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YOLOv8np-RCW: A multi-task deep learning model for comprehensive
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Xinyi Ai*, Tianxue Zhang**", Ting Yuan'®, Xiajun Zheng®, Ziming Xiong®, Jiace Yuan®
(1. College of Engineering, China Agricultural University, Beijing 100083, China;
2. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China;
3. Institute of Medical Robotics, Shanghai Jiaotong University, Shanghai 200240, China)

Abstract: In greenhouse environments, using automated machines for tomato harvesting to reduce labor consumption is a
future development trend. Accurate and effective visual recognition is essential to accomplish harvesting tasks. However, most
current studies use various models to gain harvesting information in multiple steps, resulting in heavy calculation costs, poor
real-time availability, and weak recognition precision. In this study, an improved YOLOv8np-RCW end-to-end model based on
YOLOvV8n pose is proposed to simultaneously detect tomato bunches, maturity, and keypoints using a decoupled-head
structure. The model integrates a ResNet-enhanced RepVGG architecture for a balance of accuracy and speed, employs the
CARAFE upsampling algorithm for a larger receptive field with lightweight design, and optimizes the loss function with WloU
loss to enhance bounding box prediction, maturity detection, and keypoint extraction. Experimental results indicate that mAP50
of YOLOv8np-RCW model for bounding box and keypoints is 87.3% and 86.8% respectively, which is 6.2% and 5.5% higher
than YOLOvV8n pose model. Completing the tasks of bunch detection, maturity assessment, and keypoint localization requires
only 9.8 ms. Euclidean distance error is less than 20 pixels in detecting keypoints. Based on this model, a method is proposed to
quickly determine the orientation of tomato bunches using geometric cross-product and cross-multiplication calculations from
keypoint 2D information, providing guidance for the motion planning of the end-effector. In field experiments, the robot
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achieved a harvesting success rate of 68%, with an average time of 10.8366 seconds per tomato bunch.
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1 Introduction

As a widely consumed vegetable, tomatoes are in great demand
globally"*. To meet people’s daily needs and facilitate management
and production, most tomatoes are grown in greenhouse mode.
Open-field farming is slowly being supplanted by facility
agriculture’. However, with fewer people working in farming, there
is a shortage in agriculture labor force resources™’. Manual
harvesting of tomatoes in greenhouses is inefficient and highly
expensive!’. Therefore, machine technology is essential to solve
these concerns'™.

In the working process of agricultural harvesting machine, deep
learning technology has been applied to obtain fruit information.
Xiong et al.”’ determined obstacles around strawberries with 3D
point cloud information and the surrounding environment to
calculate the harvesting path. Kim et al.'” obtained tomato maturity
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and 6D pose estimation through Deep-ToMaToS model combined
with transformation loss. Li et al.'! improved obscured grape
bunches recognition accuracy via improved Yolov4. Li et al.!'”
identified the maturity of tomatoes via modified YOLOVSs, then
carried out distortion removal and the detected region of interest
(ROJ) clipping on the obtained images to the position. Zhang et
al.'™ conducted tomato bunch and occlusion detection by using the
Yolov5 model and identified the maturity and pose of tomatoes by
using the improved model.

In addition to detecting target fruits, the key of fruit harvesting
is to accurately determine the location of the harvesting point.
People have also carried out further research to solve the harvesting
point location problem. For example, Yoshida et al.'’ obtained the
cherry tomato peduncle point cloud, and after voxel filtering and
clustering generation, used the Region Growing method to create a
directed acyclic graph, comparing two image processing methods to
find the longest path, then selected the one with a small
Mahalanobis distance as the appropriate harvesting point on the
peduncle. Qi et al.'*! detected the main stem of litchi using modified
YOLOVS, extracted the ROI from the main stem, segmented the
ROI by PSPNet model, and combined it with traditional image
processing methods to obtain harvesting points on the original
image. Rong et al.'! segmented the fruits, calyxes, and pedicles in
tomato images via modified Swin Transformer V2, and integrated
multiple image processing algorithms to generate harvesting points
located at tomato pedicles in steps.

The aforementioned research methods have achieved
significant progress in harvesting point localization but also exhibit
certain limitations. These approaches typically divide fruit detection
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and harvesting point extraction into multiple steps, with the
determination of harvesting points relying on additional image
processing operations. In some existing systems, fruit detection,
maturity classification, and harvesting point extraction are executed
sequentially using different models or separate processing pipelines.
This modular design leads to increased computational load, slower
response times, and potential inconsistencies between intermediate
outputs. In particular, cumulative errors may propagate from the
fruit detection stage to the final harvesting point localization,
significantly reducing overall accuracy. This stepwise processing
not only increases computation time but also introduces potential
errors and cumulative inaccuracies, thereby affecting the overall
efficiency and precision of the system. To address these limitations,
there is a critical need for an integrated framework that unifies
multiple perception tasks in a single-stage model. Such integration
minimizes latency and error accumulation while improving
robustness, which is crucial for real-time deployment in greenhouse
environments. Therefore, to accelerate detection speed while
enhancing the accuracy of harvesting point localization, it is
particularly necessary to develop an efficient model that directly
integrates fruit detection and harvesting point extraction. Fu et al.'"”
detected banana bundle and stalk as two targets via YOLOv4
network. The detection accuracy for banana bundles and stalks
reached 99.55% and 87.82%, respectively, with an average
processing time of 44.96 ms. Because of the obvious characteristics
of the banana stalk, the center of the recognized peduncle image can
be used as the harvesting point. However, it does not apply to the
extraction of fruit harvesting points with curving peduncles. Zhu et
al.'¥ identified grape bunches and fruit peduncles by Yolov5s-CFD
model. The mAP50 of grape bunches and fruit peduncles were
96.8% and 72.9% respectively, and the average detection time was
28.9 ms. The bending condition was determined according to the
ratio of the length to the width of the recognition fruit peduncle
image. When the grape peduncle was upright without bending, the
midpoint of its image was designated as the picking point. In cases
where the peduncle was bent, the harvesting point was determined
as the location with the highest gray value directly above the image
center. However, this method of point extraction depends on the
gray value and geometric shape of the image. When the
environmental light changes (such as shadow, reflection, etc.), the
gray value will change, consequently impacting the precision of the
harvesting point. Chen et al."” introduced the enhanced YOLOVS-
GP model for concurrently detecting grapes with their harvesting
points. Harvesting points were marked exactly at the center of the
peduncle, but in cases where peduncles were curved, obscured, or
growing in clusters, it was difficult to determine the ‘true center’ of
the peduncle, resulting in inaccurate marking and thus affecting the
quality of the model training.

