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Abstract: In  greenhouse  environments,  using  automated  machines  for  tomato  harvesting  to  reduce  labor  consumption  is  a
future development trend. Accurate and effective visual recognition is essential to accomplish harvesting tasks. However, most
current studies use various models to gain harvesting information in multiple steps, resulting in heavy calculation costs, poor
real-time availability, and weak recognition precision. In this study, an improved YOLOv8np-RCW end-to-end model based on
YOLOv8n  pose  is  proposed  to  simultaneously  detect  tomato  bunches,  maturity,  and  keypoints  using  a  decoupled-head
structure.  The  model  integrates  a  ResNet-enhanced  RepVGG architecture  for  a  balance  of  accuracy  and  speed,  employs  the
CARAFE upsampling algorithm for a larger receptive field with lightweight design, and optimizes the loss function with WIoU
loss to enhance bounding box prediction, maturity detection, and keypoint extraction. Experimental results indicate that mAP50
of YOLOv8np-RCW model for bounding box and keypoints is 87.3% and 86.8% respectively, which is 6.2% and 5.5% higher
than YOLOv8n pose model. Completing the tasks of bunch detection, maturity assessment, and keypoint localization requires
only 9.8 ms. Euclidean distance error is less than 20 pixels in detecting keypoints. Based on this model, a method is proposed to
quickly determine the orientation of tomato bunches using geometric cross-product and cross-multiplication calculations from
keypoint  2D  information,  providing  guidance  for  the  motion  planning  of  the  end-effector.  In  field  experiments,  the  robot
achieved a harvesting success rate of 68%, with an average time of 10.8366 seconds per tomato bunch.
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 1    Introduction
As a widely consumed vegetable, tomatoes are in great demand

globally[1,2]. To meet people’s daily needs and facilitate management
and  production,  most  tomatoes  are  grown  in  greenhouse  mode.
Open-field  farming  is  slowly  being  supplanted  by  facility
agriculture[3]. However, with fewer people working in farming, there
is  a  shortage  in  agriculture  labor  force  resources[4,5].  Manual
harvesting  of  tomatoes  in  greenhouses  is  inefficient  and  highly
expensive[6,7].  Therefore,  machine  technology  is  essential  to  solve
these concerns[8].

In the working process of agricultural harvesting machine, deep
learning  technology  has  been  applied  to  obtain  fruit  information.
Xiong  et  al.[9]  determined  obstacles  around  strawberries  with  3D
point  cloud  information  and  the  surrounding  environment  to
calculate the harvesting path. Kim et al.[10] obtained tomato maturity

and  6D  pose  estimation  through  Deep-ToMaToS  model  combined
with  transformation  loss.  Li  et  al.[11]  improved  obscured  grape
bunches  recognition  accuracy  via  improved  Yolov4.  Li  et  al.[12]

identified  the  maturity  of  tomatoes  via  modified  YOLOv5s,  then
carried  out  distortion  removal  and  the  detected  region  of  interest
(ROI)  clipping  on  the  obtained  images  to  the  position.  Zhang  et
al.[13] conducted tomato bunch and occlusion detection by using the
Yolov5 model and identified the maturity and pose of tomatoes by
using the improved model.

In addition to detecting target fruits, the key of fruit harvesting
is  to  accurately  determine  the  location  of  the  harvesting  point.
People have also carried out further research to solve the harvesting
point location problem. For example, Yoshida et al.[14] obtained the
cherry  tomato  peduncle  point  cloud,  and  after  voxel  filtering  and
clustering generation, used the Region Growing method to create a
directed acyclic graph, comparing two image processing methods to
find  the  longest  path,  then  selected  the  one  with  a  small
Mahalanobis  distance  as  the  appropriate  harvesting  point  on  the
peduncle. Qi et al.[15] detected the main stem of litchi using modified
YOLOv5,  extracted  the  ROI  from  the  main  stem,  segmented  the
ROI  by  PSPNet  model,  and  combined  it  with  traditional  image
processing  methods  to  obtain  harvesting  points  on  the  original
image.  Rong et  al.[16] segmented the fruits,  calyxes,  and pedicles in
tomato  images  via  modified  Swin  Transformer  V2,  and  integrated
multiple image processing algorithms to generate harvesting points
located at tomato pedicles in steps.

The  aforementioned  research  methods  have  achieved
significant progress in harvesting point localization but also exhibit
certain limitations. These approaches typically divide fruit detection
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and  harvesting  point  extraction  into  multiple  steps,  with  the
determination  of  harvesting  points  relying  on  additional  image
processing  operations.  In  some  existing  systems,  fruit  detection,
maturity classification, and harvesting point extraction are executed
sequentially using different models or separate processing pipelines.
This modular design leads to increased computational  load,  slower
response  times,  and  potential  inconsistencies  between  intermediate
outputs.  In  particular,  cumulative  errors  may  propagate  from  the
fruit  detection  stage  to  the  final  harvesting  point  localization,
significantly  reducing  overall  accuracy.  This  stepwise  processing
not  only  increases  computation  time  but  also  introduces  potential
errors  and  cumulative  inaccuracies,  thereby  affecting  the  overall
efficiency and precision of the system. To address these limitations,
there  is  a  critical  need  for  an  integrated  framework  that  unifies
multiple  perception tasks in  a  single-stage model.  Such integration
minimizes  latency  and  error  accumulation  while  improving
robustness, which is crucial for real-time deployment in greenhouse
environments.  Therefore,  to  accelerate  detection  speed  while
enhancing  the  accuracy  of  harvesting  point  localization,  it  is
particularly  necessary  to  develop  an  efficient  model  that  directly
integrates fruit detection and harvesting point extraction. Fu et al.[17]

detected  banana  bundle  and  stalk  as  two  targets  via  YOLOv4
network.  The  detection  accuracy  for  banana  bundles  and  stalks
reached  99.55%  and  87.82%,  respectively,  with  an  average
processing time of 44.96 ms. Because of the obvious characteristics
of the banana stalk, the center of the recognized peduncle image can
be  used  as  the  harvesting  point.  However,  it  does  not  apply  to  the
extraction of fruit harvesting points with curving peduncles. Zhu et
al.[18] identified grape bunches and fruit peduncles by Yolov5s-CFD
model.  The  mAP50  of  grape  bunches  and  fruit  peduncles  were
96.8% and 72.9% respectively, and the average detection time was
28.9  ms.  The  bending  condition  was  determined  according  to  the
ratio  of  the  length  to  the  width  of  the  recognition  fruit  peduncle
image.  When the grape peduncle was upright  without bending,  the
midpoint of its image was designated as the picking point. In cases
where the peduncle was bent,  the harvesting point  was determined
as the location with the highest gray value directly above the image
center.  However,  this  method  of  point  extraction  depends  on  the
gray  value  and  geometric  shape  of  the  image.  When  the
environmental  light  changes  (such  as  shadow,  reflection,  etc.),  the
gray value will change, consequently impacting the precision of the
harvesting  point.  Chen  et  al.[19]  introduced  the  enhanced  YOLOv8-
GP  model  for  concurrently  detecting  grapes  with  their  harvesting
points.  Harvesting  points  were  marked  exactly  at  the  center  of  the
peduncle,  but  in  cases  where  peduncles  were  curved,  obscured,  or
growing in clusters, it was difficult to determine the ‘true center’ of
the peduncle, resulting in inaccurate marking and thus affecting the
quality of the model training.

