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Abstract: Soil moisture is a critical component of the soil-plant-atmosphere continuum (SPAC) in fruit trees. However, high-
precision monitoring of orchard soil moisture at the regional scale still remains a challenge. This study presents a two-stage
feature space model to estimate root zone soil moisture using UAV remote sensing data. The results indicate that the
temperature-leaf area index (TLDI) is negatively correlated with soil water content. The upper triangular space performs highly
effectively for deep soil moisture inversion, with R* values ranging from 0.56 to 0.66, RMSE between 0.20 and 0.27, and RPD
from 1.25 to 1.50. Conversely, the lower triangular space yields superior results for shallow soil moisture inversion, with R
values between 0.67 and 0.82, RMSE from 0.15 to 0.19, and RPD between 1.67 and 2.09. The results suggest that the lower
triangular space is optimal for shallow soil moisture inversion, while the upper triangular space is more suited for deep soil
moisture inversion. This study presents a novel approach for estimating deep soil moisture in orchards, providing a theoretical

basis for improving soil moisture management.
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1 Introduction

Soil moisture is a critical variable in the SPAC for fruit tree
production. It can impact the physiological and ecological processes
of fruit trees, such as transpiration, photosynthesis, nutrient uptake,
and fruit formation™. Accurate monitoring of soil moisture
improves yield prediction and irrigation efficiency, providing a
scientific foundation for optimizing regional water resources.
However, accurately monitoring the spatial heterogeneity and
dynamic changes in deep soil moisture remains a challenge in
agricultural remote sensing research due to the complexities
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introduced by climatic conditions, soil types, and crop growth
stages®™. This challenge is particularly pronounced in deep root
zones, where traditional monitoring methods face limitations in data
coverage and inversion accuracy.

Traditional monitoring strategies, such as tensiometers, provide
high accuracy but are constrained by small sample coverage and
low sampling frequency. They are unsuitable for large-scale or real-
time monitoring. In contrast, remote sensing technology presents a
promising alternative due to its ability to cover large areas and
provide high spatial resolution”. Despite these advantages, remote
sensing models relying on land surface temperature (LST) and
vegetation indices (VIs) struggle to accurately estimate soil
moisture in deeper layers. This issue is particularly challenging in
orchards with heterogeneous vegetation cover and soil properties.
VIs tend to saturate under high vegetation density, diminishing their
sensitivity to soil moisture variations, while LST models are
generally influenced by diurnal temperature fluctuations and surface
heterogeneity', leading to inconsistent subsurface moisture
estimation.

In order to tackle these issues, remote sensing feature space
models, including the triangular and trapezoidal LST-fractional
vegetation cover (LST-FVC) models, have been developed. The
triangular feature space model posits that the dry edge corresponds
to the zero-evaporation isoline, and the wet one represents the
saturated evaporation isoline®. Conversely, the trapezoidal feature
assumes that soil

space model evaporation and vegetation

transpiration change in complete synchrony. However, both


https://doi.org/10.25165/j.ijabe.20251804.9730
mailto:hkdzhaolong@163.com
mailto:240320191178@stu.huast.edu.cn
mailto:9943528@huast.edu.cn
mailto:shiyigongteng@163.com
mailto:15537962990@163.com
mailto:2023201129@stu.njau.edu.cn
mailto:Xiaoxian.zhang@rothamsted.ac.uk
mailto:Xiaoxian.zhang@rothamsted.ac.uk
mailto:cuiningbo@126.com
mailto:mengd202502@163.com
https://www.ijabe.org

240  August, 2025 Int J Agric & Biol Eng

Open Access at https://www.ijabe.org

Vol. 18 No. 4

approaches face practical limitations. Neither sufficiently considers
the varying response times and sensitivities of vegetation and bare
soil radiation temperatures to variations in soil moisture!.
Consequently, they fail to accurately capture the mechanisms
underlying the transition of the LST-FVC feature space from a
triangular to a trapezoidal configuration, ultimately undermining the
accuracy of soil moisture inversion'”.