Summarizing prior studies on fruit harvesting information,
certain issues still require resolution: Firstly, the majority of visual
inspection methods focus on only one of the tasks of fruit detection,
occlusion, bunch maturity, or harvesting point detection. Secondly,
determination of harvesting points location is a complicated process
using a multi-step detection method. Finally, although general fruits
are well detected due to their obvious characteristics, the accuracy
of picking point location needs to be further improved.

Cherry tomatoes in greenhouses are predominantly harvested in
bunches. This paper proposes a method leveraging keypoint
detection technology, where the end-effector moves linearly from a
keypoint at the base of the tomato bunch to the cutting point for
harvesting. This approach aims to minimize picking damage. To

efficiently accomplish the task of tomato bunch harvesting, this paper
presents an efficient YOLOv8np-RCW model that performs both
object detection and keypoint detection, enabling the recognition of
tomato bunches, fruit bunch maturity, and picking points. Keypoint
information is extracted for the tomato bunches detected as ripe,
successfully obtaining the fruit bunch’s pose. The motion path of
the end effector is then planned to facilitate effective harvesting.

2 Methodologies

2.1 Data acquisition and processing

Cherry tomato images were captured in the greenhouse of
Hongfu Industrial Park located in Daxing, Beijing. Cherry tomato
was planted and managed following Dutch standards, with plants
evenly spaced and pruned regularly. The Realsense D435i camera
was bracketed on the robotic arm end, placed at a horizontal
distance of 500-600 mm from the tomatoes and a vertical distance
of 1200-1500 mm from the ground, shown in Figure 1. Data
collection was carried out at three distinct time periods to ensure
variability in lighting conditions: Morning (08:00-10:00): Natural
light entering the greenhouse with mild shadowing; Noon (12:00-
13:00): Strong sunlight with potential highlights and reflections on
fruit surfaces; Afternoon (15:00-17:00): Soft indirect light with
more stable illumination and fewer shadows. Throughout all
sessions, the ambient lighting relied primarily on natural sunlight
filtered through the greenhouse roof, with no artificial lighting used.
This setup simulated real-world conditions for robot operation in
agricultural environments.

Distance
camera-tomato

Image data acquisition scene

Figure 1

Images are labeled using Labelme, and the process of labeling
the dataset is carried out according to the following principles, as
shown in Figure 2: 1) Bounding Boxes: Each box enclosed a tomato
bunch and included a small segment of the main stem that is
physically connected to the fruit peduncle. This inclusion ensures
sufficient visual cues for harvesting point detection; 2) Maturity
Classification: Tomato bunches are classified into two categories—
ripe and unripe. A bunch is labeled as ripe if it contains no more
than two green fruits, based on visual inspection and practical
picking thresholds used in greenhouse farming. If the number of
green fruits exceeds two, the bunch is labeled unripe. This threshold
is widely adopted by greenhouse workers to determine harvesting
readiness; 3) Two keypoints are defined: point a, precisely
positioned at the junction between fruit peduncles and main stems,
and point b, located at the centroid of the bottommost fruit in the
bunch, which serves as a reference for determining the vertical
orientation and motion planning. Label format is Equation (1):

Labelyiyepoin(Class, Xy, Yo, Weir Pgts Xpas Ypus Visibl€,,. ..,
Xpb> Yobs ViSibIE,,) (1)

In Equation (1), class means the maturity classification of
tomato bunches; (x,,y,) means bounding box center coordinates;
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Wy, hy means the width and height of the bounding box; (XY ),

visible,,, visible,, represents the visibility state of points a and b,
respectively.

O Unriped @ Pointa

[J Riped

@ Point b

Figure 2 Image annotation interface

The dataset comprises 756 labeled images which are split into
the training set (604 images), validation set (76 images), and test set
(76 images) at a ratio of 8:1:1. To enhance dataset diversity and
improve the model’s generalization capability, data augmentation
techniques are applied to the training process. Details of these
augmentation methods can be found in Table 1.

2.2 YOLOVS network structure

Compared with the algorithm based on region proposal, the one-
stage algorithm model is more compatible with real-time detection
in complex environments®?. The YOLO (you only look once)
algorithm is noted for the effective one-stage detection method™ .

YOLOv8 model is composed of five variables, which share a
consensus network structure across models, as shown in Figure 3.
Decreasing the depth and width of the network can shorten training
and detection times. YOLOv8n network is selected to satisfy the
real-time detection requirements for tomatoes. An additional branch
head is added at the head layer for keypoint detection, as shown in
Figure 4.

Table 1 Data augmentation parameter settings

Dataset Scale Mosaic Translation
Dataset A 0.5 1.0 0.1

Hue, saturation, value (HSV)
hsv_h:0.015, hsv_s:0.7, hsv_v:0.4

\

i

/

YOLOVS pose (Head)
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Figure 4 ' YOLOVS pose head model structure
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2.3 YOLOVS pose improvement

YOLOV8 demonstrates remarkable overall behavior; however,
harvesting tomato bunches requires high precision in keypoint
detection. Therefore, the RepVGG is introduced in the Backbone,
the CARAFE is used in the Neck, and the loU metrics are replaced
with WloU. The improved network framework is shown in Figure 5.
RepVGG is a straightforward and effective CNN architecture,
consisting only of conv and ReLU. Additionally, the model exhibits
stages,
maintaining simplicity during inference stages by re-parameterizing

a multi-branching structure during training while
into a single-branch structure, as shown in Figure 6. CARAFE is a
method for feature fusion, which can effectively utilize the feature
information after upsampling and fuse with the original feature.
Consequently, the expression capacity and transmission efficacy of
features can be enhanced. WloU is a dynamic non-monotonic
focusing mechanism that presents an intelligent gradient gain
assignment method, thus diminishing competitive advantages
conferred by high-quality bounding boxes, allowing WIoU to focus
on average-quality bounding boxes and improving the detector’s

overall performance.

e RepVGGH+ C2f HPRepVGG HH C2f H+RepVGGH+ C2f HHRepVGGH+ C2f H+RepVGGf| |

. ' PP PTEP0P PTPTEP PTPoP 7 i U !

