

YOLOv8np-RCW: A multi-task deep learning model for comprehensive
visual information in tomato harvesting robot

Xinyi Ai1, Tianxue Zhang2,3*, Ting Yuan1*, Xiajun Zheng1, Ziming Xiong1, Jiace Yuan1
(1. College of Engineering, China Agricultural University, Beijing 100083, China;

2. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China;
3. Institute of Medical Robotics, Shanghai Jiaotong University, Shanghai 200240, China)

Abstract: In greenhouse environments, using automated machines for tomato harvesting to reduce labor consumption is a
future development trend. Accurate and effective visual recognition is essential to accomplish harvesting tasks. However, most
current studies use various models to gain harvesting information in multiple steps, resulting in heavy calculation costs, poor
real-time availability, and weak recognition precision. In this study, an improved YOLOv8np-RCW end-to-end model based on
YOLOv8n pose is proposed to simultaneously detect tomato bunches, maturity, and keypoints using a decoupled-head
structure. The model integrates a ResNet-enhanced RepVGG architecture for a balance of accuracy and speed, employs the
CARAFE upsampling algorithm for a larger receptive field with lightweight design, and optimizes the loss function with WIoU
loss to enhance bounding box prediction, maturity detection, and keypoint extraction. Experimental results indicate that mAP50
of YOLOv8np-RCW model for bounding box and keypoints is 87.3% and 86.8% respectively, which is 6.2% and 5.5% higher
than YOLOv8n pose model. Completing the tasks of bunch detection, maturity assessment, and keypoint localization requires
only 9.8 ms. Euclidean distance error is less than 20 pixels in detecting keypoints. Based on this model, a method is proposed to
quickly determine the orientation of tomato bunches using geometric cross-product and cross-multiplication calculations from
keypoint 2D information, providing guidance for the motion planning of the end-effector. In field experiments, the robot
achieved a harvesting success rate of 68%, with an average time of 10.8366 seconds per tomato bunch.
Keywords: tomato bunch detection, maturity detection, keypoint detection, harvesting robots
DOI: 10.25165/j.ijabe.20251805.9719

Citation: Ai X Y, Zhang T X, Yuan T, Zheng X J, Xiong Z M, Yuan J C. YOLOv8np-RCW: A multi-task deep learning model
for comprehensive visual information in tomato harvesting robot. Int J Agric & Biol Eng, 2025; 18(5): 246–258.

 1 Introduction
As a widely consumed vegetable, tomatoes are in great demand

globally[1,2]. To meet people’s daily needs and facilitate management
and production, most tomatoes are grown in greenhouse mode.
Open-field farming is slowly being supplanted by facility
agriculture[3]. However, with fewer people working in farming, there
is a shortage in agriculture labor force resources[4,5]. Manual
harvesting of tomatoes in greenhouses is inefficient and highly
expensive[6,7]. Therefore, machine technology is essential to solve
these concerns[8].

In the working process of agricultural harvesting machine, deep
learning technology has been applied to obtain fruit information.
Xiong et al.[9] determined obstacles around strawberries with 3D
point cloud information and the surrounding environment to
calculate the harvesting path. Kim et al.[10] obtained tomato maturity

and 6D pose estimation through Deep-ToMaToS model combined
with transformation loss. Li et al.[11] improved obscured grape
bunches recognition accuracy via improved Yolov4. Li et al.[12]

identified the maturity of tomatoes via modified YOLOv5s, then
carried out distortion removal and the detected region of interest
(ROI) clipping on the obtained images to the position. Zhang et
al.[13] conducted tomato bunch and occlusion detection by using the
Yolov5 model and identified the maturity and pose of tomatoes by
using the improved model.

In addition to detecting target fruits, the key of fruit harvesting
is to accurately determine the location of the harvesting point.
People have also carried out further research to solve the harvesting
point location problem. For example, Yoshida et al.[14] obtained the
cherry tomato peduncle point cloud, and after voxel filtering and
clustering generation, used the Region Growing method to create a
directed acyclic graph, comparing two image processing methods to
find the longest path, then selected the one with a small
Mahalanobis distance as the appropriate harvesting point on the
peduncle. Qi et al.[15] detected the main stem of litchi using modified
YOLOv5, extracted the ROI from the main stem, segmented the
ROI by PSPNet model, and combined it with traditional image
processing methods to obtain harvesting points on the original
image. Rong et al.[16] segmented the fruits, calyxes, and pedicles in
tomato images via modified Swin Transformer V2, and integrated
multiple image processing algorithms to generate harvesting points
located at tomato pedicles in steps.

The aforementioned research methods have achieved
significant progress in harvesting point localization but also exhibit
certain limitations. These approaches typically divide fruit detection

Received date: 2025-02-04 　 Accepted date: 2025-07-09
Biographies: Xinyi Ai, ME, research interest: target recognition and localization
algorithm, Email: axy@cau.edu.cn; Xiajun Zheng, ME, research interest: target
recognition and localization algorithm, Email: zhengxiajun2000@163.com;
Ziming Xiong, ME, research interest: deep learning algorithm, Email:
15377218508@163.com; Jiace Yuan, ME, research interest: deep learning
algorithm, Email: thefronty@163.com.
*Corresponding author: Tianxue Zhang, Professor, research interest:
intelligent agricultural machinery equipment. School of Mechanical Engineering
and Automation, Beihang University, Beijing 100191, China. Tel: +86-
13161680797, Email: tianxuezhang@buaa.edu.cn; Ting Yuan, Professor,
research interest: intelligent agricultural machinery equipment. College of
Engineering, China Agricultural University, Beijing 100083, China. Tel: +86-
13810592356, Email: yuanting122@cau.edu.cn.

　246 　 October, 2025 Int J Agric & Biol Eng　　　Open Access at https://www.ijabe.org Vol. 18 No. 5　

https://doi.org/10.25165/j.ijabe.20251805.9719
mailto:axy@cau.edu.cn
mailto:zhengxiajun2000@163.com
mailto:15377218508@163.com
mailto:thefronty@163.com
mailto:tianxuezhang@buaa.edu.cn
mailto:yuanting122@cau.edu.cn
https://www.ijabe.org

and harvesting point extraction into multiple steps, with the
determination of harvesting points relying on additional image
processing operations. In some existing systems, fruit detection,
maturity classification, and harvesting point extraction are executed
sequentially using different models or separate processing pipelines.
This modular design leads to increased computational load, slower
response times, and potential inconsistencies between intermediate
outputs. In particular, cumulative errors may propagate from the
fruit detection stage to the final harvesting point localization,
significantly reducing overall accuracy. This stepwise processing
not only increases computation time but also introduces potential
errors and cumulative inaccuracies, thereby affecting the overall
efficiency and precision of the system. To address these limitations,
there is a critical need for an integrated framework that unifies
multiple perception tasks in a single-stage model. Such integration
minimizes latency and error accumulation while improving
robustness, which is crucial for real-time deployment in greenhouse
environments. Therefore, to accelerate detection speed while
enhancing the accuracy of harvesting point localization, it is
particularly necessary to develop an efficient model that directly
integrates fruit detection and harvesting point extraction. Fu et al.[17]

detected banana bundle and stalk as two targets via YOLOv4
network. The detection accuracy for banana bundles and stalks
reached 99.55% and 87.82%, respectively, with an average
processing time of 44.96 ms. Because of the obvious characteristics
of the banana stalk, the center of the recognized peduncle image can
be used as the harvesting point. However, it does not apply to the
extraction of fruit harvesting points with curving peduncles. Zhu et
al.[18] identified grape bunches and fruit peduncles by Yolov5s-CFD
model. The mAP50 of grape bunches and fruit peduncles were
96.8% and 72.9% respectively, and the average detection time was
28.9 ms. The bending condition was determined according to the
ratio of the length to the width of the recognition fruit peduncle
image. When the grape peduncle was upright without bending, the
midpoint of its image was designated as the picking point. In cases
where the peduncle was bent, the harvesting point was determined
as the location with the highest gray value directly above the image
center. However, this method of point extraction depends on the
gray value and geometric shape of the image. When the
environmental light changes (such as shadow, reflection, etc.), the
gray value will change, consequently impacting the precision of the
harvesting point. Chen et al.[19] introduced the enhanced YOLOv8-
GP model for concurrently detecting grapes with their harvesting
points. Harvesting points were marked exactly at the center of the
peduncle, but in cases where peduncles were curved, obscured, or
growing in clusters, it was difficult to determine the ‘true center’ of
the peduncle, resulting in inaccurate marking and thus affecting the
quality of the model training.