Aiming to address these shortcomings®, Sun Hao et al. pro-
posed the two-stage feature space model”, which comprehensively
accounts for the dynamic responses of vegetation and bare soil
radiation temperatures. This model elucidates the intrinsic mechan-
ism of the LST-FVC feature space shift. The trapezoidal feature
space has been proven to be a theoretical construct arising from the
improved sensitivity of bare soil LST to soil moisture compared to
that of vegetation LST. When soil moisture is insufficient to notably
affect vegetation temperature, the LST-FVC feature space takes the
shape of a triangle. However, as soil moisture further decreases and
begins to influence vegetation temperature, the feature space
gradually transitions from triangular to trapezoidal.

Traditional Normalized Difference Vegetation Index (NDVI)-
based feature space models are prone to saturation in areas with
dense vegetation, reducing their sensitivity to soil moisture
variations"”, Saturation occurs as NDVI reaches its maximum,
challenging the differentiation of soil moisture changes. This study
proposed replacing NDVI with leaf area index (LAI), a more
reliable indicator of vegetation density and photosynthetic activity,
in combination with LST. Based on this, a two-stage trapezoidal
feature space model was constructed to enhance soil moisture
retrieval at various depths.

Unlike NDVI, which saturates in dense vegetation!'", LAI
maintains a linear relationship with vegetation cover and more
accurately reflects photosynthetic capacity. LAI is less susceptible
to saturation and exhibits a stronger correlation with deep soil
moisture. By incorporating LAI, the two-stage trapezoidal feature
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2.2 Data sources
22.1

The experiment was conducted on April 10 and May 6, 2023. A
DJI M300RTK drone equipped with thermal
multispectral sensors from MicaSense (USA) was utilized to

UAV platform specifications and onboard sensors
infrared and

capture data. Flights were carried out at an altitude of 80 meters and
a speed of 5 m/s, with 80% forward and side overlap. The data were
collected between 14:00 and 15:00 local time under clear skies and
stable lighting, without cirrus or cumulonimbus clouds, ensuring
high-quality imagery. The drone data facilitated the calculation of
LAI from NDVI images and the determination of LST via
reflectance maps generated using Pix4Dmapper after stitching,
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space model addresses the saturation issue of NDVI and offers a
more accurate representation of vegetation’s influence on soil
moisture. The model divides the feature space into upper and lower
triangular regions, facilitating a clearer differentiation between
shallow and deep soil moisture response mechanisms while
effectively capturing the dynamic characteristics of vegetation and
bare soil temperatures.

The objectives of this study include: 1) utilize UAV-based
multispectral and thermal infrared imaging technology to capture
high-resolution remote sensing data and monitor dynamic
conditions in the orchard; 2) validate the soil moisture inversion
model using ground truth data and apply the two-stage trapezoidal
feature space model to differentiate shallow and deep soil moisture
responses; 3) replace NDVI with LAI to enhance model accuracy
and integrate LAI with LST to improve deep soil moisture
inversion; and 4) develop the TLDI model to enhance soil moisture
estimation accuracy.

2 Materials and methods

2.1 Study area

The study was conducted in an apple orchard located in Fufeng
County, Baoji City, Shaanxi Province, within the Weihe Basin of
the Guanzhong Plain. The region covers an area of 720 km’ and
experiences a continental humid monsoon climate characterized by
an annual average temperature of 12.4°C, 592 mm of rainfall, and a
frost-free period of 209 d. The 40.2 hm’ orchard cultivates the ‘Gala’
variety of apple trees, planted at a spacing of 1.0 mx3.5 m. The soil
consists of a mixture of sand, loam, and clay, exhibiting critical
properties such as bulk density, porosity, and hydraulic
conductivity. These properties significantly influence water
retention and movement. Nutrient availability is governed by factors
like soil pH, electrical conductivity, and organic matter content.
These features are essential for accurate soil moisture inversion,
precision agriculture, and water resource management (Figure 1).
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calibration, and preprocessing of the thermal infrared images.
2.2.2  Soil moisture content