Summarizing  prior  studies  on  fruit  harvesting  information,
certain issues still  require resolution: Firstly, the majority of visual
inspection methods focus on only one of the tasks of fruit detection,
occlusion, bunch maturity, or harvesting point detection. Secondly,
determination of harvesting points location is a complicated process
using a multi-step detection method. Finally, although general fruits
are  well  detected  due to  their  obvious  characteristics,  the  accuracy
of picking point location needs to be further improved.

Cherry tomatoes in greenhouses are predominantly harvested in
bunches.  This  paper  proposes  a  method  leveraging  keypoint
detection technology, where the end-effector moves linearly from a
keypoint  at  the  base  of  the  tomato  bunch  to  the  cutting  point  for
harvesting.  This  approach  aims  to  minimize  picking  damage.  To

efficiently accomplish the task of tomato bunch harvesting, this paper
presents  an  efficient  YOLOv8np-RCW  model  that  performs  both
object detection and keypoint detection, enabling the recognition of
tomato bunches, fruit bunch maturity, and picking points. Keypoint
information  is  extracted  for  the  tomato  bunches  detected  as  ripe,
successfully  obtaining  the  fruit  bunch’s  pose.  The  motion  path  of
the end effector is then planned to facilitate effective harvesting.

 2    Methodologies
 2.1    Data acquisition and processing

Cherry  tomato  images  were  captured  in  the  greenhouse  of
Hongfu  Industrial  Park  located  in  Daxing,  Beijing.  Cherry  tomato
was  planted  and  managed  following  Dutch  standards,  with  plants
evenly  spaced  and  pruned  regularly.  The  Realsense  D435i  camera
was  bracketed  on  the  robotic  arm  end,  placed  at  a  horizontal
distance of  500-600 mm from the tomatoes and a  vertical  distance
of  1200-1500  mm  from  the  ground,  shown  in  Figure  1.  Data
collection  was  carried  out  at  three  distinct  time  periods  to  ensure
variability  in  lighting  conditions:  Morning  (08:00-10:00):  Natural
light  entering  the  greenhouse  with  mild  shadowing;  Noon  (12:00-
13:00): Strong sunlight with potential  highlights and reflections on
fruit  surfaces;  Afternoon  (15:00-17:00):  Soft  indirect  light  with
more  stable  illumination  and  fewer  shadows.  Throughout  all
sessions,  the  ambient  lighting  relied  primarily  on  natural  sunlight
filtered through the greenhouse roof, with no artificial lighting used.
This  setup  simulated  real-world  conditions  for  robot  operation  in
agricultural environments.
 
 

Distance

camera-tomato

Figure 1    Image data acquisition scene
 

Images are labeled using Labelme, and the process of labeling
the  dataset  is  carried  out  according  to  the  following  principles,  as
shown in Figure 2: 1) Bounding Boxes: Each box enclosed a tomato
bunch  and  included  a  small  segment  of  the  main  stem  that  is
physically  connected  to  the  fruit  peduncle.  This  inclusion  ensures
sufficient  visual  cues  for  harvesting  point  detection;  2)  Maturity
Classification: Tomato bunches are classified into two categories—
ripe  and  unripe.  A  bunch  is  labeled  as  ripe  if  it  contains  no  more
than  two  green  fruits,  based  on  visual  inspection  and  practical
picking  thresholds  used  in  greenhouse  farming.  If  the  number  of
green fruits exceeds two, the bunch is labeled unripe. This threshold
is  widely  adopted  by  greenhouse  workers  to  determine  harvesting
readiness;  3)  Two  keypoints  are  defined:  point  a,  precisely
positioned at the junction between fruit  peduncles and main stems,
and  point b,  located  at  the  centroid  of  the  bottommost  fruit  in  the
bunch,  which  serves  as  a  reference  for  determining  the  vertical
orientation and motion planning. Label format is Equation (1):

LabelRipe-point(class, xgt, ygt, wgt, hgt, xpa, ypa, visiblepa, . . . ,
xpb, ypb, visiblepb) (1)

xgt,ygt

In  Equation  (1),  class  means  the  maturity  classification  of
tomato  bunches;  ( )  means  bounding  box  center  coordinates;
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wgt,hgt xpa,ypa

xpb,ypb

 means  the  width  and  height  of  the  bounding  box;  ( ),
( )  means  the  coordinates  of  points  a  and  b,  respectively;

νisiblepa νisiblepb,    represents  the  visibility  state  of  points a  and b,
respectively.

 
 

Unriped

Riped

Point a

Point b

Figure 2    Image annotation interface
 

The dataset  comprises 756 labeled images which are split  into
the training set (604 images), validation set (76 images), and test set
(76  images)  at  a  ratio  of  8:1:1.  To  enhance  dataset  diversity  and
improve  the  model’s  generalization  capability,  data  augmentation
techniques  are  applied  to  the  training  process.  Details  of  these
augmentation methods can be found in Table 1.
 2.2    YOLOv8 network structure

Compared with the algorithm based on region proposal, the one-
stage algorithm model  is  more compatible  with real-time detection
in  complex  environments[20,21].  The  YOLO  (you  only  look  once)
algorithm is noted for the effective one-stage detection method[22–24].

YOLOv8  model  is  composed  of  five  variables,  which  share  a
consensus  network  structure  across  models,  as  shown  in Figure  3.
Decreasing the depth and width of the network can shorten training
and  detection  times.  YOLOv8n  network  is  selected  to  satisfy  the
real-time detection requirements for tomatoes. An additional branch
head is added at the head layer for keypoint detection, as shown in
Figure 4.
 