Summarizing prior studies on fruit harvesting information,
certain issues still require resolution: Firstly, the majority of visual
inspection methods focus on only one of the tasks of fruit detection,
occlusion, bunch maturity, or harvesting point detection. Secondly,
determination of harvesting points location is a complicated process
using a multi-step detection method. Finally, although general fruits
are well detected due to their obvious characteristics, the accuracy
of picking point location needs to be further improved.

Cherry tomatoes in greenhouses are predominantly harvested in
bunches. This paper proposes a method leveraging keypoint
detection technology, where the end-effector moves linearly from a
keypoint at the base of the tomato bunch to the cutting point for
harvesting. This approach aims to minimize picking damage. To

efficiently accomplish the task of tomato bunch harvesting, this paper
presents an efficient YOLOv8np-RCW model that performs both
object detection and keypoint detection, enabling the recognition of
tomato bunches, fruit bunch maturity, and picking points. Keypoint
information is extracted for the tomato bunches detected as ripe,
successfully obtaining the fruit bunch’s pose. The motion path of
the end effector is then planned to facilitate effective harvesting.

 2 Methodologies
 2.1 Data acquisition and processing

Cherry tomato images were captured in the greenhouse of
Hongfu Industrial Park located in Daxing, Beijing. Cherry tomato
was planted and managed following Dutch standards, with plants
evenly spaced and pruned regularly. The Realsense D435i camera
was bracketed on the robotic arm end, placed at a horizontal
distance of 500-600 mm from the tomatoes and a vertical distance
of 1200-1500 mm from the ground, shown in Figure 1. Data
collection was carried out at three distinct time periods to ensure
variability in lighting conditions: Morning (08:00-10:00): Natural
light entering the greenhouse with mild shadowing; Noon (12:00-
13:00): Strong sunlight with potential highlights and reflections on
fruit surfaces; Afternoon (15:00-17:00): Soft indirect light with
more stable illumination and fewer shadows. Throughout all
sessions, the ambient lighting relied primarily on natural sunlight
filtered through the greenhouse roof, with no artificial lighting used.
This setup simulated real-world conditions for robot operation in
agricultural environments.

Distance

camera-tomato

Figure 1 Image data acquisition scene

Images are labeled using Labelme, and the process of labeling
the dataset is carried out according to the following principles, as
shown in Figure 2: 1) Bounding Boxes: Each box enclosed a tomato
bunch and included a small segment of the main stem that is
physically connected to the fruit peduncle. This inclusion ensures
sufficient visual cues for harvesting point detection; 2) Maturity
Classification: Tomato bunches are classified into two categories—
ripe and unripe. A bunch is labeled as ripe if it contains no more
than two green fruits, based on visual inspection and practical
picking thresholds used in greenhouse farming. If the number of
green fruits exceeds two, the bunch is labeled unripe. This threshold
is widely adopted by greenhouse workers to determine harvesting
readiness; 3) Two keypoints are defined: point a, precisely
positioned at the junction between fruit peduncles and main stems,
and point b, located at the centroid of the bottommost fruit in the
bunch, which serves as a reference for determining the vertical
orientation and motion planning. Label format is Equation (1):

LabelRipe-point(class, xgt, ygt, wgt, hgt, xpa, ypa, visiblepa, . . . ,
xpb, ypb, visiblepb) (1)

xgt,ygt

In Equation (1), class means the maturity classification of
tomato bunches; () means bounding box center coordinates;

　October, 2025 Ai X Y, et al.　YOLOv8np-RCW: A multi-task deep learning model for tomato harvesting robot Vol. 18 No. 5 　 247　

wgt,hgt xpa,ypa

xpb,ypb

 means the width and height of the bounding box; (),
() means the coordinates of points a and b, respectively;

νisiblepa νisiblepb, represents the visibility state of points a and b,
respectively.

Unriped

Riped

Point a

Point b

Figure 2 Image annotation interface

The dataset comprises 756 labeled images which are split into
the training set (604 images), validation set (76 images), and test set
(76 images) at a ratio of 8:1:1. To enhance dataset diversity and
improve the model’s generalization capability, data augmentation
techniques are applied to the training process. Details of these
augmentation methods can be found in Table 1.
 2.2 YOLOv8 network structure

Compared with the algorithm based on region proposal, the one-
stage algorithm model is more compatible with real-time detection
in complex environments[20,21]. The YOLO (you only look once)
algorithm is noted for the effective one-stage detection method[22–24].

YOLOv8 model is composed of five variables, which share a
consensus network structure across models, as shown in Figure 3.
Decreasing the depth and width of the network can shorten training
and detection times. YOLOv8n network is selected to satisfy the
real-time detection requirements for tomatoes. An additional branch
head is added at the head layer for keypoint detection, as shown in
Figure 4.

Table 1 Data augmentation parameter settings
Dataset Scale Mosaic Translation Hue, saturation, value (HSV)

Dataset_A 0.5 1.0 0.1 hsv_h:0.015, hsv_s:0.7, hsv_v:0.4

Input

Conv

Conv

Conv

Conv

Conv Conv Conv

Conv

Conv

Conv Conv

Conv

Conv

Conv

Conv

Split Bottelnet Bottelnet Concat

Concat

Concat

Concat

Concat

C2f

C2f

C2f

C2f

C2f

C2f

C2f

C2f

C2f

Bottelnet Add=True Bottelnet Add=False Conv

Conv2d

BatchNorm2d

SiLU

Backbone

Neck Head

Upsample

Upsample

head (box)

head (cls)

head (box)

head (box)

head (cls)

head (cls)

SPPF

SPPF

MaxPool2d

MaxPool2d

MaxPool2d

Concat

Figure 3 YOLOv8 model structure

Conv2d

Conv2d

Conv2d

head (box)

head (cls)

head (pose)

Conv

Conv

Conv

Conv

Conv

Conv

YOLOv8 pose (Head)

Box

Cls

Pose

Figure 4 YOLOv8 pose head model structure

　248 　 October, 2025 Int J Agric & Biol Eng　　　Open Access at https://www.ijabe.org Vol. 18 No. 5　

https://www.ijabe.org

 2.3 YOLOv8 pose improvement
YOLOv8 demonstrates remarkable overall behavior; however,

harvesting tomato bunches requires high precision in keypoint
detection. Therefore, the RepVGG is introduced in the Backbone,
the CARAFE is used in the Neck, and the IoU metrics are replaced
with WIoU. The improved network framework is shown in Figure 5.
RepVGG is a straightforward and effective CNN architecture,
consisting only of conv and ReLU. Additionally, the model exhibits
a multi-branching structure during training stages, while
maintaining simplicity during inference stages by re-parameterizing
into a single-branch structure, as shown in Figure 6. CARAFE is a
method for feature fusion, which can effectively utilize the feature
information after upsampling and fuse with the original feature.
Consequently, the expression capacity and transmission efficacy of
features can be enhanced. WIoU is a dynamic non-monotonic
focusing mechanism that presents an intelligent gradient gain
assignment method, thus diminishing competitive advantages
conferred by high-quality bounding boxes, allowing WIoU to focus
on average-quality bounding boxes and improving the detector’s
overall performance.