The traditional drying method was used to determine soil water
content (SWC) across a 70 mx80 m orchard area with 27 sampling
points. Samples were taken from depths of 0 cm-60 cm, sealed to
prevent moisture loss, and dried at 105°C+2°C until they reached a
constant dry weight. The process was validated by rehydrating and
redrying the samples, with all equipment calibrated to ensure
accuracy. The SWC was determined using the following formula:

ch( -M dry

SWC(% ) = x 100 )

dry

where, M, is the wet weight; My, is the dry weight.
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2.2.3 LAl data

A fisheye camera (180° wide-angle lens) was adopted to
capture images of apple tree leaves from the ground at 27 locations
within the orchard. For each location, three images of the same tree
were taken and processed using Plant Canopy Analysis System
(PCAS) software. The average of these images was used to
calculate the LAI for each tree.
2.3 Remote sensing data

Pix4Dmapper software was employed to stitch the drone-
captured images, followed by radiometric and geometric corrections
to minimize distortions. Pseudo-invariant feature radiometric
correction, using strategically placed whiteboard images, was
applied to generate surface reflectance images.
Subsequently, ENVI 5.6 software was utilized to crop the
experimental area, classify the apple trees, and extract their spectral

accurate

images using the BandMath tool.
2.4 NDVI calculation and calibration

Vegetation indices are typically associated with the abundance
of green vegetation and serve as quantitative measures for assessing
vegetation cover. Over the years, various vegetation indices have
been developed to interpret remote sensing data, with the NDVI
being the most commonly used. The NDVI can be obtained using
the following formula:

NDVI = PNIR ~ Pred )
PNR T Pred

where, pyr and p., represent the surface reflectance in the near-
infrared and red bands, respectively.
2.5 TLDI calculation and calibration

This study established a two-stage trapezoidal feature space
model leveraging drone-based remote sensing data. The model
integrated LST and LAI to estimate soil moisture. The feature space
was partitioned into upper and lower triangular regions, where the
dry edge represents minimum soil moisture and the wet edge
corresponds to maximum soil moisture. Figure 2 illustrates the
partitioning of the feature space. The upper triangular region
demonstrates greater accuracy for deep soil moisture inversion
(40 cm-60 cm), while the lower triangular region is more suitable
for shallow soil moisture inversion (0 cm-30 cm). The proposed
TLDI exhibits a negative correlation with soil moisture and
enhances inversion accuracy, thus improving irrigation precision
and water resource management.

LST
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Figure 2 Diagram of the dry and wet edges in land surface
temperature and fractional leaf area index (LST/LAI) space

TLDI can be expressed as follows:
T,-T,

i,min (3)

imax Ti,mm

TLDI =

where, T; represents the land surface temperature of any given
pixel, and T, and T;,;,denote the maximum and minimum land
surface temperatures corresponding to respective LAI values. The

linear fitting equation for the scatter plot with a given LAI value is
referred to as the dry/wet edge equation. The values of T, and
T:min can be derived from the following equation:

Timx = a; +b; x LAI 4)

Timin = @, +b, x LAI (5)

where, a,, a,, b,, and b, represent fitting coefficients. LAl and LST
data were extracted and fitted using MATLAB. Then, a scatter plot
was generated to approximate the four fitting coefficients.
2.6 Evaluation indicators

This study employed the coefficient of determination (R?), root
mean square error (RMSE), and relative analytical error (RPD) as
primary evaluation metrics. R* reflects the goodness of fit of the
model to the data, with higher values (closer to 1) indicating better
model performance. RMSE quantifies the average deviation
between predicted and actual values, where lower values denote
higher predictive accuracy. RPD assesses the predictive capability
of the model, which is defined as the ratio of the sample standard
deviation to the standard deviation of the residuals'?. An RPD
greater than 2.0 represents high predictive accuracy!’; an RPD less
than 1.4 indicates general predictive performance; an RPD that falls
between 1.4 and 2.0 suggests acceptable predictive accuracy. To
eliminate scale differences between data at different depths, this
study applies the min-max normalization method for standardi-
zation. The data were normalized to account for scale variations
across varying depths, ensuring a consistent basis for comparison.
R?, RMSE, and RPD are expressed by Equations (6)-(9):

i: 0i-9)

R=1-—"—— (6)

> -5y

,_ y—min(y)
y= max(y) — min(y) )

®)

RPD = O-measured —
(o

)

residual

where, y; represents the i-th measured value, J; is the i-th predicted
value, y; denotes the mean of the measured values, y is the original
data, min(y) is the minimum value of the original data, max(y) is the
maximum value of the original data, )’ is the normalized data, and n
signifies the number of data points.