 

Table 1    Data augmentation parameter settings
Dataset Scale Mosaic Translation Hue, saturation, value (HSV)

Dataset_A 0.5 1.0 0.1 hsv_h:0.015, hsv_s:0.7, hsv_v:0.4
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Conv2d

Conv2d

Conv2d

head (box)

head (cls)

head (pose)

Conv

Conv

Conv

Conv

Conv

Conv

YOLOv8 pose (Head)

Box

Cls

Pose

Figure 4    YOLOv8 pose head model structure

　248 　 October, 2025 Int J Agric & Biol Eng　　　Open Access at https://www.ijabe.org Vol. 18 No. 5　

https://www.ijabe.org


 2.3    YOLOv8 pose improvement
YOLOv8 demonstrates  remarkable  overall  behavior;  however,

harvesting  tomato  bunches  requires  high  precision  in  keypoint
detection.  Therefore,  the  RepVGG is  introduced  in  the  Backbone,
the CARAFE is used in the Neck, and the IoU metrics are replaced
with WIoU. The improved network framework is shown in Figure 5.
RepVGG  is  a  straightforward  and  effective  CNN  architecture,
consisting only of conv and ReLU. Additionally, the model exhibits
a  multi-branching  structure  during  training  stages,  while
maintaining simplicity during inference stages by re-parameterizing
into a single-branch structure, as shown in Figure 6. CARAFE is a
method for  feature fusion,  which can effectively utilize  the feature
information  after  upsampling  and  fuse  with  the  original  feature.
Consequently, the expression capacity and transmission efficacy of
features  can  be  enhanced.  WIoU  is  a  dynamic  non-monotonic
focusing  mechanism  that  presents  an  intelligent  gradient  gain
assignment  method,  thus  diminishing  competitive  advantages
conferred by high-quality bounding boxes, allowing WIoU to focus
on  average-quality  bounding  boxes  and  improving  the  detector’s
overall performance.
  

Conv

Conv

Conv

RepVGG RepVGGC2f RepVGGC2f RepVGGC2f RepVGGC2f

C2f

C2f

C2f

C2f

Contact

Contact

Contact

Contact

CARAFE

CARAFE

H
ea
d

Box

Cls

Pose

Figure 5    Improved YOLOv8 pose network structure
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 2.3.1    RepVGG
Many  complex  convolutional  neural  networks  (CNN)  achieve

higher accuracy than simpler ones; however, their disadvantages are
outstanding.  These  increase  the  difficulty  of  implementation  and
customization,  and  bring  slow  inference,  low  memory  utilization,
high  memory  access  costs,  and  limited  compatibility  between

various devices. RepVGG brings an ideal balance between accuracy
and  speed  compared  to  existing  technologies[25].  Inspired  by
ResNet[26],  the architecture employs both identity and 1×1 branches
to  explicitly  construct  a  shortcut  branch.  To  ensure  most  members
remain  shallow  or  simple,  ResNet  identity  and  a  1×1  branch  are
adopted. By stacking multiple blocks, a model suitable for training
is constructed.

The  transformation  between  the  multi-branch  structure  during
training  and  the  plain  structure  in  inference  is  realized  through
architectural  re-parameterization.  For  instance,  an  identity  branch
can  be  regarded  as  a  reduced  form  of  a  1×1  conv,  which  can  be
further simplified into a reduced form of a 3×3 conv. This enables
the construction of a unified 3×3 kernel by merging the parameters
of  the  initial  3×3  kernel,  identity  branch,  1×1  branch,  and  Batch
Normalization  (BN)[27]  layer.  Specifically,  the  network  architecture
is  integrated  with  a  corresponding  group  of  parameters  during
training.  At  inference  time,  the  trained blocks  are  converted  into  a
unified 3×3 conv, thus obtaining a 3×3 kernel, two 1×1 kernels, and
three  bias  vectors.  The  ultimate  bias  is  computed  by  summing  the
three  bias  vectors,  while  the  eventual  3×3  kernel  is  derived  by
incorporating the 1×1 kernel to the center of the 3×3 kernel. This is
trivially achieved via zero-padding the 1×1 kernel  to 3×3 and then
summing all three kernels, as illustrated in Figure 7. Consequently,
the  RepVGG  model  at  inference  time  consists  of  one  type  of
operator: ReLU following conv. This design enables achievement of
high  operating  speed  on  generic  computing  devices  such  as  GPUs
for efficient testing and deployment.
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Figure 7    RepVGG module of the parametric structure
 

 2.3.2    CARAFE
Feature  upsampling  is  a  crucial  structure  in  many  network

architectures,  with  the  composition  playing  a  pivotal  role  in
prediction  performance[28].  In  YOLOv8,  an  upsampling  method
utilized  is  nearest-neighbor  interpolation,  which  replicates  the
nearest  pixel  values,  resulting  in  an  upsampling  image  that  lacks
smooth gradient transitions, which in turn results in missing image
detail.  During the  keypoint  detection task,  insufficient  precision of
details  caused  by  nearest-neighbor  interpolation  can  adversely
impact detection performance, thus the efficient CARAFE structure
is introduced to enhance the upsampling algorithm in YOLOv8.
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CARAFE  offers  a  wide  receptive  field  and  dynamically
produces fitness kernels in response to incoming information rather
than  importing  significant  computational  overhead  or  additional
parameters,  making  it  lightweight  while  effectively  leveraging
surrounding  information[28].  CARAFE  comprises  two  components:
A  kernel  prediction  and  a  content-aware  reassembly  module,
functioning  through  upsampling  kernel  prediction  and  feature

χ′ χ

σ

reassembly.  The  process  involves  two  main  stages:  First,  a
reassembly  kernel  is  generated  based  on  the  content  at  each  target
location.  Second,  the  features  are  recombined  with  the  predicted
ones.  CARAFE  will  generate  a  feature  map    based  on    with
dimensions  C×H×W,  using  an  upsample  ratio  ,  as  shown  in
Figure 8.
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Figure 8    CARAFE’s overall framework
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In the first stage, feature channels are compressed by the kernel
prediction  module  via  the  conv  layer  to  decrease  parameters  and
improve  feature  extraction  efficiency.  Compressed  images  of
dimensions  Cm×H×W  are  encoded  employing  a  conv  layer  with
encoder kernel, output a reassembled kernel of dimensions   ×
H×W,  then  the  generated    ×    kernel  is  normalized  with
softmax.

Wl′ kup kup

χl kup

In  the  second  stage,  for  reassembled  kernel  ( × ),  the
content-aware  reassembly  module  reorganizes  features  over  the
selective area. Under the action of a reassembled kernel, each point
in the N ( ,  ) area has a stronger contribution to the upsampled
area on account of the content of the feature. More attention is paid
to pertinent points in the selective area, improving the semantics of
the reassembled feature map.
 2.3.3    WIoU

Loss  calculation  in  YOLOv8  pose  comprises  classification,
bounding  boxes,  and  keypoints  for  the  decoupled-head  structure.
Bounding  box  loss  influences  keypoint  predictions  because  the
target region is delineated by bounding boxes, within which precise
regression  of  keypoints  is  performed.  Therefore,  if  the  bounding
box prediction is inaccurate, the model may search for keypoints in
the  incorrect  region,  resulting  in  inaccurate  keypoint  predictions.
While the bounding box and keypoint loss are computed separately,
they are jointly optimized. If the weight of the bounding box loss is
excessively  high,  it  will  suppress  keypoint  regression.  Bounding
box loss in YOLOv8npose is computed via CIoU. However,  CIoU
does not capture practical variations between width and height,  for
training images unavoidably contain low-quality data.  Variables of
distance  and  length-width  ratio  aggravate  penalties  on  low-quality
data, diminishing the model’s ability to generalize. To minimize the
above impairments, WIoU is drawn to optimize the network[29].