Conv

Conv

Conv

RepVGG RepVGGC2f RepVGGC2f RepVGGC2f RepVGGC2f

C2f

C2f

C2f

C2f

Contact

Contact

Contact

Contact

CARAFE

CARAFE

H
ea
d

Box

Cls

Pose

Figure 5 Improved YOLOv8 pose network structure

Stride=2 Stride=23×3 3×3

3×3

3×3

3×3

3×3

3×3

3×3

1x1

1x1

1x1

1x1

Conv

ReLU

Identity

RepVGG training RepVGG inference

Figure 6 RepVGG frame

 2.3.1 RepVGG
Many complex convolutional neural networks (CNN) achieve

higher accuracy than simpler ones; however, their disadvantages are
outstanding. These increase the difficulty of implementation and
customization, and bring slow inference, low memory utilization,
high memory access costs, and limited compatibility between

various devices. RepVGG brings an ideal balance between accuracy
and speed compared to existing technologies[25]. Inspired by
ResNet[26], the architecture employs both identity and 1×1 branches
to explicitly construct a shortcut branch. To ensure most members
remain shallow or simple, ResNet identity and a 1×1 branch are
adopted. By stacking multiple blocks, a model suitable for training
is constructed.

The transformation between the multi-branch structure during
training and the plain structure in inference is realized through
architectural re-parameterization. For instance, an identity branch
can be regarded as a reduced form of a 1×1 conv, which can be
further simplified into a reduced form of a 3×3 conv. This enables
the construction of a unified 3×3 kernel by merging the parameters
of the initial 3×3 kernel, identity branch, 1×1 branch, and Batch
Normalization (BN)[27] layer. Specifically, the network architecture
is integrated with a corresponding group of parameters during
training. At inference time, the trained blocks are converted into a
unified 3×3 conv, thus obtaining a 3×3 kernel, two 1×1 kernels, and
three bias vectors. The ultimate bias is computed by summing the
three bias vectors, while the eventual 3×3 kernel is derived by
incorporating the 1×1 kernel to the center of the 3×3 kernel. This is
trivially achieved via zero-padding the 1×1 kernel to 3×3 and then
summing all three kernels, as illustrated in Figure 7. Consequently,
the RepVGG model at inference time consists of one type of
operator: ReLU following conv. This design enables achievement of
high operating speed on generic computing devices such as GPUs
for efficient testing and deployment.

Conv BN A parameter A zero value

3×3

3×3 3×3 3×3

3×3

1×1

Conv parameters

BN parameters

Perspective of structure Perspective of parameter

Figure 7 RepVGG module of the parametric structure

 2.3.2 CARAFE
Feature upsampling is a crucial structure in many network

architectures, with the composition playing a pivotal role in
prediction performance[28]. In YOLOv8, an upsampling method
utilized is nearest-neighbor interpolation, which replicates the
nearest pixel values, resulting in an upsampling image that lacks
smooth gradient transitions, which in turn results in missing image
detail. During the keypoint detection task, insufficient precision of
details caused by nearest-neighbor interpolation can adversely
impact detection performance, thus the efficient CARAFE structure
is introduced to enhance the upsampling algorithm in YOLOv8.

　October, 2025 Ai X Y, et al.　YOLOv8np-RCW: A multi-task deep learning model for tomato harvesting robot Vol. 18 No. 5 　 249　

CARAFE offers a wide receptive field and dynamically
produces fitness kernels in response to incoming information rather
than importing significant computational overhead or additional
parameters, making it lightweight while effectively leveraging
surrounding information[28]. CARAFE comprises two components:
A kernel prediction and a content-aware reassembly module,
functioning through upsampling kernel prediction and feature

χ′ χ

σ

reassembly. The process involves two main stages: First, a
reassembly kernel is generated based on the content at each target
location. Second, the features are recombined with the predicted
ones. CARAFE will generate a feature map based on with
dimensions C×H×W, using an upsample ratio , as shown in
Figure 8.

Kernel

prediction module

Example location

Reassemble operation

Content

H

Kernel

encoder normalizer

H
H

W WCm

W
C

C

χ′

χ kup

kup

σ2 ×k
2
up

k
2
up

σW

Wι′

σH

σW

σH

Channel
compressor

Content-aware

reassembly module

N(χι, kup)

Figure 8 CARAFE’s overall framework

σ2k2
up

kup kup

In the first stage, feature channels are compressed by the kernel
prediction module via the conv layer to decrease parameters and
improve feature extraction efficiency. Compressed images of
dimensions Cm×H×W are encoded employing a conv layer with
encoder kernel, output a reassembled kernel of dimensions ×
H×W, then the generated × kernel is normalized with
softmax.

Wl′ kup kup

χl kup

In the second stage, for reassembled kernel (×), the
content-aware reassembly module reorganizes features over the
selective area. Under the action of a reassembled kernel, each point
in the N (,) area has a stronger contribution to the upsampled
area on account of the content of the feature. More attention is paid
to pertinent points in the selective area, improving the semantics of
the reassembled feature map.
 2.3.3 WIoU

Loss calculation in YOLOv8 pose comprises classification,
bounding boxes, and keypoints for the decoupled-head structure.
Bounding box loss influences keypoint predictions because the
target region is delineated by bounding boxes, within which precise
regression of keypoints is performed. Therefore, if the bounding
box prediction is inaccurate, the model may search for keypoints in
the incorrect region, resulting in inaccurate keypoint predictions.
While the bounding box and keypoint loss are computed separately,
they are jointly optimized. If the weight of the bounding box loss is
excessively high, it will suppress keypoint regression. Bounding
box loss in YOLOv8npose is computed via CIoU. However, CIoU
does not capture practical variations between width and height, for
training images unavoidably contain low-quality data. Variables of
distance and length-width ratio aggravate penalties on low-quality
data, diminishing the model’s ability to generalize. To minimize the
above impairments, WIoU is drawn to optimize the network[29].

The prediction process of CIoU and WIoU loss between
different iterations is shown in Figure 9. The orange area is the
ground truth, and the blue area is the initial detection area. Areas of
green and red are the forecasting processes of CIoU and WIoU,

respectively. CIoU’s width and height cannot be simultaneously
increased or decreased, whereas WIoU focuses on the differences in
width and height, as shown in Figure 9. During the early iterations,
WIoU achieves faster shape matching of the bounding area. With
further iterations, WIoU effectively reduces the area of non-overlap
between the predicted and the ground truth while optimizing the
shape of the borders, allowing the predicted area to converge toward
the ground truth more rapidly than CIoU. In later stages, WIoU
demonstrates superior performance. Compared to CIoU, the
bounding area predictions under WIoU align almost perfectly with
the ground truth, achieving significantly higher prediction accuracy.

Iteration 10 Iteration 50 Iteration 200

Inital

Ground truth

CIOU

WIOU

Figure 9 Forecasting process for CIoU and WIoU

(x,y)

(xgt,ygt) wgt hgt

Wg

Hg

Wi Hi

WIoU regression loss is shown in Figure 10. The green box is
the prediction box, whose center point is ; width and height are
w and h, respectively. The yellow box is the ground truth, whose
center point is ; width and height are and ,
respectively. The red box is the minimum vertical rectangular box
of the predicted and ground truth; the width and height are and

, respectively. The blue box is the overlap between the predicted
and ground truth; width and height are and , respectively.
WIoU losses are calculated as follows in Equations (2-4):

LIoU = 1− IoU = 1− WiHi

wh+wgthgt −WiHi

(2)

　250 　 October, 2025 Int J Agric & Biol Eng　　　Open Access at https://www.ijabe.org Vol. 18 No. 5　

https://www.ijabe.org

(xgt, ygt)

(x, y)

Wi

Wg

H
i

H
g

Figure 10 WIoU loss for bounding box regression

RWIoU = exp
Å

(x− xgt)
2
+ (y− ygt)

2

(W2
g +H2

g)∗

ã
(3)

LWIoU = rRWIoULIoU, r =
β

δαβ −δ , β =
L∗IoU
LIoU

(4)

LIoU

LWIoU β

r α δ

β r

In the Equation (4), represents the intersection over union
(IoU) loss; represents WIoU loss; represents the outlier
factor; represents the gradient gain; and are hyper-parameters
controlling the mapping between and ; the superscripted *
indicates detachment from the computation graph.
 2.4 Tomato bunch pose acquisition

The improved keypoint algorithm enables precise acquisition of
tomato bunch information, providing technical support for efficient
harvesting. When extracting and identifying the keypoint
information of mature tomato bunches, as mentioned earlier, the
keypoints include two points, namely point a and point b, where the
line connecting these two points represents the growth orientation of
the tomato bunch. This information can guide the motion path of the
end-effector and optimize the harvesting operation. However, due to
the natural growth of tomato bunches, their orientations vary, and
there are different degrees of inclination, as shown in Figure 11a. If
these inclination angles are not considered, it may lead to
unsuccessful grasping or fruit damage caused by angular deviations.
Therefore, the end-effector must adjust in real time according to the
inclination of the tomato bunch.