3 Results and discussion

3.1 Feature space construction

The NDVI values of 27 locations were obtained using ENVI
software and subsequently fitted to the measured LAI values to
derive Equation (10) for LAI estimation. LAI data of May 6 can be
obtained from NDVI images using Equation (10) without additional
measurements.
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y=10.616xx-7.72

(10)

where, y represents LAI, and x denotes NDVI. Figure 3 shows the

NDVI image of the apple trees, and Figure 4 depicts the LAI image

of the apple trees on April 10.
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Figure 4 LAI image of the apple trees on April 10

The LST was derived from drone-based thermal infrared
images processed using Pix4Dmapper. With an accuracy exceeding
90%, it served as a reliable representation of the actual surface
temperature', as shown in Figure 5.
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Figure 5 Remote sensing map of the surface temperature

3.2 Feature space distribution

The LST and LAI data were analyzed to obtain the relevant
results. The two-stage feature space model was developed to extract
the boundary values of LST associated with LAI. Subsequently,
linear regression was applied to generate the fitting lines and
formulas for the dry and wet edges, providing theoretical support
for soil moisture inversion*.

Table 1 lists the dry and wet edge fitting equations for the two-
stage feature space model on April 10 and May 6, 2023. On April
10, the upper triangular dry edge equation yielded an R* value of
0.7609, while the lower triangular dry edge equation demonstrated
higher accuracy with an R* value of 0.8433. The wet edge equations
for both triangular spaces did not report R* values.

Table 1 Dry and wet edge fitting equations

Date Fitting equation R
Upper triangular dry edge: y = —4.7691x+50.4021 0.7609
2003.4-10 Upper triangular wet edge: y =—14.539x+53.6932
Lower triangular dry edge: y = —14.539x+53.6932 0.8433
Lower triangular wet edge: y = —1.7498x+25.1206
Upper triangular dry edge: y =-3.7457x+43.4131 0.4607
2023-5-6 Upper triangular wet edge: y =-26.585x+45.1363
Lower triangular dry edge: y = —26.585x+45.1363 0.6937

Lower triangular wet edge: y = —2.6575x+26.4399

On May 6, the upper triangular dry edge equation showed an R*
value of 0.4607, indicating reduced accuracy compared to April 10.
By comparison, the lower triangular dry edge equation achieved an
R* value of 0.6937, representing improved performance. These
results suggest that the lower triangular space provides higher fitting
accuracy, particularly for dry edges, thus supporting its suitability
for soil moisture inversion in specific scenarios!.

3.3 Soil moisture remote sensing inversion

The TLDI values were obtained from the data of LST and LAI
of 27 detection points within the test area!'”. Subsequently, a linear
regression method was employed to correlate the measured soil
moisture with the parameters of TLDI. The inversion accuracy was
derived from the coefficient of determination (R?). The distribution
of 27 detection points for LST and LAI is shown in Figures 6 and 7.
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Figure 6 Feature space distribution on April 10

Figures 8 and 9 illustrate the fitting results of TLDI and soil
moisture content at depths of 0 cm-60 cm on April 10 and May 6,
2023, respectively. The depth of the shallow soil region was defined
as 0 cm-30 cm, while that of the deep soil region was set to be 40 cm-
60 cm. TLDI and soil moisture at varying depths displayed a
negative correlation, and the coefficient of determination (R?)
decreased with soil depth!*.