The  prediction  process  of  CIoU  and  WIoU  loss  between
different  iterations  is  shown  in  Figure  9.  The  orange  area  is  the
ground truth, and the blue area is the initial detection area. Areas of
green  and  red  are  the  forecasting  processes  of  CIoU  and  WIoU,

respectively.  CIoU’s  width  and  height  cannot  be  simultaneously
increased or decreased, whereas WIoU focuses on the differences in
width and height, as shown in Figure 9. During the early iterations,
WIoU  achieves  faster  shape  matching  of  the  bounding  area.  With
further iterations, WIoU effectively reduces the area of non-overlap
between  the  predicted  and  the  ground  truth  while  optimizing  the
shape of the borders, allowing the predicted area to converge toward
the  ground  truth  more  rapidly  than  CIoU.  In  later  stages,  WIoU
demonstrates  superior  performance.  Compared  to  CIoU,  the
bounding area predictions under WIoU align almost  perfectly with
the ground truth, achieving significantly higher prediction accuracy.
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Figure 9    Forecasting process for CIoU and WIoU
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WIoU regression loss is shown in Figure 10. The green box is
the prediction box, whose center point is  ; width and height are
w  and h,  respectively.  The  yellow  box  is  the  ground  truth,  whose
center  point  is  ;  width  and  height  are    and  ,
respectively.  The  red  box  is  the  minimum vertical  rectangular  box
of the predicted and ground truth; the width and height are   and

, respectively. The blue box is the overlap between the predicted
and  ground  truth;  width  and  height  are    and  ,  respectively.
WIoU losses are calculated as follows in Equations (2-4):

LIoU = 1− IoU = 1− WiHi

wh+wgthgt −WiHi

(2)
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Figure 10    WIoU loss for bounding box regression
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β
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(4)
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LWIoU β
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In the Equation (4),   represents the intersection over union
(IoU)  loss;    represents  WIoU  loss;    represents  the  outlier
factor;  represents the gradient gain;   and   are hyper-parameters
controlling  the  mapping  between    and  ;  the  superscripted  *
indicates detachment from the computation graph.
 2.4    Tomato bunch pose acquisition

The improved keypoint algorithm enables precise acquisition of
tomato bunch information, providing technical support for efficient
harvesting.  When  extracting  and  identifying  the  keypoint
information  of  mature  tomato  bunches,  as  mentioned  earlier,  the
keypoints include two points, namely point a and point b, where the
line connecting these two points represents the growth orientation of
the tomato bunch. This information can guide the motion path of the
end-effector and optimize the harvesting operation. However, due to
the  natural  growth  of  tomato  bunches,  their  orientations  vary,  and
there are different degrees of inclination, as shown in Figure 11a. If
these  inclination  angles  are  not  considered,  it  may  lead  to
unsuccessful grasping or fruit damage caused by angular deviations.
Therefore, the end-effector must adjust in real time according to the
inclination of the tomato bunch.

To  determine  the  inclination  angle  of  the  tomato  bunch,  the
angle between the line connecting the two keypoints and the Y-axis
of the 2D image pixel coordinate system is calculated. Using the 2D
pixel  coordinates  of  the  keypoints,  the  vector  between  the  two
points is computed, and the inclination angle of the tomato bunch is
obtained  using  the  vector  angle  formula,  as  illustrated  in  the
corresponding  Equation  (5).  This  angle  not  only  provides  crucial
parameters  for  adjusting  the  end-effector  but  also  helps  predict
potential risks during the harvesting process.
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Figure 11    Tomato bunch pose calculation
 

In  addition  to  the  inclination  angle,  the  direction  of  the  angle
must  also  be  determined  to  ensure  that  the  end-effector  can  be
adjusted to the correct working orientation, as shown in Figure 11b.
In  a  2D  plane,  the  relative  direction  can  be  calculated  using  the
cross-product  of  two  vectors,  thereby  determining  the  direction  of
the  adjustment  angle,  as  illustrated  in  the  corresponding  Equation
(6).  The  cross-product  formula  is  simple  and  efficient,  making  it
suitable for real-time applications in automated control systems.

angle = cos−1

Å
v⃗ab · v⃗Y

|⃗vab| |⃗vY |

ã
(5)

cross product = xabyY − yabxY (6)

v⃗ab v⃗Y

v⃗ab = (xab,yab) v⃗Y = (xY ,yY )
v⃗Y

v⃗ab

where,    is  a  vector  from  point a  to  point b,    is  a  unit  vector
parallel  to  the  Y-axis,  ,  .  If  the  cross
product>0,  it  indicates  that    is  in  the  counterclockwise  direction
relative to  . The end-effector needs to rotate counterclockwise by
the corresponding angle.

 3    Experiments and results
 3.1    Experimental details

Model  training  hardware  configuration:  Windows  10  Pro  OS,
16  GB  RAM,  11th  Gen  Intel(R)  Core(TM)  i5-11400@2.60  GHz
NVIDIA  GeForce  RTX  3060.  The  coding  language  is  Python
3.7.16, and the open-source learning framework is PyTorch 1.11.0.
In addition, CUDA 11.3 is updated to boost the system’s computing
performance  with  16  images  trained  in  each  epoch.  AdamW
optimizer is utilized, setting initial and termination learning rates to
0.01.  The  weight  decay  coefficient  is  0.0005,  and  the  momentum
parameter reaches 0.937. The training process is configured for 300
epochs.  However,  to  avoid  overfitting  and  reduce  unnecessary
computation,  an  early  stopping  strategy  is  applied  based  on  the
validation  loss.  If  the  validation  loss  does  not  improve  for  20
consecutive  epochs,  the  training  is  stopped  automatically.  The
model weights corresponding to the lowest validation loss are saved
as the final model for evaluation.

　October, 2025 Ai X Y, et al.　YOLOv8np-RCW: A multi-task deep learning model for tomato harvesting robot Vol. 18 No. 5 　 251　



 3.2    Evaluation indicators
To assess the precision of tomatoes multi-task assay, Precision

(P),  Recall  (R),  Average  Precision  (AP),  and  mean  Average
Precision  (mAP)  are  used.  mAP  indicator  is  used  to  evaluate  the
model  performance.  Parameters  and  giga  floating-point  operations
per  second  (Gflops)  are  used  to  assess  the  complexity  of  models.
The time indicator is measured by the predicted time of each image.
The definition is shown in Equations (7-10):

P =
TP

TP + FP (7)

R =
TP

TP + FN (8)

AP =
w 1

0
P(R)dR (9)

mAP = 1
2

2∑
i=1

APi (10)

where, P(R) represents the P corresponding to R.
mAP  of  keypoint  detection  is  calculated  based  on  object

keypoint  similarity  (OKS),  which  computes  the  matching  degree
between  predicted  and  ground  truth.  The  definition  is  shown  in
Equation (11):

OKS =

∑
i

exp
Å
− d2

i

2s2k2
i

ã
.1∑

i

1
(11)

di

ki

where,   is the Euclidean distance between the predicted keypoint
and  ground  truth;  s  represents  the  scale  factor;    represents  the
weight  factor  of  the  keypoint.  When  OKS  exceeds  a  certain
threshold,  the  prediction  is  considered  correct.  Then  AP and  mAP
are calculated by the formula of target detection.
 3.3    Ablation experiment

To comprehensively evaluate the performance contributions of
each module in the proposed model, this paper conducts systematic
ablation  experiments  from  the  following  three  aspects:  (1)
Comparison of the backbone network structure, (2) improvement of
the  upsampling  module,  and  (3)  replacement  of  the  bounding  box
regression loss function.