To determine the inclination angle of the tomato bunch, the
angle between the line connecting the two keypoints and the Y-axis
of the 2D image pixel coordinate system is calculated. Using the 2D
pixel coordinates of the keypoints, the vector between the two
points is computed, and the inclination angle of the tomato bunch is
obtained using the vector angle formula, as illustrated in the
corresponding Equation (5). This angle not only provides crucial
parameters for adjusting the end-effector but also helps predict
potential risks during the harvesting process.

a. Original image b. Posec alculation c. Pose acquisition

Figure 11 Tomato bunch pose calculation

In addition to the inclination angle, the direction of the angle
must also be determined to ensure that the end-effector can be
adjusted to the correct working orientation, as shown in Figure 11b.
In a 2D plane, the relative direction can be calculated using the
cross-product of two vectors, thereby determining the direction of
the adjustment angle, as illustrated in the corresponding Equation
(6). The cross-product formula is simple and efficient, making it
suitable for real-time applications in automated control systems.

angle = cos−1

Å
v⃗ab · v⃗Y

|⃗vab| |⃗vY |

ã
(5)

cross product = xabyY − yabxY (6)

v⃗ab v⃗Y

v⃗ab = (xab,yab) v⃗Y = (xY ,yY)
v⃗Y

v⃗ab

where, is a vector from point a to point b, is a unit vector
parallel to the Y-axis, , . If the cross
product>0, it indicates that is in the counterclockwise direction
relative to . The end-effector needs to rotate counterclockwise by
the corresponding angle.

 3 Experiments and results
 3.1 Experimental details

Model training hardware configuration: Windows 10 Pro OS,
16 GB RAM, 11th Gen Intel(R) Core(TM) i5-11400@2.60 GHz
NVIDIA GeForce RTX 3060. The coding language is Python
3.7.16, and the open-source learning framework is PyTorch 1.11.0.
In addition, CUDA 11.3 is updated to boost the system’s computing
performance with 16 images trained in each epoch. AdamW
optimizer is utilized, setting initial and termination learning rates to
0.01. The weight decay coefficient is 0.0005, and the momentum
parameter reaches 0.937. The training process is configured for 300
epochs. However, to avoid overfitting and reduce unnecessary
computation, an early stopping strategy is applied based on the
validation loss. If the validation loss does not improve for 20
consecutive epochs, the training is stopped automatically. The
model weights corresponding to the lowest validation loss are saved
as the final model for evaluation.

　October, 2025 Ai X Y, et al.　YOLOv8np-RCW: A multi-task deep learning model for tomato harvesting robot Vol. 18 No. 5 　 251　

 3.2 Evaluation indicators
To assess the precision of tomatoes multi-task assay, Precision

(P), Recall (R), Average Precision (AP), and mean Average
Precision (mAP) are used. mAP indicator is used to evaluate the
model performance. Parameters and giga floating-point operations
per second (Gflops) are used to assess the complexity of models.
The time indicator is measured by the predicted time of each image.
The definition is shown in Equations (7-10):

P =
TP

TP + FP (7)

R =
TP

TP + FN (8)

AP =
w 1

0
P(R)dR (9)

mAP = 1
2

2∑
i=1

APi (10)

where, P(R) represents the P corresponding to R.
mAP of keypoint detection is calculated based on object

keypoint similarity (OKS), which computes the matching degree
between predicted and ground truth. The definition is shown in
Equation (11):

OKS =

∑
i

exp
Å
− d2

i

2s2k2
i

ã
.1∑

i

1
(11)

di

ki

where, is the Euclidean distance between the predicted keypoint
and ground truth; s represents the scale factor; represents the
weight factor of the keypoint. When OKS exceeds a certain
threshold, the prediction is considered correct. Then AP and mAP
are calculated by the formula of target detection.
 3.3 Ablation experiment

To comprehensively evaluate the performance contributions of
each module in the proposed model, this paper conducts systematic
ablation experiments from the following three aspects: (1)
Comparison of the backbone network structure, (2) improvement of
the upsampling module, and (3) replacement of the bounding box
regression loss function.

Firstly, to verify the effectiveness of RepVGG as the backbone
network, under the same training settings, comparative experiments
are conducted with various mainstream lightweight network
structures (including MobileNetV2, EfficientNetV2, and
ShuffleNetV2). The experimental results are listed in Table 2 as
follows. Secondly, in order to evaluate the influence of different
regression loss functions on the model performance, CIoU is
replaced with WIoU, DIoU, SIoU, and ShapeIoU respectively for
comparative experiments, as listed in Table 3. Finally, under the
YOLOv8n-pose framework, this paper conducts combination
experiments on each enhancement module (RepVGG module R,
CARAFE upsampling module C, and WIoU loss function W), and
the corresponding relationship of algorithm combinations is listed in
Table 4. Finally, the model formed by integrating the three
improvements is named YOLOv8np-RCW. The performance
comparison results of each combined model are listed in Table 5.

The RepVGG backbone significantly improved detection
performance while maintaining a relatively small model size of only
3.08 million parameters, as listed in Table 2. Compared to the
original CSPDarkNet backbone, the precision, recall, and mAP50 of

the bounding box detection increased by 1.3%, 5.8%, and 2.6%,
respectively, while the precision, recall, and mAP50 of keypoint
detection improved by 1.7%, 4.7%, and 3.2%. In addition, the
inference time was reduced from 9.5 ms to 8.2 ms, representing a
13.7% improvement in real-time performance. Although
EfficientNetV2 achieved higher detection accuracy, with mAP50
values of 89.5% for bounding boxes and 90.4% for keypoints, its
model complexity is significantly higher, with 21.8 million
parameters, 55.3 Gflops, and an inference time of 28.2 ms. Such
computational demands are unsuitable for deployment on resource-
constrained agricultural robotic platforms. In contrast, RepVGG
provides a more favorable trade-off among detection accuracy,
inference speed, and model complexity, making it the optimal
backbone choice for the proposed model.

Table 2 Comparison of lightweight backbone networks

Name
Box Pose

Parameters/
M Gflops Time/msP/

%
R/
%

mAP50/
%

P/
%

R/
%

mAP50/
%

CSPDarkNet
(Initial) 80.3 73.5 81.1 81.3 75.3 81.3 3.08 8.3 9.5

MobileNetV2 86.3 78.4 85.8 85.1 77.2 85.1 3.83 10.3 10.2
EfficientNetV2 87.4 84.4 89.5 88.8 85.3 90.4 21.8 55.3 28.2
ShuffleNetV2 78.3 85.2 84.4 78.7 85.8 83.9 2.86 7.7 9.9
RepVGG 81.6 79.3 83.7 83.0 80.0 84.5 3.08 8.3 8.2

Table 3 Comparison of regression loss functions

Name
Box Pose

Parameters/
M Gflops Time/

msP/
%

R/
%

mAP50/
%

P/
%

R/
%

mAP50/
%

CIoU
(Initial) 80.3 73.5 81.1 81.3 75.3 81.3 3.08 8.3 9.5

DIoU 72.1 85.1 84.9 72.9 86.2 85.2 3.08 8.3 6.2
SIoU 81.0 75.3 83.6 82.0 76.2 83.3 3.08 8.3 6.5
WIoU 89.0 78.0 86.1 87.6 76.6 85.1 3.08 8.3 9.1