‘ ‘ — /
ARAFE

Figure 5 Improved YOLOVS pose network structure

) Identity

RepVGG training

RepVGG inference
Figure 6 RepVGG frame

2.3.1 RepVGG

Many complex convolutional neural networks (CNN) achieve
higher accuracy than simpler ones; however, their disadvantages are
outstanding. These increase the difficulty of implementation and
customization, and bring slow inference, low memory utilization,
high memory access costs, and limited compatibility between

various devices. RepVGG brings an ideal balance between accuracy
and speed compared to existing technologies™. Inspired by
ResNet™, the architecture employs both identity and 1x1 branches
to explicitly construct a shortcut branch. To ensure most members
remain shallow or simple, ResNet identity and a 1x1 branch are
adopted. By stacking multiple blocks, a model suitable for training
is constructed.

The transformation between the multi-branch structure during
training and the plain structure in inference is realized through
architectural re-parameterization. For instance, an identity branch
can be regarded as a reduced form of a 1x1 conv, which can be
further simplified into a reduced form of a 3x3 conv. This enables
the construction of a unified 3x3 kernel by merging the parameters
of the initial 3x3 kernel, identity branch, 1x1 branch, and Batch
Normalization (BN)®” layer. Specifically, the network architecture
is integrated with a corresponding group of parameters during
training. At inference time, the trained blocks are converted into a
unified 3x3 conv, thus obtaining a 3x3 kernel, two 1x1 kernels, and
three bias vectors. The ultimate bias is computed by summing the
three bias vectors, while the eventual 3x3 kernel is derived by
incorporating the 1x1 kernel to the center of the 3%3 kernel. This is
trivially achieved via zero-padding the 1x1 kernel to 3x3 and then
summing all three kernels, as illustrated in Figure 7. Consequently,
the RepVGG model at inference time consists of one type of
operator: ReLU following conv. This design enables achievement of
high operating speed on generic computing devices such as GPUs
for efficient testing and deployment.
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Figure 7 RepVGG module of the parametric structure

2.3.2 CARAFE

Feature upsampling is a crucial structure in many network
architectures, with the composition playing a pivotal role in
prediction performance™. In YOLOvS8, an upsampling method
utilized is nearest-neighbor interpolation, which replicates the
nearest pixel values, resulting in an upsampling image that lacks
smooth gradient transitions, which in turn results in missing image
detail. During the keypoint detection task, insufficient precision of
details caused by nearest-neighbor interpolation can adversely
impact detection performance, thus the efficient CARAFE structure
is introduced to enhance the upsampling algorithm in YOLOVS.



250  October, 2025 Int J Agric & Biol Eng

Open Access at https://www.ijabe.org

Vol. 18 No. 5

CARAFE offers a wide receptive field and dynamically
produces fitness kernels in response to incoming information rather
than importing significant computational overhead or additional
parameters, making it lightweight while effectively leveraging
surrounding information™. CARAFE comprises two components:
A kernel prediction and a content-aware reassembly module,

functioning through upsampling kernel prediction and feature

Kernel
prediction module

I

|

|

|

I

! Content H

: H encoder Eggi

L G W s

: Channel oW
|| compressor -
L

Content-aware
reassembly module

normalizer

reassembly. The process involves two main stages: First, a
reassembly kernel is generated based on the content at each target
location. Second, the features are recombined with the predicted
ones. CARAFE will generate a feature map y’ based on y with
dimensions CxHxW, using an upsample ratio o, as shown in

Figure 8.
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Figure 8 CARAFE’s overall framework

In the first stage, feature channels are compressed by the kernel
prediction module via the conv layer to decrease parameters and
improve feature extraction efficiency. Compressed images of
dimensions C,, xHxW are encoded employing a conv layer with
encoder kernel, output a reassembled kernel of dimensions ok;, *
HxW, then the generated k,, x k, kernel is normalized with
softmax.

In the second stage, for reassembled kernel W, (k,,*k,,), the
content-aware reassembly module reorganizes features over the
selective area. Under the action of a reassembled kernel, each point
in the N (x,, k,,) area has a stronger contribution to the upsampled
area on account of the content of the feature. More attention is paid
to pertinent points in the selective area, improving the semantics of
the reassembled feature map.

233 WIoU

Loss calculation in YOLOVS pose comprises classification,
bounding boxes, and keypoints for the decoupled-head structure.
Bounding box loss influences keypoint predictions because the
target region is delineated by bounding boxes, within which precise
regression of keypoints is performed. Therefore, if the bounding
box prediction is inaccurate, the model may search for keypoints in
the incorrect region, resulting in inaccurate keypoint predictions.
While the bounding box and keypoint loss are computed separately,
they are jointly optimized. If the weight of the bounding box loss is
excessively high, it will suppress keypoint regression. Bounding
box loss in YOLOv8npose is computed via CloU. However, CloU
does not capture practical variations between width and height, for
training images unavoidably contain low-quality data. Variables of
distance and length-width ratio aggravate penalties on low-quality
data, diminishing the model’s ability to generalize. To minimize the
above impairments, WloU is drawn to optimize the network™.