Firstly, to verify the effectiveness of RepVGG as the backbone
network, under the same training settings, comparative experiments
are  conducted  with  various  mainstream  lightweight  network
structures  (including  MobileNetV2,  EfficientNetV2,  and
ShuffleNetV2).  The  experimental  results  are  listed  in  Table  2  as
follows.  Secondly,  in  order  to  evaluate  the  influence  of  different
regression  loss  functions  on  the  model  performance,  CIoU  is
replaced  with  WIoU,  DIoU,  SIoU,  and  ShapeIoU  respectively  for
comparative  experiments,  as  listed  in  Table  3.  Finally,  under  the
YOLOv8n-pose  framework,  this  paper  conducts  combination
experiments  on  each  enhancement  module  (RepVGG  module  R,
CARAFE upsampling module C, and WIoU loss function W),  and
the corresponding relationship of algorithm combinations is listed in
Table  4.  Finally,  the  model  formed  by  integrating  the  three
improvements  is  named  YOLOv8np-RCW.  The  performance
comparison results of each combined model are listed in Table 5.

The  RepVGG  backbone  significantly  improved  detection
performance while maintaining a relatively small model size of only
3.08  million  parameters,  as  listed  in  Table  2.  Compared  to  the
original CSPDarkNet backbone, the precision, recall, and mAP50 of

the  bounding  box  detection  increased  by  1.3%,  5.8%,  and  2.6%,
respectively,  while  the  precision,  recall,  and  mAP50  of  keypoint
detection  improved  by  1.7%,  4.7%,  and  3.2%.  In  addition,  the
inference  time  was  reduced  from 9.5  ms  to  8.2  ms,  representing  a
13.7%  improvement  in  real-time  performance.  Although
EfficientNetV2  achieved  higher  detection  accuracy,  with  mAP50
values  of  89.5%  for  bounding  boxes  and  90.4%  for  keypoints,  its
model  complexity  is  significantly  higher,  with  21.8  million
parameters,  55.3  Gflops,  and  an  inference  time  of  28.2  ms.  Such
computational demands are unsuitable for deployment on resource-
constrained  agricultural  robotic  platforms.  In  contrast,  RepVGG
provides  a  more  favorable  trade-off  among  detection  accuracy,
inference  speed,  and  model  complexity,  making  it  the  optimal
backbone choice for the proposed model.
  

Table 2    Comparison of lightweight backbone networks

Name
Box Pose

Parameters/
M Gflops Time/msP/

%
R/
%

mAP50/
%

P/
%

R/
%

mAP50/
%

CSPDarkNet
(Initial) 80.3 73.5 81.1 81.3 75.3 81.3 3.08 8.3 9.5

MobileNetV2 86.3 78.4 85.8 85.1 77.2 85.1 3.83 10.3 10.2
EfficientNetV2 87.4 84.4 89.5 88.8 85.3 90.4 21.8 55.3 28.2
ShuffleNetV2 78.3 85.2 84.4 78.7 85.8 83.9 2.86 7.7 9.9
RepVGG 81.6 79.3 83.7 83.0 80.0 84.5 3.08 8.3 8.2

 

  
Table 3    Comparison of regression loss functions

Name
Box Pose

Parameters/
M Gflops Time/

msP/
%

R/
%

mAP50/
%

P/
%

R/
%

mAP50/
%

CIoU
(Initial) 80.3 73.5 81.1 81.3 75.3 81.3 3.08 8.3 9.5

DIoU 72.1 85.1 84.9 72.9 86.2 85.2 3.08 8.3 6.2
SIoU 81.0 75.3 83.6 82.0 76.2 83.3 3.08 8.3 6.5
WIoU 89.0 78.0 86.1 87.6 76.6 85.1 3.08 8.3 9.1

ShapeIoU 86.5 81.5 86.3 85.3 80.3 85.2 3.08 8.3 6.1
 

  
Table 4    Algorithm improvement and corresponding name

Initial Improvement Name
YOLOv8n pose RepVGG YOLOv8np-R
YOLOv8n pose CARAFE YOLOv8np-C
YOLOv8n pose WIoU YOLOv8np-W
YOLOv8n pose RepVGG+CARAFE+WIoU YOLOv8np-RCW

 

  
Table 5    Comparison of algorithmic indicators

Name
Box Pose

Parameters/
M Gflops Time/msP/

%
R/
%

mAP50/
%

P/
%

R/
%

mAP50/
%

YOLOv8n pose 80.3 73.5 81.1 81.3 75.3 81.3 3.08 8.3 9.5
YOLOv8np-R 81.6 79.3 83.7 83.0 80.0 84.5 3.08 8.3 8.2
YOLOv8np-C 83.8 85.3 86.4 82.9 86.2 86.3 3.22 8.6 11.3
YOLOv8np-W 89.0 78.0 86.1 87.6 76.6 85.1 3.08 8.3 9.1
YOLOv8np-

RCW 84.1 86.3 87.3 83.6 85.9 86.8 3.22 8.6 9.8

 

As listed in Table 3,  the WIoU loss function exhibited overall
superiority in both bounding box and keypoint detection tasks, with
mAP50  values  reaching  86.1%  and  85.1%,  respectively,
significantly  outperforming  CIoU,  DIoU,  and  SIoU.  Compared  to
CIoU,  WIoU  not  only  provided  notable  accuracy  gains  but  also
reduced inference time from 9.5 ms to 9.1 ms, without any increase
in  model  parameters  or  computational  cost,  thus  achieving  a
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balanced improvement in efficiency and precision. While ShapeIoU
achieved relatively high recall, with R values of 81.5% for bounding
boxes  and  80.3%  for  keypoints,  its  overall  detection  accuracy
remained lower than that of WIoU. Therefore, WIoU is better suited
for  complex  scenarios  involving  occlusion  and  variation  in  tomato
bunch  shapes,  enhancing  both  model  robustness  and  localization
accuracy.