According to the results of shallow soil moisture inversion on
April 10, the lower triangular space outperformed the upper
triangular space across all major metrics, with R* values of 0.8180,
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0.7801, and 0.7338, RMSE values of 0.1695, 0.1696, and 0.1851,
and RPD values of 2.0897, 2.0598, and 1.8602, reflecting high
accuracy and predictive reliability. In contrast, the upper triangular
space yielded lower R* values of 0.7006, 0.6806, and 0.6480, RMSE
values of 0.1960, 0.2075, and 0.1970, and RPD values of 1.5011,
1.5379, and 1.5607, suggesting reduced precision in shallow soil
moisture inversion™!,
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Figure 7 Feature space distribution on May 6

In the deep soil region, the upper triangular space demonstrated
higher values of R* (0.6395, 0.5750, and 0.5604) and RMSE
(0.2259, 0.2037, and 0.2176). Additionally, the upper triangular

space achieved greater RPD values of 1.3081, 1.2542, and 1.3498.
In contrast, the lower triangular space has R*> values of 0.6115,
0.5481, and 0.4749, RMSE values of 0.2272, 0.2208, and 0.2817,
and RPD values of 1.2923, 1.1605, and 0.8935, further supporting
the superior performance of the upper triangular space for deep soil
moisture inversion.

In conclusion, the lower triangular space is suitable for shallow
soil moisture inversion, while the upper triangular space performs
effectively for deep soil moisture inversion.

The fitting results of May 6 followed a similar pattern to those
observed on April 10. For the shallow soil region, the R* values in
the upper triangular space were 0.7063, 0.6922, and 0.6625. These
values were lower than those in the lower triangular space (0.8054,
0.7299, and 0.6756); the higher the R?, the better the performance.
And the RMSE values in the upper triangular space were 0.2129,
0.2624, and 0.2144, while those in the lower triangular space were
lower at 0.1603, 0.1509, and 0.1850; the smaller the RMSE, the
better the performance. Meanwhile, the RPD values in the upper
triangular space were 1.5727, 1.4553, and 1.1090, lower than those
in the lower triangular space (2.0073, 1.7360, and 1.6724); the
higher the RPD, the better the performance. These results verify that
the lower triangular space provides higher accuracy for shallow soil
moisture inversion®.
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Figure 8 Linear regression of TLDI and SWC/% fitting results for April 10

Regarding the deep soil region, the upper triangular space
outperformed the lower triangular space. The R? values in the upper
triangular space were 0.6606, 0.6273, and 0.5936, higher than those
in the lower triangular space, which were 0.5274, 0.4405, and
0.4388. The RMSE values in the upper triangular space were
0.2210, 0.2356, and 0.2717, lower than those in the lower triangular
space (0.2252, 0.2534, and 0.2722). The RPD values in the upper
triangular space were 1.5001, 1.3362, and 1.3705, greater than those

in the lower triangular space, which were 1.4279, 1.2876, and
1.2899.

The results demonstrate that the lower triangular feature space
is suitable for shallow soil moisture inversion, while the upper
triangular feature space achieves satisfying performance for deep
soil moisture inversion.

The TLDI, calculated using the dry and wet edges in the LST-
LAI two-stage feature space™, yielded enhanced fitting results for
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deep soil moisture within the upper triangular feature space®. This
index is more appropriate for modeling deep soil moisture. By
comparison, the lower triangular space demonstrates higher inver-
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sion accuracy for shallow soil moisture, making it more suitable for
shallow moisture modeling. Remote sensing inversion presented
lower R® values in the deep layer than in the shallow layer™.
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Figure 9 Linear regression of TLDI and SWC/% fitting results for May 6

The results suggest that the upper triangular feature space has
superior performance for deep soil moisture inversion, while the
lower triangular feature space is optimal for shallow soil moisture
inversion, aligning with the evaluation results. Tables 2 and 3
summarize the R>, RMSE, and RPD values at depths of 0 cm-60 cm
for April 10 and May 6.