ShapeIoU 86.5 81.5 86.3 85.3 80.3 85.2 3.08 8.3 6.1

Table 4 Algorithm improvement and corresponding name

Initial Improvement Name
YOLOv8n pose RepVGG YOLOv8np-R
YOLOv8n pose CARAFE YOLOv8np-C
YOLOv8n pose WIoU YOLOv8np-W
YOLOv8n pose RepVGG+CARAFE+WIoU YOLOv8np-RCW

Table 5 Comparison of algorithmic indicators

Name
Box Pose

Parameters/
M Gflops Time/msP/

%
R/
%

mAP50/
%

P/
%

R/
%

mAP50/
%

YOLOv8n pose 80.3 73.5 81.1 81.3 75.3 81.3 3.08 8.3 9.5
YOLOv8np-R 81.6 79.3 83.7 83.0 80.0 84.5 3.08 8.3 8.2
YOLOv8np-C 83.8 85.3 86.4 82.9 86.2 86.3 3.22 8.6 11.3
YOLOv8np-W 89.0 78.0 86.1 87.6 76.6 85.1 3.08 8.3 9.1
YOLOv8np-

RCW 84.1 86.3 87.3 83.6 85.9 86.8 3.22 8.6 9.8

As listed in Table 3, the WIoU loss function exhibited overall
superiority in both bounding box and keypoint detection tasks, with
mAP50 values reaching 86.1% and 85.1%, respectively,
significantly outperforming CIoU, DIoU, and SIoU. Compared to
CIoU, WIoU not only provided notable accuracy gains but also
reduced inference time from 9.5 ms to 9.1 ms, without any increase
in model parameters or computational cost, thus achieving a

　252 　 October, 2025 Int J Agric & Biol Eng　　　Open Access at https://www.ijabe.org Vol. 18 No. 5　

https://www.ijabe.org

balanced improvement in efficiency and precision. While ShapeIoU
achieved relatively high recall, with R values of 81.5% for bounding
boxes and 80.3% for keypoints, its overall detection accuracy
remained lower than that of WIoU. Therefore, WIoU is better suited
for complex scenarios involving occlusion and variation in tomato
bunch shapes, enhancing both model robustness and localization
accuracy.

As demonstrated in Table 5, the YOLOv8np-R model, which
incorporates only the RepVGG backbone, improved the detection
precision for both bounding boxes and keypoints while reducing the
inference time to 8.2 ms, making it well-suited for applications
requiring real-time performance. The YOLOv8np-C model, which
integrates the CARAFE upsampling module, achieved the highest
recall rates—85.3% for bounding boxes and 86.2% for
keypoints—by enhancing local feature extraction, making it more
effective in greenhouse environments with significant occlusion.

The YOLOv8np-W model, which uses the WIoU loss function,
achieved steady gains in detection accuracy without increasing the
model’s complexity, demonstrating superior bounding box
regression performance. The final integrated model, YOLOv8np-
RCW, which combines RepVGG, CARAFE, and WIoU, achieved
the best overall performance. Compared to the baseline, it improved
the precision, recall, and mAP50 of bounding box detection by
3.8%, 12.8%, and 6.2%, respectively, and enhanced keypoint
detection by 2.3%, 10.6%, and 5.5%. These results demonstrate the
effectiveness of the combined optimization strategy in improving
both detection accuracy and inference efficiency.

The maturity confusion matrix from the ablation experiments is
shown in Figure 12. The accuracy of YOLOv8np-R, YOLOv8np-C,
YOLOv8np-W, and YOLOv8np-RCW models in recognizing
maturity has improved compared to YOLOv8n pose, with
YOLOv8np-RCW having the fittest maturity category recognition.

1

R
ip

ed

Riped

0.863 0.194

P
re

d
ic

t

U
n
ri

p
ed

Unriped

0.137 0.806

0.14

Truth

a. YOLOv8n pose

1

R
ip

ed

Riped

0.865 0.189

P
re

d
ic

t

U
n
ri

p
ed

Unriped

0.135 0.811

0.14

Truth

b. YOLOv8n-R

1

R
ip

ed

Riped

0.873 0.179

P
re

d
ic

t

U
n
ri

p
ed

Unriped

0.127 0.821

0.13

Truth

c. YOLOv8n-C

1

R
ip

ed

Riped

0.886 0.161

P
re

d
ic

t

U
n
ri

p
ed

Unriped

0.114 0.839

0.11

Truth

e. YOLOv8n-RCW

1

R
ip

ed

Riped

0.906 0.173

P
re

d
ic

t

U
n
ri

p
ed

Unriped

0.094 0.827

0.09

Truth

d. YOLOv8n-W

Figure 12 Maturity confusion matrices

The bounding box loss curve from the ablation experiments is
shown in Figure 13. The YOLOv8np-W and YOLOv8np-RCW
converge faster due to the addition of WIoU, which speeds up the
convergence of the original model, and the loss of the YOLOv8np-
RCW model finally converges to 0.482 15, which is 55.76% lower
than the YOLOv8n pose model. It effectively decreases the loss
value and improves the detection performance.

Pose 1.0898 Pose-R 1.0697

Pose-C 1.0063 Pose-W 0.50045

Pose-RCW 0.48215

Pose Pose-R Pose-C

Pose-W Pose-RCW

0 50 100 150

Epoch

200 250
0

1

2

3

B
o
x
 l

o
ss

4

5

Figure 13 Box loss curve in ablation experiment

 3.4 Comparison of detection performance with other models
To prove YOLOv8np-RCW model’s comprehensive

performance, compared with other algorithms fusing target
detection and keypoint detection, the outcomes are presented in
Figure 14. Since the parameters, calculation volume, and detection
time of multi-model fusion are higher than those of a single model,
the box mAP50 and pose mAP50 of the models are evaluated for
comparison. The box mAP50 and pose mAP50 of RTMDet-
RTMPose are 2.9% and 2.8% higher than those of YOLOv8n pose.
The box mAP50 and pose mAP50 of Fasterrcnn-RTMPose are
3.3% and 2.8% higher than those of YOLOv8n pose, but their
detection time is longer than that of YOLOv8n pose. The detection
time of YOLOv8np-RCW and YOLOv8n pose model is
comparable, and the box mAP50 and pose mAP50 values are the
highest; thus, comprehensively considered, YOLOv8np-RCW has
the best performance.

To compare the maturity and keypoints classification detection
effects of different algorithms, experiments are conducted on the
test dataset by calculating the number of identified ripe tomato
bunches, unripe tomato bunches, point a and point b. When the
confidence score threshold is 0.5, the result is shown in Figure 15.
YOLOv8np-RCW has the largest total number of detections, among
which the number of maturity and keypoint detections also exceeds
other models. To compare the performance of YOLOv8np-RCW
and other models in extracting two keypoints in detail, the
difference in pixel distance between the predicted point and ground

　October, 2025 Ai X Y, et al.　YOLOv8np-RCW: A multi-task deep learning model for tomato harvesting robot Vol. 18 No. 5 　 253　

truth on the 2D image is taken as an assessment metric. The average
error is calculated for the coordinates of point a and point b detected
by each model. Table 4 shows the average distance error statistics
between predicted keypoints of the different models and ground
truth in X, Y, and Euclidean directions. The distribution of point a
and point b in the X-axis and Y-axis is presented in Figure 16.