As  demonstrated  in  Table  5,  the  YOLOv8np-R  model,  which
incorporates  only  the  RepVGG  backbone,  improved  the  detection
precision for both bounding boxes and keypoints while reducing the
inference  time  to  8.2  ms,  making  it  well-suited  for  applications
requiring  real-time  performance.  The  YOLOv8np-C  model,  which
integrates  the  CARAFE  upsampling  module,  achieved  the  highest
recall  rates—85.3%  for  bounding  boxes  and  86.2%  for
keypoints—by  enhancing  local  feature  extraction,  making  it  more
effective  in  greenhouse  environments  with  significant  occlusion.

The  YOLOv8np-W  model,  which  uses  the  WIoU  loss  function,
achieved steady gains  in  detection accuracy without  increasing the
model’s  complexity,  demonstrating  superior  bounding  box
regression  performance.  The  final  integrated  model,  YOLOv8np-
RCW,  which  combines  RepVGG,  CARAFE,  and  WIoU,  achieved
the best overall performance. Compared to the baseline, it improved
the  precision,  recall,  and  mAP50  of  bounding  box  detection  by
3.8%,  12.8%,  and  6.2%,  respectively,  and  enhanced  keypoint
detection by 2.3%, 10.6%, and 5.5%. These results demonstrate the
effectiveness  of  the  combined  optimization  strategy  in  improving
both detection accuracy and inference efficiency.

The maturity confusion matrix from the ablation experiments is
shown in Figure 12. The accuracy of YOLOv8np-R, YOLOv8np-C,
YOLOv8np-W,  and  YOLOv8np-RCW  models  in  recognizing
maturity  has  improved  compared  to  YOLOv8n  pose,  with
YOLOv8np-RCW having the fittest maturity category recognition.
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Figure 12    Maturity confusion matrices
 

The bounding box loss curve from the ablation experiments is
shown  in  Figure  13.  The  YOLOv8np-W  and  YOLOv8np-RCW
converge  faster  due  to  the  addition of  WIoU,  which speeds  up the
convergence of the original model, and the loss of the YOLOv8np-
RCW model finally converges to 0.482 15, which is 55.76% lower
than  the  YOLOv8n  pose  model.  It  effectively  decreases  the  loss
value and improves the detection performance.
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Figure 13    Box loss curve in ablation experiment
 

 3.4    Comparison of detection performance with other models
To  prove  YOLOv8np-RCW  model’s  comprehensive

performance,  compared  with  other  algorithms  fusing  target
detection  and  keypoint  detection,  the  outcomes  are  presented  in
Figure 14.  Since the parameters,  calculation volume, and detection
time of multi-model fusion are higher than those of a single model,
the  box  mAP50  and  pose  mAP50  of  the  models  are  evaluated  for
comparison.  The  box  mAP50  and  pose  mAP50  of  RTMDet-
RTMPose are 2.9% and 2.8% higher than those of YOLOv8n pose.
The  box  mAP50  and  pose  mAP50  of  Fasterrcnn-RTMPose  are
3.3%  and  2.8%  higher  than  those  of  YOLOv8n  pose,  but  their
detection time is longer than that of YOLOv8n pose. The detection
time  of  YOLOv8np-RCW  and  YOLOv8n  pose  model  is
comparable,  and  the  box  mAP50  and  pose  mAP50  values  are  the
highest;  thus,  comprehensively  considered,  YOLOv8np-RCW  has
the best performance.

To compare the maturity and keypoints classification detection
effects  of  different  algorithms,  experiments  are  conducted  on  the
test  dataset  by  calculating  the  number  of  identified  ripe  tomato
bunches,  unripe  tomato  bunches,  point  a  and  point  b.  When  the
confidence score threshold is 0.5, the result is shown in Figure 15.
YOLOv8np-RCW has the largest total number of detections, among
which the number of maturity and keypoint detections also exceeds
other  models.  To  compare  the  performance  of  YOLOv8np-RCW
and  other  models  in  extracting  two  keypoints  in  detail,  the
difference in pixel distance between the predicted point and ground
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truth on the 2D image is taken as an assessment metric. The average
error is calculated for the coordinates of point a and point b detected
by each  model. Table  4 shows the  average  distance  error  statistics
between  predicted  keypoints  of  the  different  models  and  ground
truth  in X, Y,  and Euclidean directions.  The distribution of  point a
and point b in the X-axis and Y-axis is presented in Figure 16.
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Table  6  shows  that  the  accuracy  of  YOLOv8np-RCW  in
recognizing  the  points  exceeds  that  of  the  other  models.  The
average Euclidean distance errors for the two keypoints are 19.638
pixels  and  14.708  pixels,  with  standard  deviations  of  9.578  pixels
and 8.728 pixels, respectively. This level of precision in locating the
keypoints  makes  it  suitable  for  use  in  tomato  bunch  picking.  As
presented  in  Figure  16,  the  YOLOv8np-RCW  model’s  detection
error in the X-axis and Y-axis is more concentrated near the average
value, and the maximum distance error is less than 50 pixels, with a
small  error  fluctuation  range,  which  is  better  than  the  detection
results  of  other  models.  In  summary,  YOLOv8np-RCW  has
superior  performance  and  accurate  prediction,  making  it  sufficient
to fulfill the real-time detection needs of tomato harvesting robots.

The  visualization  results  of  different  models  are  shown  in
Figures  17  and  18.  The  bounding  box  and  maturity  detection
visualization  results  of  tomato  bunches  in  complex  scenarios  are
illustrated  in  Figure  17.  In  the  images  detected  by  the  YOLOv8n
pose  model,  missed  detections  of  tomato  bunches  and  imprecise
bounding  boxes  are  observed,  leading  to  errors  in  maturity
recognition, with maturity confidence falling below 90%, as shown

in Figure 17b. The RTMDet-RTMPose accurately detects bounding
boxes  compared  with  the  YOLOv8n  pose;  however,
misclassifications  occur,  with  the  same  tomato  bunch  being
identified  as  both  ripe  and  unripe,  as  shown  in  Figure  17c.  The
Fasterrcnn-RTMPose  model  exhibits  high  confidence  in  maturity
recognition;  however,  the  bounding  boxes  fail  to  fully  enclose  the
tomato  bunches  in  some  cases,  as  shown  in Figure  17d.  Although
the  YOLOv8np-RCW  model  exhibits  lower  maturity  confidence
compared  to  the  Fasterrcnn-RTMPose  model,  it  performs  better  in
detection,  successfully  identifying  tomato  bunches  missed  by  the
other  three  models.  Additionally,  the  detected  bounding  boxes
effectively enclose the tomato bunches, as shown in Figure 17e.
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Table 6    Comparison of pixel errors at keypoints of
different models