Table 2 Variation in the upper triangle of the feature space
model for R, RMSE, and RPD

Date  Evaluation indicator 10cm 20cm 30cm 40cm 50 cm 60 cm
R 0.7006 0.6806 0.6480 0.6395 0.5750 0.5604

2023.4.10 RMSE 0.1960 0.2075 0.1970 0.2259 0.2037 0.2176
RPD 1.5011 1.5379 1.5607 1.3081 1.2542 1.3498

R 0.7063 0.6922 0.6625 0.6606 0.6273 0.5936

2023.5.6 RMSE 0.2129 0.2624 0.2144 0.2210 0.2356 0.2717
RPD 1.5727 1.4553 1.1090 1.5001 1.3362 1.3705

Table 3 Variation in the lower triangle of the feature space
model for R, RMSE, and RPD

Date  Evaluation indicator 10cm 20cm 30cm 40cm 50 cm 60 cm
R 0.8180 0.7801 0.7338 0.6115 0.5481 0.4749

2023.4.10 RMSE 0.1695 0.1696 0.1851 0.2272 0.2208 0.2817
RPD 2.0897 2.0598 1.8602 1.2923 1.1605 0.8935

R 0.8054 0.7299 0.6756 0.5274 0.4405 0.4388

2023.5.6 RMSE 0.1603 0.1509 0.1850 0.2252 0.2534 0.2722
RPD 2.0073 1.7360 1.6724 1.4279 1.2876 1.2899

3.4 Remote sensing-based soil moisture distribution inversion

The soil moisture content for the shallow layer on April 10 and
May 6 was estimated using the fitting function derived from the
lower triangular feature space. That for the deep layer was assessed
via the fitting function from the upper triangular feature space.
Figures 10 and 11 depict the estimated distribution of soil moisture
content at depths of 0 cm-60 cm for April 10 and May 6,
respectively. Based on these results, the subsequent section presents
a detailed evaluation and discussion of the model performance and
its applicability.

4 Discussion

4.1 Applicability of the upper triangular feature space in deep
soil moisture inversion

Deep soil moisture typically is less susceptible to short-term
environmental fluctuations due to the thermal inertia of deep soil.
This causes LST to respond more gradually to variations in
moisture content. The upper triangular feature space, which
integrates LST and LAI, demonstrates high efficiency in capturing
changes in deep soil moisture®™. The upper triangular space
integrates LST and LAI to capture the slow response of deep soil
moisture to thermal inertia. LST in deep soil is less affected by short-
term climatic fluctuations, while LAI reflects long-term root water
uptake and photosynthetic dynamics. This physical coupling
enables the upper triangular model to better characterize deep soil
moisture variations. It possesses high inversion accuracy at depths
of 40 cm-60 cm, as evidenced by greater R* values (0.6606, 0.6273,
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Figure 11 Inversion results of regional soil moisture content in the study area on May 6

and 0.5936) than those of the lower triangular space (0.5274,
0.4405, and 0.4388). These findings suggest that the upper
triangular feature space is better suited for modeling gradual

variations in deep soil moisture, which is consistent with previous
studies.
Additionally, deep soil moisture influences vegetation root
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water uptake and photosynthesis. LAI values vary with moisture
changes. Due to this, LAl-based feature space models show
enhanced performance for deep soil moisture inversion. Given the
seasonal and long-term trends in deep soil moisture, combining the
upper triangular feature space with time-series analysis provides a
robust method for monitoring deep soil moisture via remote
sensing, thus contributing to agricultural irrigation optimization and
regional water resource management®”.
4.2 Applicability of the lower triangular feature space in
shallow soil moisture inversion

Shallow soil moisture is highly sensitive to environmental
factors, such as rainfall and evaporation. It can reflect the dynamic
balance between water input and output. The lower triangular
feature space, by capturing the relationship between LST and LAI,
effectively tracks these rapid variations in shallow soil moisture,
making it an ideal tool for short-term dynamic monitoring®!. RMSE
evaluation exhibited that the lower triangular feature space
outperformed the upper triangular feature space in shallow soil
moisture inversion (0 cm-30 cm), with lower RMSE values (0.1603,
0.1509, and 0.1850) than those (0.2129, 0.2624, and 0.2144) in the
upper triangular space. Additionally, the RPD values (2.0073,
1.7360, and 1.6724) were higher than those in the upper triangular
space (1.5727, 1.4553, and 1.1090). The lower triangular feature
space provides more accurate and reliable prediction results for
shallow soil moisture inversion, verifying its suitability for
monitoring shallow soil moisture. It is highly effective for analyzing
rainfall events and managing irrigation. For instance, following a
rainfall event, the lower triangular feature space model can
accurately capture the rapid wetting of the soil surface layer™.