The prediction process of CloU and WIoU loss between
different iterations is shown in Figure 9. The orange area is the
ground truth, and the blue area is the initial detection area. Areas of
green and red are the forecasting processes of CloU and WIloU,

respectively. CloU’s width and height cannot be simultaneously
increased or decreased, whereas WloU focuses on the differences in
width and height, as shown in Figure 9. During the early iterations,
WIoU achieves faster shape matching of the bounding area. With
further iterations, WloU effectively reduces the area of non-overlap
between the predicted and the ground truth while optimizing the
shape of the borders, allowing the predicted area to converge toward
the ground truth more rapidly than CloU. In later stages, WloU
demonstrates superior performance. Compared to CloU, the
bounding area predictions under WloU align almost perfectly with
the ground truth, achieving significantly higher prediction accuracy.

q D D [ Inital

O O [ | Ground truth
j D D CIOU

O n n WIOU

Figure 9 Forecasting process for CloU and WloU

WIloU regression loss is shown in Figure 10. The green box is
the prediction box, whose center point is (x,y); width and height are
w and A, respectively. The yellow box is the ground truth, whose
center point is (xy,y,); width and height are w, and h,,
respectively. The red box is the minimum vertical rectangular box
of the predicted and ground truth; the width and height are W, and
H,, respectively. The blue box is the overlap between the predicted
and ground truth; width and height are W, and H,, respectively.
WIoU losses are calculated as follows in Equations (2-4):
WiH,

Loyu=1-IoU=1-— —-"——
v ° Wh+wyhy — W.H,

@)
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k]

Figure 10 WIoU loss for bounding box regression

Ryiou = €XPp ( Wit HRY (3)
£x~
l:onU = rRWIouﬁloU’ r= 50,5_6’ ﬁ - ﬁ (4)

In the Equation (4), £,,; represents the intersection over union
(IoU) loss; Ly represents WIoU loss; 8 represents the outlier
factor; rrepresents the gradient gain; @ and § are hyper-parameters
controlling the mapping between S and r; the superscripted *
indicates detachment from the computation graph.

2.4 Tomato bunch pose acquisition

The improved keypoint algorithm enables precise acquisition of
tomato bunch information, providing technical support for efficient
harvesting. When extracting and identifying the keypoint
information of mature tomato bunches, as mentioned earlier, the
keypoints include two points, namely point @ and point b, where the
line connecting these two points represents the growth orientation of
the tomato bunch. This information can guide the motion path of the
end-effector and optimize the harvesting operation. However, due to
the natural growth of tomato bunches, their orientations vary, and
there are different degrees of inclination, as shown in Figure 11a. If
these inclination angles are not considered, it may lead to
unsuccessful grasping or fruit damage caused by angular deviations.
Therefore, the end-effector must adjust in real time according to the
inclination of the tomato bunch.

To determine the inclination angle of the tomato bunch, the
angle between the line connecting the two keypoints and the Y-axis
of the 2D image pixel coordinate system is calculated. Using the 2D
pixel coordinates of the keypoints, the vector between the two
points is computed, and the inclination angle of the tomato bunch is
obtained using the vector angle formula, as illustrated in the
corresponding Equation (5). This angle not only provides crucial
parameters for adjusting the end-effector but also helps predict
potential risks during the harvesting process.

a. Original image

Figure 11

In addition to the inclination angle, the direction of the angle
must also be determined to ensure that the end-effector can be
adjusted to the correct working orientation, as shown in Figure 11b.
In a 2D plane, the relative direction can be calculated using the
cross-product of two vectors, thereby determining the direction of
the adjustment angle, as illustrated in the corresponding Equation
(6). The cross-product formula is simple and efficient, making it
suitable for real-time applications in automated control systems.

_ ‘_’;b . ‘_}Y
anle:cosl(q _,> 5
g 7l ©)
cross product = x,,yy — VX (6)

where, V,, is a vector from point a to point b, ¥, is a unit vector
parallel to the Y-axis, Vi = (Xuw,Yw), Vy = (xy,yy). If the cross
product>0, it indicates that ¥, is in the counterclockwise direction
relative to ,,. The end-effector needs to rotate counterclockwise by
the corresponding angle.

b. Posec alculation

c. Pose acquisition

Tomato bunch pose calculation

3 Experiments and results

3.1 Experimental details

Model training hardware configuration: Windows 10 Pro OS,
16 GB RAM, 11th Gen Intel(R) Core(TM) i5-11400@2.60 GHz
NVIDIA GeForce RTX 3060. The coding language is Python
3.7.16, and the open-source learning framework is PyTorch 1.11.0.
In addition, CUDA 11.3 is updated to boost the system’s computing
performance with 16 images trained in each epoch. AdamW
optimizer is utilized, setting initial and termination learning rates to
0.01. The weight decay coefficient is 0.0005, and the momentum
parameter reaches 0.937. The training process is configured for 300
epochs. However, to avoid overfitting and reduce unnecessary
computation, an early stopping strategy is applied based on the
validation loss. If the validation loss does not improve for 20
consecutive epochs, the training is stopped automatically. The
model weights corresponding to the lowest validation loss are saved
as the final model for evaluation.
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3.2 Evaluation indicators

To assess the precision of tomatoes multi-task assay, Precision
(P), Recall (R), Average Precision (AP), and mean Average
Precision (mAP) are used. mAP indicator is used to evaluate the
model performance. Parameters and giga floating-point operations
per second (Gflops) are used to assess the complexity of models.
The time indicator is measured by the predicted time of each image.
The definition is shown in Equations (7-10):

TP
P= T p )
TP
R=Tp N ®)
A 1
P= fo P(R)dR ©
l 2
mAP:EE:AR (10)
i=1

where, P(R) represents the P corresponding to R.

mAP of keypoint detection is calculated based on object
keypoint similarity (OKS), which computes the matching degree
between predicted and ground truth. The definition is shown in

Equation (11):
&’
Zexp (_Zsz’k?) 1
OKS = - (11)

Z1

where, d; is the Euclidean distance between the predicted keypoint
and ground truth; s represents the scale factor; k; represents the
weight factor of the keypoint. When OKS exceeds a certain
threshold, the prediction is considered correct. Then AP and mAP
are calculated by the formula of target detection.
3.3 Ablation experiment

To comprehensively evaluate the performance contributions of

each module in the proposed model, this paper conducts systematic
ablation experiments from the following three aspects: (1)
Comparison of the backbone network structure, (2) improvement of
the upsampling module, and (3) replacement of the bounding box
regression loss function.