The larger the shape the shorter the time

YOLOv8n pose

RTMDet-RTMPose

Fasterrcnn-RTMPose

YOLOv8np-RCW

81.1 84.0

Box mAP50

P
o
se

 m
A

P
5
0

84.4 87.3
0

20

40

60

80

100

81.3
84.1

86.8

2
.8

%

2.9%

3.3%

5
.5

%

6.2%

Figure 14 Performance comparison of different models

Riped

Unriped

a

b
1000

800

600

400

N
u
m
b
er

200

0
A B C

Model

D

255

243

159

106

271

235

172

121

253

223

176

126

312

305

198

139

Note: A. YOLOv8n pose B. RTMDet-RTMPose C. Fasterrcnn-RTMPose
D. YOLOv8np-RCW

Figure 15 Comparison of outcomes from different models

Table 6 shows that the accuracy of YOLOv8np-RCW in
recognizing the points exceeds that of the other models. The
average Euclidean distance errors for the two keypoints are 19.638
pixels and 14.708 pixels, with standard deviations of 9.578 pixels
and 8.728 pixels, respectively. This level of precision in locating the
keypoints makes it suitable for use in tomato bunch picking. As
presented in Figure 16, the YOLOv8np-RCW model’s detection
error in the X-axis and Y-axis is more concentrated near the average
value, and the maximum distance error is less than 50 pixels, with a
small error fluctuation range, which is better than the detection
results of other models. In summary, YOLOv8np-RCW has
superior performance and accurate prediction, making it sufficient
to fulfill the real-time detection needs of tomato harvesting robots.

The visualization results of different models are shown in
Figures 17 and 18. The bounding box and maturity detection
visualization results of tomato bunches in complex scenarios are
illustrated in Figure 17. In the images detected by the YOLOv8n
pose model, missed detections of tomato bunches and imprecise
bounding boxes are observed, leading to errors in maturity
recognition, with maturity confidence falling below 90%, as shown

in Figure 17b. The RTMDet-RTMPose accurately detects bounding
boxes compared with the YOLOv8n pose; however,
misclassifications occur, with the same tomato bunch being
identified as both ripe and unripe, as shown in Figure 17c. The
Fasterrcnn-RTMPose model exhibits high confidence in maturity
recognition; however, the bounding boxes fail to fully enclose the
tomato bunches in some cases, as shown in Figure 17d. Although
the YOLOv8np-RCW model exhibits lower maturity confidence
compared to the Fasterrcnn-RTMPose model, it performs better in
detection, successfully identifying tomato bunches missed by the
other three models. Additionally, the detected bounding boxes
effectively enclose the tomato bunches, as shown in Figure 17e.

40

30

20

10

0
(a) (b) (c) (d)

(a) (b) (c) (d)

30

25

20

15

10

5

0

Point a
X

Y

Point b
X

Y

Note: (a) YOLOv8n pose (b) RTMDet-RTMPose (c) Fasterrcnn-RTMPose
(d) YOLOv8np-RCW
Figure 16 Distribution of data at keypoints in different models

Table 6 Comparison of pixel errors at keypoints of
different models

Keypoints Model
Average distance (pixel) Standard

deviation
(pixel)X Y Euclidean

distance

Point a

YOLOv8n pose 21.265 22.359 32.057 9.932

RTMDet-RTMPose 18.691 20.267 26.296 9.548

Fasterrcnn-RTMPose 15.304 16.858 22.535 9.098

YOLOv8np-RCW 14.267 14.762 19.638 9.578

Point b

YOLOv8n pose 12.297 14.338 17.313 9.595

RTMDet-RTMPose 11.895 12.581 15.655 8.896

Fasterrcnn-RTMPose 11.032 11.826 15.479 9.347

YOLOv8np-RCW 10.638 10.465 14.708 8.728

Keypoint detection is a critical step for the successful
harvesting of tomato bunches. In greenhouse environments, the
peduncles of tomato bunches are often curved rather than growing
vertically, posing challenges in identifying the keypoints. The
YOLOv8n pose model exhibits large prediction errors for keypoints
within the inaccurately detected bounding boxes, with point a,

　254 　 October, 2025 Int J Agric & Biol Eng　　　Open Access at https://www.ijabe.org Vol. 18 No. 5　

https://www.ijabe.org

located at the connection between the main stem and fruit peduncle,
being incorrectly identified and deviating onto the main stem

presented in Figure 18a. The RTMDet-RTMPose model
successfully detects more keypoints than the YOLOv8n pose model,
with higher accuracy in keypoint identification. However, there is
still some deviation in the position of point a presented in
Figure 18b. Compared to the RTMDet-RTMPose model, the
Fasterrcnn-RTMPose model detects the tomato bunch bounding
boxes in different positions, leading to different results when using
the same keypoint detection model. Although fewer keypoints are
identified, the results are more accurate compared to the first two
models, as shown in Figure 18c. The YOLOv8np-RCW model
demonstrates more accurate positioning of the two keypoints.
Although there is a slight deviation at some keypoints, the number
and accuracy of the detected keypoints are superior to those of the
other three models, as shown in Figure 18d. From the above
analysis, it can be seen that both the bounding box and keypoint
recognition are more accurate, highlighting the model’s strong
feature extraction ability.
 3.5 Field experiment

To verify whether the improved algorithm meets the efficiency
and accuracy requirements of tomato harvesting robots for
recognition and localization, as well as the effectiveness of the
harvesting method, the algorithm is deployed on a harvesting robot
for field testing. The robot is equipped with a six-degree-of-freedom
industrial robotic arm, a Realsense D435i depth camera, an
integrated clip-and-cut end-effector, and a mobile platform, offering
high flexibility and adaptability to environmental conditions, as
shown in Figure 19. The main steps of the robot’s harvesting
process include recognition, sleeving, and cutting, forming a
complete harvesting workflow, as illustrated in Figure 20.

The specific operation process is as follows: First, the robot
starts the depth camera according to the standard posture set during
the dataset collection and captures image data of the current
environment. The improved algorithm is then used to identify
mature tomato bunches in the image and extract keypoint

a.

b.

c.

d.

e.

Note: a. Original image b.YOLOv8n pose c. RTMDet-RTMPose d. Fasterrcnn-
RTMPose e. YOLOv8np-RCW

Figure 17 Visualization of tomato bunch and maturity recognition

a. b.

c. d.

Note: a. YOLOv8n pose b. RTMDet-RTMPose c. Fasterrcnn-RTMPose d. YOLOv8np-RCW

Figure 18 Visualization of tomato keypoint recognition

　October, 2025 Ai X Y, et al.　YOLOv8np-RCW: A multi-task deep learning model for tomato harvesting robot Vol. 18 No. 5 　 255　

information. Using the 2D pixel coordinates of the keypoints, the
inclination angle and direction of the tomato bunch are calculated.
Simultaneously, the depth camera retrieves the depth information of
the keypoints, converting the 2D coordinates into 3D spatial
coordinates, which provide precise data support for the subsequent
motion path planning of the robotic arm. Next, the robot controls
the robotic arm to perform the harvesting operation according to the
following steps:

Initial Positioning: The robotic arm moves to point b based on
the calculated 3D coordinates, ensuring the end-effector is close to

the tomato bunch.
Angle Adjustment: The end-effector’s orientation is adjusted

according to the inclination angle of the tomato bunch, aligning it
with the bunch’s growth direction.

Precise Grasping: The end-effector moves along the line
connecting the tomato bunch to point a, ensuring the blade is
accurately aligned with the fruit stem.

Cutting Operation: The end-effector executes the cutting action,
precisely cutting and securely holding the tomato bunch, completing
the harvesting operation.

Triped

Tunriped

Priped

Punriped

Three sets of experiments are conducted. The first set of
experiments evaluates the tomato bunch recognition rate and the
maturity recognition accuracy. A conveyor channel is randomly
selected, and the maturity of tomato bunches on both sides is
determined based on a manually calibrated dataset standard. The
number of ripe tomato bunches, , and unripe tomato bunches,

, are recorded. Using the improved algorithm, the detected
tomato clusters within the field of view are identified, and the
number of ripe tomato bunches, , and unripe tomato bunches,

, are recorded. The tomato bunch recognition rate and
maturity recognition accuracy are calculated using Equations (12-
13). The experimental results are listed in Table 7.

a. Recognition b. Sleeving c. Cutting

Figure 20 Harvesting process

Table 7 First set of experiments
Times Triped Tunriped Priped Punriped

1 22 32 19 33
2 16 28 13 30

R1 = 1−
∣∣(Triped +Tunriped)− (Priped +Punriped)

∣∣
(Triped +Tunriped)

(12)

R2 = 1−

|Triped −Priped|
Triped

+
|Tunriped −Punriped|

Tunriped

2
(13)

The second set of experiments aims to evaluate the response
time of the model, defined as the duration from the start of
recognition to the issuance of the picking command. To conduct the
experiment, five bunches of ripe tomatoes are selected, and each
bunch is tested five times. The response time for each test is
measured using the time.time() function, with all measurements
recorded. The average response time is calculated based on the
collected data. The results of this evaluation are presented in
Table 8.