Keypoints Model
Average distance (pixel) Standard

deviation
(pixel)X Y Euclidean

distance

Point a

YOLOv8n pose 21.265 22.359 32.057 9.932

RTMDet-RTMPose 18.691 20.267 26.296 9.548

Fasterrcnn-RTMPose 15.304 16.858 22.535 9.098

YOLOv8np-RCW 14.267 14.762 19.638 9.578

Point b

YOLOv8n pose 12.297 14.338 17.313 9.595

RTMDet-RTMPose 11.895 12.581 15.655 8.896

Fasterrcnn-RTMPose 11.032 11.826 15.479 9.347

YOLOv8np-RCW 10.638 10.465 14.708 8.728
 

Keypoint  detection  is  a  critical  step  for  the  successful
harvesting  of  tomato  bunches.  In  greenhouse  environments,  the
peduncles  of  tomato bunches are  often curved rather  than growing
vertically,  posing  challenges  in  identifying  the  keypoints.  The
YOLOv8n pose model exhibits large prediction errors for keypoints
within  the  inaccurately  detected  bounding  boxes,  with  point  a,
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located at the connection between the main stem and fruit peduncle,
being  incorrectly  identified  and  deviating  onto  the  main  stem

presented  in  Figure  18a.  The  RTMDet-RTMPose  model
successfully detects more keypoints than the YOLOv8n pose model,
with  higher  accuracy  in  keypoint  identification.  However,  there  is
still  some  deviation  in  the  position  of  point  a  presented  in
Figure  18b.  Compared  to  the  RTMDet-RTMPose  model,  the
Fasterrcnn-RTMPose  model  detects  the  tomato  bunch  bounding
boxes in different positions, leading to different results when using
the  same  keypoint  detection  model.  Although  fewer  keypoints  are
identified,  the  results  are  more  accurate  compared  to  the  first  two
models,  as  shown  in  Figure  18c.  The  YOLOv8np-RCW  model
demonstrates  more  accurate  positioning  of  the  two  keypoints.
Although there is a slight deviation at some keypoints,  the number
and accuracy of the detected keypoints are superior to those of the
other  three  models,  as  shown  in  Figure  18d.  From  the  above
analysis,  it  can  be  seen  that  both  the  bounding  box  and  keypoint
recognition  are  more  accurate,  highlighting  the  model’s  strong
feature extraction ability.
 3.5    Field experiment

To verify whether the improved algorithm meets the efficiency
and  accuracy  requirements  of  tomato  harvesting  robots  for
recognition  and  localization,  as  well  as  the  effectiveness  of  the
harvesting method, the algorithm is deployed on a harvesting robot
for field testing. The robot is equipped with a six-degree-of-freedom
industrial  robotic  arm,  a  Realsense  D435i  depth  camera,  an
integrated clip-and-cut end-effector, and a mobile platform, offering
high  flexibility  and  adaptability  to  environmental  conditions,  as
shown  in  Figure  19.  The  main  steps  of  the  robot’s  harvesting
process  include  recognition,  sleeving,  and  cutting,  forming  a
complete harvesting workflow, as illustrated in Figure 20.

The  specific  operation  process  is  as  follows:  First,  the  robot
starts the depth camera according to the standard posture set during
the  dataset  collection  and  captures  image  data  of  the  current
environment.  The  improved  algorithm  is  then  used  to  identify
mature  tomato  bunches  in  the  image  and  extract  keypoint
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Figure 17    Visualization of tomato bunch and maturity recognition
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Figure 18    Visualization of tomato keypoint recognition
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information.  Using  the  2D  pixel  coordinates  of  the  keypoints,  the
inclination angle  and direction of  the  tomato bunch are  calculated.
Simultaneously, the depth camera retrieves the depth information of
the  keypoints,  converting  the  2D  coordinates  into  3D  spatial
coordinates,  which provide precise data support  for the subsequent
motion  path  planning  of  the  robotic  arm.  Next,  the  robot  controls
the robotic arm to perform the harvesting operation according to the
following steps:

Initial Positioning: The robotic arm moves to point b based on
the calculated 3D coordinates, ensuring the end-effector is close to

the tomato bunch.
Angle  Adjustment:  The  end-effector’s  orientation  is  adjusted

according  to  the  inclination  angle  of  the  tomato  bunch,  aligning  it
with the bunch’s growth direction.

Precise  Grasping:  The  end-effector  moves  along  the  line
connecting  the  tomato  bunch  to  point  a,  ensuring  the  blade  is
accurately aligned with the fruit stem.

Cutting Operation: The end-effector executes the cutting action,
precisely cutting and securely holding the tomato bunch, completing
the harvesting operation.

Triped

Tunriped

Priped

Punriped

Three  sets  of  experiments  are  conducted.  The  first  set  of
experiments  evaluates  the  tomato  bunch  recognition  rate  and  the
maturity  recognition  accuracy.  A  conveyor  channel  is  randomly
selected,  and  the  maturity  of  tomato  bunches  on  both  sides  is
determined  based  on  a  manually  calibrated  dataset  standard.  The
number  of  ripe  tomato  bunches,  ,  and  unripe  tomato  bunches,

,  are  recorded.  Using  the  improved  algorithm,  the  detected
tomato  clusters  within  the  field  of  view  are  identified,  and  the
number  of  ripe  tomato bunches,  ,  and unripe  tomato bunches,

,  are  recorded.  The  tomato  bunch  recognition  rate  and
maturity  recognition  accuracy  are  calculated  using  Equations  (12-
13). The experimental results are listed in Table 7.

 
 

a. Recognition b. Sleeving c. Cutting

Figure 20    Harvesting process
 
  

Table 7    First set of experiments
Times Triped Tunriped Priped Punriped

1 22 32 19 33
2 16 28 13 30

 

R1 = 1−
∣∣(Triped +Tunriped)− (Priped +Punriped)

∣∣
(Triped +Tunriped)

(12)

R2 = 1−

|Triped −Priped|
Triped

+
|Tunriped −Punriped|

Tunriped

2
(13)

The  second  set  of  experiments  aims  to  evaluate  the  response
time  of  the  model,  defined  as  the  duration  from  the  start  of
recognition to the issuance of the picking command. To conduct the
experiment,  five  bunches  of  ripe  tomatoes  are  selected,  and  each
bunch  is  tested  five  times.  The  response  time  for  each  test  is
measured  using  the  time.time()  function,  with  all  measurements
recorded.  The  average  response  time  is  calculated  based  on  the
collected  data.  The  results  of  this  evaluation  are  presented  in
Table 8.

The  third  set  of  experiments  test  the  ability  of  keypoint
positioning  and  end-effector  sleeving,  and  harvesting  experiments
on  50  bunches  of  ripe  tomatoes  are  carried  out.  The  harvesting
results are analyzed through three groups of data, as shown in Table

9.
In  this  field  experiment,  the  tomato  bunch  recognition  rate  is

96.9%,  the  maturity  recognition  accuracy  is  89.6%,  the  average
visual response time is 0.1499s, the harvesting success rate is 68%,
and the average time to pick each bunch of tomatoes is  10.8366 s.
These  results  indicate  that  the  improved  algorithm  and  harvesting
method  meet  the  performance  requirements  for  the  tomato
harvesting robot.
 