Firstly, to verify the effectiveness of RepVGG as the backbone
network, under the same training settings, comparative experiments
are conducted with various mainstream lightweight network
structures  (including  MobileNetV2,  EfficientNetV2, and
ShuffleNetV2). The experimental results are listed in Table 2 as
follows. Secondly, in order to evaluate the influence of different
regression loss functions on the model performance, CloU is
replaced with WIoU, DIoU, SloU, and ShapeloU respectively for
comparative experiments, as listed in Table 3. Finally, under the
YOLOv8n-pose framework, this paper conducts combination
experiments on each enhancement module (RepVGG module R,
CARAFE upsampling module C, and WIloU loss function W), and
the corresponding relationship of algorithm combinations is listed in
Table 4. Finally, the model formed by integrating the three
improvements is named YOLOv8np-RCW. The performance
comparison results of each combined model are listed in Table 5.

The RepVGG backbone significantly improved detection
performance while maintaining a relatively small model size of only
3.08 million parameters, as listed in Table 2. Compared to the
original CSPDarkNet backbone, the precision, recall, and mAP50 of

the bounding box detection increased by 1.3%, 5.8%, and 2.6%,
respectively, while the precision, recall, and mAP50 of keypoint
detection improved by 1.7%, 4.7%, and 3.2%. In addition, the
inference time was reduced from 9.5 ms to 8.2 ms, representing a
13.7% improvement in real-time performance. Although
EfficientNetV2 achieved higher detection accuracy, with mAP50
values of 89.5% for bounding boxes and 90.4% for keypoints, its
model complexity is significantly higher, with 21.8 million
parameters, 55.3 Gflops, and an inference time of 28.2 ms. Such
computational demands are unsuitable for deployment on resource-
constrained agricultural robotic platforms. In contrast, RepVGG
provides a more favorable trade-off among detection accuracy,
inference speed, and model complexity, making it the optimal
backbone choice for the proposed model.

Table 2 Comparison of lightweight backbone networks

Box Pose

Parameters/ Time/
Name Pl Rl mAP50/ P/ R/ mAP50/  ,f  Gflops *
% % % % % %
CSPDarkNet oo 3735 g1 813753 813 308 83 95
(Initial)

MobileNetV2 86.3 78.4 85.8
EfficientNetV2 87.4 84.4 89.5
ShuffleNetV2 78.3 85.2 84.4

RepVGG  81.679.3 83.7

85.177.2 85.1 3.83 103 10.2
88.8 853 904 21.8 553 282
78.7 85.8 83.9 2.86 77 99
83.080.0 84.5 3.08 83 82

Table 3 Comparison of regression loss functions

Box Pose

Parameters/ Time/
Name — p/ R/ mAP50/ P/ R/ mAP50/  ;  Gflops
% % % % % %
CloU 803 735 811 813 753 813 3.08 83 95
(Initial)
DloU 72.1 85.1 849 729 86.2 852 3.08 83 62
SloU 81.0 753 836 820 762 833 3.08 83 65
WIoU 89.0 780 86.1 87.6 76.6 85.1 3.08 83 9.l
ShapeloU 86.5 81.5 863 853 80.3 852 3.08 83 6.1

Table 4 Algorithm improvement and corresponding name

Initial Improvement Name
YOLOvV8n pose RepVGG YOLOv8np-R
YOLOvV8n pose CARAFE YOLOv8np-C
YOLOvV8n pose WIloU YOLOv8np-W
YOLOvV8n pose RepVGG+CARAFE+WIoU YOLOv8np-RCW

Table 5 Comparison of algorithmic indicators

Box Pose .
Parameters/ Time/
Name Pl R/ mAPS0/ P/ R/ mAPS0/  p  Gflops *

% % % % % %
YOLOv8n pose 80.3 73.5 81.1 813753 813 3.08 83 95
YOLOv8np-R 81.679.3 83.7 83.080.0 84.5 3.08 83 82
YOLOv8np-C 83.885.3 86.4 829862 863 3.22 86 113
YOLOv8np-W 89.0 78.0 86.1 87.676.6 85.1 3.08 83 9.1

YOLOv8np-
RCW

84.1863 873 83.6859 86.8 3.22 86 98

As listed in Table 3, the WloU loss function exhibited overall
superiority in both bounding box and keypoint detection tasks, with
mAP50 values reaching 86.1% and 85.1%,
significantly outperforming CloU, DIoU, and SIoU. Compared to
CloU, WIoU not only provided notable accuracy gains but also

respectively,

reduced inference time from 9.5 ms to 9.1 ms, without any increase
in model parameters or computational cost, thus achieving a
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balanced improvement in efficiency and precision. While ShapeloU
achieved relatively high recall, with R values of 81.5% for bounding
boxes and 80.3% for keypoints, its overall detection accuracy
remained lower than that of WIoU. Therefore, WloU is better suited
for complex scenarios involving occlusion and variation in tomato
bunch shapes, enhancing both model robustness and localization
accuracy.

As demonstrated in Table 5, the YOLOv8np-R model, which
incorporates only the RepVGG backbone, improved the detection
precision for both bounding boxes and keypoints while reducing the
inference time to 8.2 ms, making it well-suited for applications
requiring real-time performance. The YOLOv8np-C model, which
integrates the CARAFE upsampling module, achieved the highest
recall rates—85.3% for bounding boxes and 86.2% for
keypoints—by enhancing local feature extraction, making it more
effective in greenhouse environments with significant occlusion.

1

The YOLOv8np-W model, which uses the WloU loss function,
achieved steady gains in detection accuracy without increasing the
model’s complexity, demonstrating bounding box
regression performance. The final integrated model, YOLOv8np-
RCW, which combines RepVGG, CARAFE, and WIloU, achieved
the best overall performance. Compared to the baseline, it improved
the precision, recall, and mAPS50 of bounding box detection by
3.8%, 12.8%, and 6.2%, respectively, and enhanced keypoint
detection by 2.3%, 10.6%, and 5.5%. These results demonstrate the
effectiveness of the combined optimization strategy in improving
both detection accuracy and inference efficiency.