The third set of experiments test the ability of keypoint
positioning and end-effector sleeving, and harvesting experiments
on 50 bunches of ripe tomatoes are carried out. The harvesting
results are analyzed through three groups of data, as shown in Table

9.
In this field experiment, the tomato bunch recognition rate is

96.9%, the maturity recognition accuracy is 89.6%, the average
visual response time is 0.1499s, the harvesting success rate is 68%,
and the average time to pick each bunch of tomatoes is 10.8366 s.
These results indicate that the improved algorithm and harvesting
method meet the performance requirements for the tomato
harvesting robot.

Table 8 Second set of experiments

Number of
repetitions

Response time of model/s

Bunch 1 Bunch 2 Bunch 3 Bunch 4 Bunch 5

1 0.1426 0.1468 0.1546 0.1393 0.1539

2 0.1495 0.1505 0.1495 0.1460 0.1466

3 0.1449 0.1475 0.1606 0.1625 0.1447

4 0.1390 0.1456 0.1575 0.1595 0.1515

5 0.1524 0.1464 0.1536 0.1458 0.1555

Table 9 Third set of experiments
Number of
bunches

Keypoint location
failure

Sleeving
failure

Average harvesting
time/s

22 4 3 11.6585

12 2 3 10.5241

16 3 1 10.3273

Figure 19 Tomato harvesting robot

　256 　 October, 2025 Int J Agric & Biol Eng　　　Open Access at https://www.ijabe.org Vol. 18 No. 5　

https://www.ijabe.org

 4 Discussion
An innovative method is proposed, integrating tomato bunch

detection, maturity assessment, and keypoint detection with a single
model. Compared to cascaded approaches integrating target and
keypoint detection, YOLOv8np-RCW is more lightweight, more
rapid, and simpler to implement on embedded devices. Besides, the
inclusion of maturity evaluation enables precise picking, thereby
improving both picking efficiency and fruit quality. In keypoint
detection, two keypoints are extracted for each tomato bunch: point
a, the connection between the peduncle and the main stem, and
point b, the centroid of the lowest fruit in the bunch. The end-
effector adopts a straight-line motion from the bottom keypoint of
the tomato bunch to the point for cutting, minimizing potential
damage during harvesting.

The improved YOLOv8np-RCW model presents significant
enhancements compared with the YOLOv8n pose: P, R, and
mAP50 of the bounding boxes increased by 3.8%, 12.8%, and 6.2%
respectively, while keypoints’ corresponding indicators increased
by 2.3%, 10.6%, and 5.5% respectively. The bounding box loss
decreased by 55.76%, and the maturity detection accuracy improved
by 2.3%. Despite these performance improvements, the model’s
parameters, Gflops, and inference time only slightly increased,
maintaining fast computation and detection capability. The model
processes individual images quickly, with minimal pixel Euclidean
distance error, facilitating real-time bunch harvesting tasks for
harvesting robots.

While the proposed YOLOv8np-RCW model demonstrates
high detection accuracy and efficiency under greenhouse
conditions, its current training and evaluation are limited to images
captured in a controlled environment. This constraint raises
important considerations regarding the model’s generalization to
more diverse and challenging real-world settings.

To ensure broader applicability, future work will focus on
evaluating the model’s performance under varying illumination
conditions, including intense sunlight, shadows, and artificial night-
time lighting. These factors can significantly alter the appearance of
tomato fruits and peduncles, thus affecting detection and keypoint
localization. Moreover, the presence of more severe occlusions—
caused by overlapping fruits, leaves, or support structures—remains
a common challenge in real harvesting scenarios. Incorporating
dynamic occlusion-aware mechanisms, such as multi-frame
information fusion or temporal consistency modules, could enhance
model robustness under such constraints.

Another crucial aspect concerns the adaptability of the model to
different tomato cultivars, which may vary in shape, size, clustering
pattern, and color distribution. To improve the model’s cultivar-
invariance, a more diversified training dataset will be collected,
encompassing multiple growth stages, environmental backgrounds,
and tomato varieties.

Furthermore, to extend the application scope beyond
greenhouses, future research will explore adapting the model for
open-field environments. Open-field farming introduces additional
complexity due to unpredictable weather, background clutter, and
less-structured plant arrangements. Domain adaptation techniques,
transfer learning, and real-time image enhancement algorithms may
offer promising solutions to bridge the performance gap between
greenhouse and open-field applications.

In the long term, the proposed model can be integrated into
autonomous harvesting and inspection platforms operating across a

wider spectrum of agricultural environments. Its multi-task
capabilities—combining object detection, maturity assessment, and
keypoint localization—make it an ideal candidate for deployment in
complex field conditions, contributing to intelligent yield
estimation, labor planning, and post-harvest quality control in
precision agriculture.

 5 Conclusions
In this paper, for effective tomato bunch harvesting, an

improved YOLOv8np-RCW model based on YOLOv8n pose is
proposed, which is an end-to-end multitasking model that
recognizes tomato bunches and bunches maturity and location of
keypoints. The RepVGG architecture, CARAFE upsampling
module, and WIoU loss are incorporated to improve the model’s
performance. Ablation and comparative experiments indicate that P,
R, and mAP50 of YOLOv8np-RCW for detection boxes are 84.1%,
86.3%, and 87.3% respectively. For keypoints, the P, R, and mAP50
are 83.6%, 85.9%, and 86.8% respectively. Compared to the
YOLOv8n pose for detection boxes, there have been increases of
3.8%, 12.8%, and 6.2% in P, R, and mAP50 respectively; for
keypoints, improvements of 2.3%, 10.6%, and 5.5% are observed in
P, R, and mAP50 respectively. The model’s parameters, Gflops, and
inference time remain essentially unchanged. The bounding box
loss decreased by 55.76%, and the maturity detection accuracy
improved. Besides, the Euclidean distance error in pixels between
predicted and ground truth is maintained within 20 pixels.
Completing the tasks of bunch detection, maturity assessment, and
keypoint localization requires only 9.8 ms. Compared to RTMDet-
RTMPose and Fasterrcnn-RTMPose algorithms, the proposed
algorithm demonstrates superior performance in both detection
accuracy and speed.

This paper proposes a method that combines keypoint 2D
information to control the end effector’s motion path based on an
improved model, and applies it to a harvesting robot. Field
experiments show that the harvesting success rate is 68%, and the
average time to harvest each bunch of tomatoes is 10.8366 s.

These outcomes suggest that the improved YOLOv8np-RCW
demonstrates both robustness and suitability regarding detection
precision and equipment deployment. Looking ahead, there is a plan
to further optimize the algorithm and explore potential applications
in detecting other crops.

 Acknowledgements
This work received funding support from the National Key

Research and Development Program of China (Grant No.
2022YFD2000500).

[References]

 Liu J Z, Peng Y, Faheem M. Experimental and theoretical analysis of fruit
plucking patterns for robotic tomato harvesting. Comput Electron Agric,
2020; 173: 105330.

[1]

 Zhang F, Gao J, Zhou H, Zhang J X, Zou K L, Yuan T. Three-dimensional
pose detection method based on keypoints detection network for tomato
bunch. Comput Electron Agric, 2022; 195: 106824.

[2]

 Maureira F, Rajagopalan K, Stöckle C O. Evaluating tomato production in
open-field and high-tech greenhouse systems. J Clean Prod, 2022; 337:
130459.

[3]

 Zhou H Y, Wang X, Au W, Kang H W, Chen C. Intelligent robots for fruit
harvesting: recent developments and future challenges. Precis Agric, 2022;
23: 1856–1907.