Shallow soil moisture impacts vegetation transpiration. When
moisture levels are high, enhanced transpiration leads to a reduction
in surface temperature. Conversely, under drought conditions,
insufficient moisture restricts transpiration. The lower triangular
feature space demonstrates high sensitivity to these dynamics,
making it particularly effective for soil moisture inversion in
regions with dense vegetation coverage®".
4.3 Limitations of the upper and lower triangular feature
space model

Although the upper and lower triangular feature spaces offer
distinct advantages for soil moisture inversion at various depths,
their complementary nature allows for a more comprehensive
solution when used in tandem. The upper triangular feature space
excels in deep soil moisture inversion in areas experiencing long-
term droughts and dense vegetation. By comparison, the lower
triangular feature space is better suited for short-term monitoring of
shallow soil moisture. Combining both feature spaces facilitates
precise inversion of soil moisture at varying depths, thereby
improving precision irrigation and water resource management".

Furthermore, the proposed two-stage feature space model
surpasses traditional soil moisture inversion models (e.g., NDVI-
LST and TVDI models). By substituting LAI for NDVI, the model
avoids vegetation saturation issues and promotes the accuracy of
deep soil moisture inversion. Compared to machine learning
models, ground sensors, and traditional physical models, the
proposed model demonstrates greater interpretability, adaptability,
and stability. It is well-suited for large-scale and real-time
monitoring with reduced computational costs, making it a valuable
tool for precision irrigation and other practical applications®?.

Despite its significant applicability in experimental contexts,
the two-stage feature space model has limitations in diverse
environments. In areas with sparse vegetation or complex soil types,

the relationship between LAI and LST can be affected by
factors, potentially degrading the model’s
effectiveness. Additionally, extreme climate events, such as heavy
rainfall or abnormal temperatures, can disrupt LST observations and

environmental

diminish the stability of the dry-wet edge fitting curve®.

Future research can incorporate multi-source remote sensing
data (such as microwave and optical data) and machine learning
techniques to expand the model’s applicability in complex
environments. Additionally, seasonal experiments can be conducted
to assess the model’s performance during peak vegetation growth
and drought periods, thus promoting its generalizability and
accuracy.

5 Conclusions

This study employed UAV-based multispectral and thermal
infrared imagery to estimate soil moisture in an apple orchard. A
two-stage feature space model was developed using the derived
LST and LAI data. The results indicated that the TLDI is negatively
correlated with soil moisture. The upper triangular feature space is
more suitable for estimating deep soil moisture (40 cm-60 cm), with
R? values of 0.6395 (0.6606), 0.5750 (0.6273), and 0.5604 (0.5936);
RMSE values of 0.2259 (0.2210), 0.2037 (0.2356), and 0.2176
(0.2717); and RPD values of 1.3081 (1.5001), 1.2542 (1.3362), and
1.3498 (1.3705). In contrast, the lower triangular space provides
better accuracy for shallow soil moisture (0 cm-30 cm), with R
values of 0.8180 (0.8054), 0.7801 (0.7299), and 0.7338 (0.6756);
RMSE values of 0.1695 (0.1603), 0.1696 (0.1509), and 0.1851
(0.1850); and RPD values of 2.0897 (2.0073), 2.0598 (1.7360), and
1.8602 (1.6724). R>, RMSE, and RPD values on both April 10 and
May 6 revealed that the upper triangular space outperformed in
deep soil layers, while the lower triangular space was more effective
for shallow layers. Furthermore, soil moisture increased with depth,
although the growth trend slowed at greater depths. The results
demonstrate the significant potential of soil moisture inversion in
the deep layers of orchard soils. The integration of UAV remote
sensing technology with the two-stage feature space model (TLDI)
improves the accuracy of soil moisture monitoring, particularly for
deep soil moisture estimation. This method offers reliable technical
support for future soil moisture monitoring. However, several
limitations remain, including the model’s sensitivity to vegetation
types, extreme climatic conditions, and limited temporal sampling.
Future research may integrate multi-source data and apply machine
learning techniques to improve the model’s robustness and
generalizability.
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