The maturity confusion matrix from the ablation experiments is
shown in Figure 12. The accuracy of YOLOv8np-R, YOLOv8np-C,
YOLOv8np-W, and YOLOv8np-RCW models in recognizing
maturity has improved compared to YOLOv8n pose, with
YOLOv8np-RCW having the fittest maturity category recognition.

superior

1 1

B 3 3
& 0.863 0.194 & 0.865 0.189 & 0.873 0.179
o - R -
2 2 2
= el el
g 2 2
&~ 3 ~ 3 ~ 3
£ 0137 0.806 g 0.135 0.811 g 0.127 0.821
- 0.14 > 0.14 > 0.13
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Truth Truth Truth
a. YOLOv8n pose b. YOLOvV8n-R ¢. YOLOv8n-C
1 1
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Figure 12 Maturity confusion matrices

The bounding box loss curve from the ablation experiments is
shown in Figure 13. The YOLOv8np-W and YOLOv8np-RCW
converge faster due to the addition of WIoU, which speeds up the
convergence of the original model, and the loss of the YOLOv8np-
RCW model finally converges to 0.482 15, which is 55.76% lower
than the YOLOv8n pose model. It effectively decreases the loss
value and improves the detection performance.

5 Pose W Pose-R M Pose-C

M Pose-W M Pose-RCW
4

® Pose 1.0898 ® Pose-R 1.0697
3 ® Pose-C 1.0063

® Pose-W 0.50045

® Pose-RCW 0.48215

Box loss

150 200 250

Epoch

50 100

Figure 13 Box loss curve in ablation experiment

3.4 Comparison of detection performance with other models

To prove YOLOvV8np-RCW  model’s comprehensive

performance, compared with other algorithms fusing target
detection and keypoint detection, the outcomes are presented in
Figure 14. Since the parameters, calculation volume, and detection
time of multi-model fusion are higher than those of a single model,
the box mAP50 and pose mAP50 of the models are evaluated for
comparison. The box mAP50 and pose mAP50 of RTMDet-
RTMPose are 2.9% and 2.8% higher than those of YOLOv8n pose.
The box mAP50 and pose mAPS50 of Fasterrcnn-RTMPose are
3.3% and 2.8% higher than those of YOLOvS8n pose, but their
detection time is longer than that of YOLOv8n pose. The detection
time of YOLOv8np-RCW and YOLOv8n pose model is
comparable, and the box mAP50 and pose mAP50 values are the
highest; thus, comprehensively considered, YOLOv8np-RCW has
the best performance.

To compare the maturity and keypoints classification detection
effects of different algorithms, experiments are conducted on the
test dataset by calculating the number of identified ripe tomato
bunches, unripe tomato bunches, point a and point . When the
confidence score threshold is 0.5, the result is shown in Figure 15.
YOLOv8np-RCW has the largest total number of detections, among
which the number of maturity and keypoint detections also exceeds
other models. To compare the performance of YOLOv8np-RCW
and other models in extracting two keypoints in detail, the
difference in pixel distance between the predicted point and ground
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truth on the 2D image is taken as an assessment metric. The average
error is calculated for the coordinates of point @ and point b detected
by each model. Table 4 shows the average distance error statistics
between predicted keypoints of the different models and ground
truth in X, ¥, and Euclidean directions. The distribution of point a
and point b in the X-axis and Y-axis is presented in Figure 16.

Q The larger the shape the shorter the time
® YOLOVS8n pose @ Fasterrcnn-RTMPose
@® RTMDet-RTMPose @ YOLOv8np-RCW

100
5 841 @ Hoo8!
<0 |81 .3’, Qi3 -9 Al
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2 I
<
g
(]
2| 33%
ol 2.9%
0
81.1 84.0 84.4 87.3
Box mAP50

Figure 14 Performance comparison of different models
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Note: A. YOLOv8n pose B. RTMDet-RTMPose C. Fasterrcnn-RTMPose
D. YOLOvV8np-RCW
Figure 15 Comparison of outcomes from different models

Table 6 shows that the accuracy of YOLOv8np-RCW in
recognizing the points exceeds that of the other models. The
average Euclidean distance errors for the two keypoints are 19.638
pixels and 14.708 pixels, with standard deviations of 9.578 pixels
and 8.728 pixels, respectively. This level of precision in locating the
keypoints makes it suitable for use in tomato bunch picking. As
presented in Figure 16, the YOLOv8np-RCW model’s detection
error in the X-axis and Y-axis is more concentrated near the average
value, and the maximum distance error is less than 50 pixels, with a
small error fluctuation range, which is better than the detection
results of other models. In summary, YOLOv8np-RCW has
superior performance and accurate prediction, making it sufficient
to fulfill the real-time detection needs of tomato harvesting robots.

The visualization results of different models are shown in
Figures 17 and 18. The bounding box and maturity detection
visualization results of tomato bunches in complex scenarios are
illustrated in Figure 17. In the images detected by the YOLOv8n
pose model, missed detections of tomato bunches and imprecise
bounding boxes are observed, leading to errors in maturity
recognition, with maturity confidence falling below 90%, as shown

in Figure 17b. The RTMDet-RTMPose accurately detects bounding
boxes compared with the YOLOv8n pose; however,
misclassifications occur, with the same tomato bunch being
identified as both ripe and unripe, as shown in Figure 17c. The
Fasterrcnn-RTMPose model exhibits high confidence in maturity
recognition; however, the bounding boxes fail to fully enclose the
tomato bunches in some cases, as shown in Figure 17d. Although
the YOLOv8np-RCW model exhibits lower maturity confidence
compared to the Fasterrcnn-RTMPose model, it performs better in
detection, successfully identifying tomato bunches missed by the
other three models. Additionally, the detected bounding boxes
effectively enclose the tomato bunches, as shown in Figure 17e.