 

Table 8    Second set of experiments

Number of
repetitions

Response time of model/s

Bunch 1 Bunch 2 Bunch 3 Bunch 4 Bunch 5

1 0.1426 0.1468 0.1546 0.1393 0.1539

2 0.1495 0.1505 0.1495 0.1460 0.1466

3 0.1449 0.1475 0.1606 0.1625 0.1447

4 0.1390 0.1456 0.1575 0.1595 0.1515

5 0.1524 0.1464 0.1536 0.1458 0.1555
 
 

Table 9    Third set of experiments
Number of
bunches

Keypoint location
failure

Sleeving
failure

Average harvesting
time/s

22 4 3 11.6585

12 2 3 10.5241

16 3 1 10.3273

 

Figure 19    Tomato harvesting robot
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 4    Discussion
An  innovative  method  is  proposed,  integrating  tomato  bunch

detection, maturity assessment, and keypoint detection with a single
model.  Compared  to  cascaded  approaches  integrating  target  and
keypoint  detection,  YOLOv8np-RCW  is  more  lightweight,  more
rapid, and simpler to implement on embedded devices. Besides, the
inclusion  of  maturity  evaluation  enables  precise  picking,  thereby
improving  both  picking  efficiency  and  fruit  quality.  In  keypoint
detection, two keypoints are extracted for each tomato bunch: point
a,  the  connection  between  the  peduncle  and  the  main  stem,  and
point  b,  the  centroid  of  the  lowest  fruit  in  the  bunch.  The  end-
effector  adopts  a  straight-line  motion  from the  bottom keypoint  of
the  tomato  bunch  to  the  point  for  cutting,  minimizing  potential
damage during harvesting.

The  improved  YOLOv8np-RCW  model  presents  significant
enhancements  compared  with  the  YOLOv8n  pose:  P,  R,  and
mAP50 of the bounding boxes increased by 3.8%, 12.8%, and 6.2%
respectively,  while  keypoints’  corresponding  indicators  increased
by  2.3%,  10.6%,  and  5.5%  respectively.  The  bounding  box  loss
decreased by 55.76%, and the maturity detection accuracy improved
by  2.3%.  Despite  these  performance  improvements,  the  model’s
parameters,  Gflops,  and  inference  time  only  slightly  increased,
maintaining  fast  computation  and  detection  capability.  The  model
processes individual images quickly, with minimal pixel Euclidean
distance  error,  facilitating  real-time  bunch  harvesting  tasks  for
harvesting robots.

While  the  proposed  YOLOv8np-RCW  model  demonstrates
high  detection  accuracy  and  efficiency  under  greenhouse
conditions, its current training and evaluation are limited to images
captured  in  a  controlled  environment.  This  constraint  raises
important  considerations  regarding  the  model’s  generalization  to
more diverse and challenging real-world settings.

To  ensure  broader  applicability,  future  work  will  focus  on
evaluating  the  model’s  performance  under  varying  illumination
conditions, including intense sunlight, shadows, and artificial night-
time lighting. These factors can significantly alter the appearance of
tomato  fruits  and  peduncles,  thus  affecting  detection  and  keypoint
localization.  Moreover,  the  presence  of  more  severe  occlusions—
caused by overlapping fruits, leaves, or support structures—remains
a  common  challenge  in  real  harvesting  scenarios.  Incorporating
dynamic  occlusion-aware  mechanisms,  such  as  multi-frame
information fusion or temporal consistency modules, could enhance
model robustness under such constraints.

Another crucial aspect concerns the adaptability of the model to
different tomato cultivars, which may vary in shape, size, clustering
pattern,  and  color  distribution.  To  improve  the  model’s  cultivar-
invariance,  a  more  diversified  training  dataset  will  be  collected,
encompassing multiple  growth stages,  environmental  backgrounds,
and tomato varieties.

Furthermore,  to  extend  the  application  scope  beyond
greenhouses,  future  research  will  explore  adapting  the  model  for
open-field  environments.  Open-field  farming  introduces  additional
complexity  due  to  unpredictable  weather,  background  clutter,  and
less-structured  plant  arrangements.  Domain  adaptation  techniques,
transfer learning, and real-time image enhancement algorithms may
offer  promising  solutions  to  bridge  the  performance  gap  between
greenhouse and open-field applications.

In  the  long  term,  the  proposed  model  can  be  integrated  into
autonomous harvesting and inspection platforms operating across a

wider  spectrum  of  agricultural  environments.  Its  multi-task
capabilities—combining object  detection,  maturity assessment,  and
keypoint localization—make it an ideal candidate for deployment in
complex  field  conditions,  contributing  to  intelligent  yield
estimation,  labor  planning,  and  post-harvest  quality  control  in
precision agriculture.

 5    Conclusions
In  this  paper,  for  effective  tomato  bunch  harvesting,  an

improved  YOLOv8np-RCW  model  based  on  YOLOv8n  pose  is
proposed,  which  is  an  end-to-end  multitasking  model  that
recognizes  tomato  bunches  and  bunches  maturity  and  location  of
keypoints.  The  RepVGG  architecture,  CARAFE  upsampling
module,  and  WIoU  loss  are  incorporated  to  improve  the  model’s
performance. Ablation and comparative experiments indicate that P,
R, and mAP50 of YOLOv8np-RCW for detection boxes are 84.1%,
86.3%, and 87.3% respectively. For keypoints, the P, R, and mAP50
are  83.6%,  85.9%,  and  86.8%  respectively.  Compared  to  the
YOLOv8n  pose  for  detection  boxes,  there  have  been  increases  of
3.8%,  12.8%,  and  6.2%  in  P,  R,  and  mAP50  respectively;  for
keypoints, improvements of 2.3%, 10.6%, and 5.5% are observed in
P, R, and mAP50 respectively. The model’s parameters, Gflops, and
inference  time  remain  essentially  unchanged.  The  bounding  box
loss  decreased  by  55.76%,  and  the  maturity  detection  accuracy
improved.  Besides,  the  Euclidean  distance  error  in  pixels  between
predicted  and  ground  truth  is  maintained  within  20  pixels.
Completing the tasks of  bunch detection,  maturity assessment,  and
keypoint localization requires only 9.8 ms. Compared to RTMDet-
RTMPose  and  Fasterrcnn-RTMPose  algorithms,  the  proposed
algorithm  demonstrates  superior  performance  in  both  detection
accuracy and speed.

This  paper  proposes  a  method  that  combines  keypoint  2D
information  to  control  the  end  effector’s  motion  path  based  on  an
improved  model,  and  applies  it  to  a  harvesting  robot.  Field
experiments  show that  the  harvesting  success  rate  is  68%,  and  the
average time to harvest each bunch of tomatoes is 10.8366 s.

These  outcomes  suggest  that  the  improved  YOLOv8np-RCW
demonstrates  both  robustness  and  suitability  regarding  detection
precision and equipment deployment. Looking ahead, there is a plan
to further optimize the algorithm and explore potential applications
in detecting other crops.
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