frequency-domain  signal  features  indicated  that  the
reference  firmness  correlated  well  with  the  max  value,  variance,
standard  deviation,  root  mean  square,  energy,  kurtosis,  and
skewness  of  the  vibration  frequency-domain  signal  features  ( ≥
0.45),  reflecting  that  the  energy  intensity  and  frequency  structure
features  of  the  frequency-domain  signals  could  better  reflect  the
firmness variations of the mango samples.

Overall, the energy-type and amplitude-type statistical features
in  the  mango  vibration  signals  correlate  well  with  the  firmness
indicator,  suggesting that  the collected vibration signals have good
potential for firmness prediction. 

3.4    Mango firmness prediction using PLSR
Table  3  shows  the  results  of  the  PLSR  model  combined  with

different  signal  preprocessing  methods  for  predicting  mango
firmness on different full-variable datasets of vibration signals.
 
 

Table 3    Results of PLSR models combined with different
preprocessing methods in different datasets

Dataset Preprocess LV R2
c

RMSEC/
N∙mm−1 R2

P
RMSEP/
N∙mm−1 RPDP

Time-domain
signal

Raw 6 0.80 0.57 0.75 0.69 2.04
MAS 7 0.81 0.54 0.76 0.68 2.07
MSC 5 0.81 0.55 0.74 0.70 2.03
SNV 4 0.74 0.65 0.73 0.73 1.95
SG 4 0.79 0.56 0.74 0.71 1.99

Frequency-
domain signal

Raw 6 0.83 0.52 0.77 0.67 2.12
MAS 7 0.85 0.50 0.78 0.66 2.16
MSC 5 0.82 0.54 0.76 0.68 2.07
SNV 4 0.74 0.64 0.66 0.81 1.75
SG 4 0.78 0.59 0.71 0.75 1.88

 

R2
P

RPDP

R2
P RPDP

In the vibration time-domain signal modeling, the  , RMSEP,
and    of  the  prediction  model  based  on  the  raw  time-domain
signals  were  0.75,  0.69  N/mm,  and  2.04,  respectively.  The  use  of
preprocessing  methods  MSC,  SNV,  and  SG  did  not  significantly
improve  the  model  performance,  while  the  MAS  preprocessing
method  performed  the  best.  The  ,  RMSEP,  and    of  the
prediction  model  based  on  the  MAS  preprocessed  time-domain
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signals  were  0.76,  0.68  N/mm,  and  2.07,  respectively.  In  the
vibration  frequency-domain  signal  modeling,  the  , RMSEP,  and

 of the prediction model based on the raw frequency-domain
signals were 0.77, 0.67 N/mm, and 2.12, respectively. Similar to the
modeling  results  based  on  the  time-domain  signals,  the  prediction
model  based  on  the  MAS  preprocessed  frequency-domain  signals
performed  optimally,  with  the  ,  RMSEP,  and    of  0.78,
0.66 N/mm, and 2.16, respectively.

Overall,  MAS  preprocessing  can  provide  a  certain  magnitude
of  performance  improvement  in  both  time  and  frequency  domain
signal  modeling  compared  to  the  original  signals,  with  an  average
SNR  improvement  of  19.65  dB  and  22.09  dB  for  all  time  and
frequency  domain  signals,  respectively.  This  is  mainly  due  to  its
suppression of  random noise,  which can reduce the interference of
redundant  information  between  variables  and  enhance  the  trend
interpretability and modeling robustness of the signals. 

3.5    Feature variable selection and validation
The  results  in  the  previous  section  indicated  that  the  PLSR

mango  firmness  prediction  models  based  on  the  vibration  signals
after  MAS preprocessing had better  performance.  On this  basis,  to
further  improve  the  model  performance,  the  CARS  algorithm  was
used to optimize the feature variables of the preprocessed vibration
signals,  and  the  CARS-PLSR  mango  firmness  prediction  models
based on the selected feature variables were constructed.