=X
% Point a
40 -

@ ®  © @

Point b

(2) (®) (0) (d
Note: (a) YOLOv8n pose (b) RTMDet-RTMPose (c) Fasterrcnn-RTMPose
(d) YOLOv8np-RCW

Figure 16 Distribution of data at keypoints in different models

Table 6 Comparison of pixel errors at keypoints of
different models

Average distance (pixel) Standard
Keypoints Model Fuclidean deviation
X Y distance pixel)
YOLOV8n pose 21.265 22.359  32.057 9.932
RTMDet-RTMPose  18.691  20.267  26.296 9.548
Point a
Fasterrcnn-RTMPose 15304  16.858  22.535 9.098
YOLOV8np-RCW 14267 14.762 19.638 9.578
YOLOvV8n pose 12.297  14.338 17.313 9.595
RTMDet-RTMPose ~ 11.895  12.581 15.655 8.896
Point b
Fasterrcnn-RTMPose  11.032  11.826 15.479 9.347
YOLOvV8np-RCW 10.638  10.465 14.708 8.728

Keypoint detection is a critical step for the successful
harvesting of tomato bunches. In greenhouse environments, the
peduncles of tomato bunches are often curved rather than growing
vertically, posing challenges in identifying the keypoints. The
YOLOvV8n pose model exhibits large prediction errors for keypoints
within the inaccurately detected bounding boxes, with point a,
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RTMPose e. YOLOv8np-RCW

Figure 17 Visualization of tomato bunch and maturity recognition

located at the connection between the main stem and fruit peduncle,
being incorrectly identified and deviating onto the main stem

RTMDet-RTMPose
successfully detects more keypoints than the YOLOv8n pose model,

presented in Figure 18a. The model
with higher accuracy in keypoint identification. However, there is
still some deviation in the position of point a presented in
Figure 18b. Compared to the RTMDet-RTMPose model, the
Fasterrcnn-RTMPose model detects the tomato bunch bounding
boxes in different positions, leading to different results when using
the same keypoint detection model. Although fewer keypoints are
identified, the results are more accurate compared to the first two
models, as shown in Figure 18c. The YOLOv8np-RCW model
demonstrates more accurate positioning of the two keypoints.
Although there is a slight deviation at some keypoints, the number
and accuracy of the detected keypoints are superior to those of the
other three models, as shown in Figure 18d. From the above
analysis, it can be seen that both the bounding box and keypoint
recognition are more accurate, highlighting the model’s strong
feature extraction ability.

3.5 Field experiment

To verify whether the improved algorithm meets the efficiency
and accuracy requirements of tomato harvesting robots for
recognition and localization, as well as the effectiveness of the
harvesting method, the algorithm is deployed on a harvesting robot
for field testing. The robot is equipped with a six-degree-of-freedom
industrial robotic arm, a Realsense D435i depth camera, an
integrated clip-and-cut end-effector, and a mobile platform, offering
high flexibility and adaptability to environmental conditions, as
shown in Figure 19. The main steps of the robot’s harvesting
process include recognition, sleeving, and cutting, forming a
complete harvesting workflow, as illustrated in Figure 20.

The specific operation process is as follows: First, the robot
starts the depth camera according to the standard posture set during
the dataset collection and captures image data of the current
environment. The improved algorithm is then used to identify
mature tomato bunches in the image and extract keypoint

C.

d.

Note: a. YOLOv8n pose b. RTMDet-RTMPose c. Fasterrcnn-RTMPose d. YOLOv8np-RCW

Figure 18 Visualization of tomato keypoint recognition
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Figure 19 Tomato harvesting robot

information. Using the 2D pixel coordinates of the keypoints, the
inclination angle and direction of the tomato bunch are calculated.
Simultaneously, the depth camera retrieves the depth information of
the keypoints, converting the 2D coordinates into 3D spatial
coordinates, which provide precise data support for the subsequent
motion path planning of the robotic arm. Next, the robot controls
the robotic arm to perform the harvesting operation according to the
following steps:

Initial Positioning: The robotic arm moves to point b based on
the calculated 3D coordinates, ensuring the end-effector is close to

the tomato bunch.

Angle Adjustment: The end-effector’s orientation is adjusted
according to the inclination angle of the tomato bunch, aligning it
with the bunch’s growth direction.

Precise Grasping: The end-effector moves along the line
connecting the tomato bunch to point a, ensuring the blade is
accurately aligned with the fruit stem.

Cutting Operation: The end-effector executes the cutting action,
precisely cutting and securely holding the tomato bunch, completing
the harvesting operation.

Three sets of experiments are conducted. The first set of
experiments evaluates the tomato bunch recognition rate and the
maturity recognition accuracy. A conveyor channel is randomly
selected, and the maturity of tomato bunches on both sides is
determined based on a manually calibrated dataset standard. The
number of ripe tomato bunches, 7T, and unripe tomato bunches,
Tnipeas are recorded. Using the improved algorithm, the detected
tomato clusters within the field of view are identified, and the
number of ripe tomato bunches, P,;.,, and unripe tomato bunches,
Puipea, are recorded. The tomato bunch recognition rate and
maturity recognition accuracy are calculated using Equations (12-
13). The experimental results are listed in Table 7.

a. Recognition

b. Sleeving

c. Cutting

Figure 20 Harvesting process

Table 7 First set of experiments

Times Tﬁped Tunriped P, riped P, unriped
1 22 32 19 33
2 16 28 13 30
R =1 ’(Triped + Tuniped) = (Pripea + P, unriped)‘ (12)
=1-
(Triped + Tunriped)
ITriped =P ripedl |Tunriped -P unripedl
Tiipe L onripe
Ro=1- ped ped (13)

2

The second set of experiments aims to evaluate the response
time of the model, defined as the duration from the start of
recognition to the issuance of the picking command. To conduct the
experiment, five bunches of ripe tomatoes are selected, and each
bunch is tested five times. The response time for each test is
measured using the time.time() function, with all measurements
recorded. The average response time is calculated based on the
collected data. The results of this evaluation are presented in
Table 8.

The third set of experiments test the ability of keypoint
positioning and end-effector sleeving, and harvesting experiments
on 50 bunches of ripe tomatoes are carried out. The harvesting
results are analyzed through three groups of data, as shown in Table

9.