[4]

 Zheng X J, Rong J C, Zhang Z Q, Yang Y, Li W, Yuan T. Fruit growing
direction recognition and nesting grasping strategies for tomato harvesting
robots. J Field Robot, 2024; 41: 300–313.

[5]

　October, 2025 Ai X Y, et al.　YOLOv8np-RCW: A multi-task deep learning model for tomato harvesting robot Vol. 18 No. 5 　 257　

https://doi.org/10.1016/j.compag.2020.105330
https://doi.org/10.1016/j.compag.2022.106824
https://doi.org/10.1016/j.jclepro.2022.130459
https://doi.org/10.1007/s11119-022-09913-3
https://doi.org/10.1002/rob.22263

 Wu J Q, Fan S Z, Gong L, Yuan J, Zhou Q, Liu C L. Research status and
development direction of design and control technology of fruit and
vegetable picking robot system. Smart Agric, 2020; 2(4): 17–40.

[6]

 Gao J, Zhang J X, Zhang F, Gao J F. LACTA: A lightweight and accurate
algorithm for cherry tomato detection in unstructured environments. Expert
Syst Appl, 2024; 238: 122073.

[7]

 Rapado-Rincón D, van Henten E J, Kootstra G. Development and
evaluation of automated localisation and reconstruction of all fruits on
tomato plants in a greenhouse based on multi-view perception and 3D
multi-object tracking. Biosyst Eng, 2023; 231: 78–91.

[8]

 Xiong Y, Ge Y, From P J. An obstacle separation method for robotic
picking of fruits in clusters. Comput Electron Agric, 2020; 175: 105397.

[9]

 Kim J, Pyo H, Jang I, Kang J, Ju B, Ko K. Tomato harvesting robotic
system based on Deep-ToMaToS: Deep learning network using
transformation loss for 6D pose estimation of maturity classified tomatoes
with side-stem. Comput Electron Agric, 2022; 201: 107300.

[10]

 Li H P, Li C Y, Li G B, Chen L X. A real-time table grape detection
method based on improved YOLOv4-tiny network in complex background.
Biosyst Eng, 2021; 212: 347–359.

[11]

 Li T H, Sun M, He Q H, Zhang G S, Shi G Y, Ding X M, et al. Tomato
recognition and location algorithm based on improved YOLOv5. Comput
Electron Agric, 2023; 208: 107759.

[12]

 Zhang J X, Xie J Y, Zhang F, Gao J, Yang C, Song C Y, et al. Greenhouse
tomato detection and pose classification algorithm based on improved
YOLOv5. Comput Electron Agric, 2024; 216: 108519.

[13]

 Yoshida T, Fukao T, Hasegawa T. Cutting point detection using a robot
with point clouds for tomato harvesting. J Robot Mechatron, 2020; 32(2):
437–444.

[14]

 Qi J T, Liu X N, Liu K, Xu F R, Guo H, Tian X L, et al. An improved
YOLOv5 model based on visual attention mechanism: Application to
recognition of tomato virus disease. Comput Electron Agric, 2022; 194:
106780.

[15]

 Rong Q J, Hu C H, Hu X D, Xu M X. Picking point recognition for ripe
tomatoes using semantic segmentation and morphological processing.
Comput Electron Agric, 2023; 210: 107923.

[16]

 Fu L H, Wu F Y, Zou X J, Jiang Y L, Lin J Q, Yang Z, et al. Fast detection
of banana bunches and stalks in the natural environment based on deep
learning. Comput Electron Agric, 2022; 194: 106800.

[17]

 Zhu Y J, Li S S, Du W S, Du Y P, Liu P, Li X. Identification of table[18]

grapes in the natural environment based on an improved YOLOv5 and
localization of picking points. Precis Agric, 2023; 24: 1333–1354.
 Chen J Q, Ma A Q, Huang L X, Li H W, Zhang H Y, Huang Y, et al.
Efficient and lightweight grape and picking point synchronous detection
model based on key point detection. Comput Electron Agric, 2024; 217:
108612.

[19]

 Ukwuoma C C, Zhiguang Q, Bin Heyat M B, Ali L, Almaspoor Z, Monday
H N. Recent advancements in fruit detection and classification using deep
learning techniques. Math Probl Eng, 2022; 2022(1): 9210947.

[20]

 Koirala A, Walsh K B, Wang Z, McCarthy C. Deep learning – Method
overview and review of use for fruit detection and yield estimation.
Comput Electron Agric, 2019; 162: 219–234.

[21]

 Redmon J, Farhadi A. YOLO9000: Better, faster, stronger. 2016;
Available: https://doi.org/10.48550/arXiv.1612.08242. Accessed on [2024-
11-17].

[22]

 Bochkovskiy A, Wang C-Y, Liao H-Y M. YOLOv4: Optimal speed and
accuracy of object detection. 2020; Available: https://doi.org/10.48550/
arXiv.2004.10934. Accessed on [2024-11-17].

[23]

 Wang C-Y, Bochkovskiy A, Liao H-Y M. YOLOv7: Trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors. 2022;
Available: https://doi.org/10.48550/arXiv.2207.02696. Accessed on [2024-
11-17].

[24]

 Ding X H, Zhang X Y, Ma N N, Han J G, Ding G G, Sun J. RepVGG:
making VGG-style ConvNets great again. 2021. Available: https://doi.
org/10.48550/arXiv.2101.03697. Accessed on [2024-09-23].

[25]

 He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image
recognition. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA: IEEE, 2016; pp.770–778. doi:
10.1109/CVPR.2016.90.

[26]

 Ioffe S, Szegedy C. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. 2015; Available: https://doi.
org/10.48550/arXiv.1502.03167. Accessed on [2025-01-23].

[27]

 Wang J Q, Chen K, Xu R, Liu Z W, Loy C C, Lin D H. CARAFE: Content-
aware reassembly of FEatures. 2019; Available: https://doi.org/10.48550/
arXiv.1905.02188. Accessed on [2024-11-03].

[28]

 Tong Z J, Chen Y H, Xu Z W, Yu R. Wise-IoU: Bounding box regression
loss with dynamic focusing mechanism. 2023; Available: https://doi.org/10.
48550/arXiv.2301.10051. Accessed on [2024-12-12].

[29]

　258 　 October, 2025 Int J Agric & Biol Eng　　　Open Access at https://www.ijabe.org Vol. 18 No. 5　

https://doi.org/10.1016/j.eswa.2023.122073
https://doi.org/10.1016/j.eswa.2023.122073
https://doi.org/10.1016/j.biosystemseng.2023.06.003
https://doi.org/10.1016/j.compag.2020.105397
https://doi.org/10.1016/j.compag.2022.107300
https://doi.org/10.1016/j.biosystemseng.2021.11.011
https://doi.org/10.1016/j.compag.2023.107759
https://doi.org/10.1016/j.compag.2023.107759
https://doi.org/10.1016/j.compag.2023.108519
https://doi.org/10.20965/jrm.2020.p0437
https://doi.org/10.1016/j.compag.2022.106780
https://doi.org/10.1016/j.compag.2023.107923
https://doi.org/10.1016/j.compag.2022.106800
https://doi.org/10.1007/s11119-023-09992-w
https://doi.org/10.1016/j.compag.2024.108612
https://doi.org/10.1155/2022/9210947
https://doi.org/10.1016/j.compag.2019.04.017
https://doi.org/10.1109/CVPR.2016.90
https://www.ijabe.org

	1 Introduction
	2 Methodologies
	2.1 Data acquisition and processing
	2.2 YOLOv8 network structure
	2.3 YOLOv8 pose improvement
	2.3.1 RepVGG
	2.3.2 CARAFE
	2.3.3 WIoU

	2.4 Tomato bunch pose acquisition

	3 Experiments and results
	3.1 Experimental details
	3.2 Evaluation indicators
	3.3 Ablation experiment
	3.4 Comparison of detection performance with other models
	3.5 Field experiment

	4 Discussion
	5 Conclusions
	Acknowledgements
	References