As shown in Figures 11a and 11b, the CARS algorithm selected
the feature variables that were highly correlated with the firmness of
the mango samples from the vibration time-domain signals and the
frequency-domain  signals,  respectively.  Among  them,  the  number
of selected variables from the time-domain signals was 132, which
were  mainly  distributed  near  the  minimum  wave  valley  and  the
second  wave  peak  of  the  signals,  and  the  number  of  selected
variables  from  the  frequency-domain  signals  was  82,  which  were
mainly  distributed  near  the  second  resonance  peak  and  the  third
resonance peak of the signals. The selected time-domain signal and
frequency-domain signal feature variables were then used as inputs
to build the PLSR mango firmness prediction models, respectively.
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Figure 11    Feature variable selection and prediction results by CARS-PLSR model
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As shown in Figures 11c and 11d, in the vibration time-domain
signal modeling,  the   and RMSEC of  the prediction model were
0.98 and 0.22 N/mm, respectively, and the  , RMSEP, and 
were  0.94,  0.30  N/mm,  and  4.15,  respectively.  Compared  with  the
PLSR  model  based  on  the  full  variables  of  vibration  time-domain
signals,    was  improved  by  0.18, RMSEP  was  reduced  by  0.38
N/mm, and   was improved by 2.08. In the vibration frequency-
domain  signal  modeling,  the    and  RMSEC  of  the  prediction
model were 0.97 and 0.22 N/mm, respectively, and the  , RMSEP,
and   were 0.95, 0.29 N/mm, and 4.20, respectively. Compared
with  the  PLSR  model  based  on  the  full  variables  of  vibration
frequency-domain signals,   was  improved by 0.17, RMSEP was

RPDPreduced by 0.37 N/mm, and   was improved by 2.04.
The  results  show  that  the  CARS  algorithm  can  effectively

eliminate  redundant  variables  and  noise  information,  retain  the
feature  variables  that  are  highly  correlated  with  the  firmness  of
mango,  improve  the  prediction  accuracy  and  robustness  of  the
models, as well as reduce the input dimension, which is helpful for
the rapid deployment of the model and practical application.

R2
P

R2
P

Comparing  the  results  of  fruit  firmness  detection  in  this  study
with  the  data  published  in  the  literature  using  acoustic  vibration
detection technology, the best result ( =0.95) obtained for mango
firmness in this study was similar to the result ( =0.951) for peach
reported  by  Chen  et  al.[32],  and  was  slightly  lower  than  the  result
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( =0.956) for kiwifruit reported by Nouri et al.[2]. However, it was
higher than the result ( =0.841) for kiwifruit reported by Pourkhak
et  al.[16],  the  result  ( =0.951)  for  pear  reported  by  Zhang  et  al.[17],
and  the  result  ( =0.832)  for  pear  reported  by  Ding  et  al.[33].  In
summary,  these  comparisons  demonstrate  that  high-precision
prediction  of  mango  firmness  can  be  achieved  using  vibration
signals  collected  by  the  pneumatic-electromagnetic-driven  impact
device, in combination with the CARS-PLSR modeling approach. 

4    Conclusions
This  study  designed  a  nondestructive  pneumatic-

electromagnetic-driven  impact  device  based  on  acoustic  vibration
technology for  fruit  firmness  detection with  the  same impact  force
control  for  different-sized  fruit.  The  innovative  combination  of
pneumatic  control  and electromagnetic  drive  for  the  impact  device
with  an  embedded  accelerometer  can  effectively  address  the
influence of fruit size and improve prediction performance.

R2
P RPDP

This  study  collected  the  vibration  response  signals  and
reference firmness values of 156 green mangoes at different storage
periods, and effective vibration signals were subsequently selected.
The  correlation  between  mango  reference  firmness  and  vibration
signal  features  was  then  analyzed.  Based  on  this  analysis,  a
prediction model  for  mango firmness was developed using CARS-
PLSR.  The  results  indicated  that  the  mango  firmness  prediction
model  based  on  the  vibration  frequency-domain  signals  had  the
optimal  performance,  and  the  ,  RMSEP,  and  the    of  the
model were 0.95, 0.29 N/mm, and 4.20, respectively.

In  summary,  the  detection  device  designed  in  this  study
demonstrated  high  accuracy  in  predicting  mango  firmness,
providing technical support for the quality detection and sorting of
postharvest  mangoes.  Future  research  directions  include  further
optimizing  the  detection  device  and  applying  this  technology  to
other fruits, aiming to advance the application of acoustic vibration
technology in the nondestructive detection of fruit quality. 
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