In this field experiment, the tomato bunch recognition rate is
96.9%, the maturity recognition accuracy is 89.6%, the average
visual response time is 0.1499s, the harvesting success rate is 68%,
and the average time to pick each bunch of tomatoes is 10.8366 s.
These results indicate that the improved algorithm and harvesting
method meet the performance requirements for the tomato
harvesting robot.

Table 8 Second set of experiments

Number of Response time of model/s
repetitions Bunchl  Bunch2  Bunch3  Bunch4  Bunch5
1 0.1426 0.1468 0.1546 0.1393 0.1539
2 0.1495 0.1505 0.1495 0.1460 0.1466
3 0.1449 0.1475 0.1606 0.1625 0.1447
4 0.1390 0.1456 0.1575 0.1595 0.1515
5 0.1524 0.1464 0.1536 0.1458 0.1555
Table 9 Third set of experiments
Number of Keypoint location Sleeving Average harvesting
bunches failure failure time/s
22 4 3 11.6585
12 2 3 10.5241
16 3 1 10.3273
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4 Discussion

An innovative method is proposed, integrating tomato bunch
detection, maturity assessment, and keypoint detection with a single
model. Compared to cascaded approaches integrating target and
keypoint detection, YOLOv8np-RCW is more lightweight, more
rapid, and simpler to implement on embedded devices. Besides, the
inclusion of maturity evaluation enables precise picking, thereby
improving both picking efficiency and fruit quality. In keypoint
detection, two keypoints are extracted for each tomato bunch: point
a, the connection between the peduncle and the main stem, and
point b, the centroid of the lowest fruit in the bunch. The end-
effector adopts a straight-line motion from the bottom keypoint of
the tomato bunch to the point for cutting, minimizing potential
damage during harvesting.

The improved YOLOv8np-RCW model presents significant
enhancements compared with the YOLOv8n pose: P, R, and
mAP50 of the bounding boxes increased by 3.8%, 12.8%, and 6.2%
respectively, while keypoints’ corresponding indicators increased
by 2.3%, 10.6%, and 5.5% respectively. The bounding box loss
decreased by 55.76%, and the maturity detection accuracy improved
by 2.3%. Despite these performance improvements, the model’s
parameters, Gflops, and inference time only slightly increased,
maintaining fast computation and detection capability. The model
processes individual images quickly, with minimal pixel Euclidean
distance error, facilitating real-time bunch harvesting tasks for
harvesting robots.

While the proposed YOLOv8np-RCW model demonstrates
high detection accuracy and efficiency under greenhouse
conditions, its current training and evaluation are limited to images
captured in a controlled environment. This constraint raises
important considerations regarding the model’s generalization to
more diverse and challenging real-world settings.

To ensure broader applicability, future work will focus on
evaluating the model’s performance under varying illumination
conditions, including intense sunlight, shadows, and artificial night-
time lighting. These factors can significantly alter the appearance of
tomato fruits and peduncles, thus affecting detection and keypoint
localization. Moreover, the presence of more severe occlusions—
caused by overlapping fruits, leaves, or support structures—remains
a common challenge in real harvesting scenarios. Incorporating
dynamic occlusion-aware mechanisms, such as multi-frame
information fusion or temporal consistency modules, could enhance
model robustness under such constraints.

Another crucial aspect concerns the adaptability of the model to
different tomato cultivars, which may vary in shape, size, clustering
pattern, and color distribution. To improve the model’s cultivar-
invariance, a more diversified training dataset will be collected,
encompassing multiple growth stages, environmental backgrounds,
and tomato varieties.

Furthermore, to extend the scope beyond
greenhouses, future research will explore adapting the model for
open-field environments. Open-field farming introduces additional

application

complexity due to unpredictable weather, background clutter, and
less-structured plant arrangements. Domain adaptation techniques,
transfer learning, and real-time image enhancement algorithms may
offer promising solutions to bridge the performance gap between
greenhouse and open-field applications.

In the long term, the proposed model can be integrated into
autonomous harvesting and inspection platforms operating across a

wider spectrum of agricultural environments. Its multi-task
capabilities—combining object detection, maturity assessment, and
keypoint localization—make it an ideal candidate for deployment in
complex field conditions, contributing to intelligent yield
estimation, labor planning, and post-harvest quality control in
precision agriculture.

5 Conclusions

In this paper, for effective tomato bunch harvesting, an
improved YOLOv8np-RCW model based on YOLOv8n pose is
proposed, which is an end-to-end multitasking model that
recognizes tomato bunches and bunches maturity and location of
keypoints. The RepVGG architecture, CARAFE upsampling
module, and WIoU loss are incorporated to improve the model’s
performance. Ablation and comparative experiments indicate that P,
R, and mAP50 of YOLOv8np-RCW for detection boxes are 84.1%,
86.3%, and 87.3% respectively. For keypoints, the P, R, and mAP50
are 83.6%, 85.9%, and 86.8% respectively. Compared to the
YOLOv8n pose for detection boxes, there have been increases of
3.8%, 12.8%, and 6.2% in P, R, and mAP50 respectively; for
keypoints, improvements of 2.3%, 10.6%, and 5.5% are observed in
P, R, and mAPS50 respectively. The model’s parameters, Gflops, and
inference time remain essentially unchanged. The bounding box
loss decreased by 55.76%, and the maturity detection accuracy
improved. Besides, the Euclidean distance error in pixels between
predicted and ground truth is maintained within 20 pixels.
Completing the tasks of bunch detection, maturity assessment, and
keypoint localization requires only 9.8 ms. Compared to RTMDet-
RTMPose and Fasterrcnn-RTMPose algorithms, the proposed
algorithm demonstrates superior performance in both detection
accuracy and speed.

This paper proposes a method that combines keypoint 2D
information to control the end effector’s motion path based on an
improved model, and applies it to a harvesting robot. Field
experiments show that the harvesting success rate is 68%, and the
average time to harvest each bunch of tomatoes is 10.8366 s.

These outcomes suggest that the improved YOLOv8np-RCW
demonstrates both robustness and suitability regarding detection
precision and equipment deployment. Looking ahead, there is a plan
to further optimize the algorithm and explore potential applications
in detecting other crops.
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