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Abstract: Soil moisture is a critical component of the soil-plant-atmosphere continuum (SPAC) in fruit trees. However, high-
precision monitoring of  orchard  soil  moisture  at  the  regional  scale  still  remains  a  challenge.  This  study presents  a  two-stage
feature  space  model  to  estimate  root  zone  soil  moisture  using  UAV  remote  sensing  data.  The  results  indicate  that  the
temperature-leaf area index (TLDI) is negatively correlated with soil water content. The upper triangular space performs highly
effectively for deep soil moisture inversion, with R2 values ranging from 0.56 to 0.66, RMSE between 0.20 and 0.27, and RPD
from 1.25 to  1.50.  Conversely,  the lower triangular  space yields  superior  results  for  shallow soil  moisture  inversion,  with R2

values between 0.67 and 0.82, RMSE from 0.15 to 0.19, and RPD between 1.67 and 2.09. The results suggest that the lower
triangular  space  is  optimal  for  shallow soil  moisture  inversion,  while  the  upper  triangular  space  is  more  suited  for  deep  soil
moisture inversion. This study presents a novel approach for estimating deep soil moisture in orchards, providing a theoretical
basis for improving soil moisture management.
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 1    Introduction
Soil  moisture  is  a  critical  variable  in  the  SPAC  for  fruit  tree

production. It can impact the physiological and ecological processes
of fruit trees, such as transpiration, photosynthesis, nutrient uptake,
and  fruit  formation[1].  Accurate  monitoring  of  soil  moisture
improves  yield  prediction  and  irrigation  efficiency,  providing  a
scientific  foundation  for  optimizing  regional  water  resources.
However,  accurately  monitoring  the  spatial  heterogeneity  and
dynamic  changes  in  deep  soil  moisture  remains  a  challenge  in
agricultural  remote  sensing  research  due  to  the  complexities

introduced  by  climatic  conditions,  soil  types,  and  crop  growth
stages[2].  This  challenge  is  particularly  pronounced  in  deep  root
zones, where traditional monitoring methods face limitations in data
coverage and inversion accuracy.

Traditional monitoring strategies, such as tensiometers, provide
high  accuracy  but  are  constrained  by  small  sample  coverage  and
low sampling frequency. They are unsuitable for large-scale or real-
time monitoring.  In contrast,  remote sensing technology presents  a
promising  alternative  due  to  its  ability  to  cover  large  areas  and
provide  high  spatial  resolution[3].  Despite  these  advantages,  remote
sensing  models  relying  on  land  surface  temperature  (LST)  and
vegetation  indices  (VIs)  struggle  to  accurately  estimate  soil
moisture  in  deeper  layers.  This  issue  is  particularly  challenging  in
orchards  with  heterogeneous  vegetation  cover  and  soil  properties.
VIs tend to saturate under high vegetation density, diminishing their
sensitivity  to  soil  moisture  variations,  while  LST  models  are
generally influenced by diurnal temperature fluctuations and surface
heterogeneity[4],  leading  to  inconsistent  subsurface  moisture
estimation.

In  order  to  tackle  these  issues,  remote  sensing  feature  space
models,  including  the  triangular  and  trapezoidal  LST-fractional
vegetation  cover  (LST-FVC)  models,  have  been  developed.  The
triangular feature space model posits that the dry edge corresponds
to  the  zero-evaporation  isoline,  and  the  wet  one  represents  the
saturated  evaporation  isoline[5].  Conversely,  the  trapezoidal  feature
space  model  assumes  that  soil  evaporation  and  vegetation
transpiration  change  in  complete  synchrony.  However,  both
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approaches face practical limitations. Neither sufficiently considers
the varying response times and sensitivities  of  vegetation and bare
soil  radiation  temperatures  to  variations  in  soil  moisture[6].
Consequently,  they  fail  to  accurately  capture  the  mechanisms
underlying  the  transition  of  the  LST-FVC  feature  space  from  a
triangular to a trapezoidal configuration, ultimately undermining the
accuracy of soil moisture inversion[7].

Aiming  to  address  these  shortcomings[8],  Sun  Hao  et  al.  pro-
posed the two-stage feature space model[9],  which comprehensively
accounts  for  the  dynamic  responses  of  vegetation  and  bare  soil
radiation temperatures. This model elucidates the intrinsic mechan-
ism  of  the  LST-FVC  feature  space  shift.  The  trapezoidal  feature
space has been proven to be a theoretical construct arising from the
improved sensitivity of bare soil LST to soil moisture compared to
that of vegetation LST. When soil moisture is insufficient to notably
affect vegetation temperature, the LST-FVC feature space takes the
shape of a triangle. However, as soil moisture further decreases and
begins  to  influence  vegetation  temperature,  the  feature  space
gradually transitions from triangular to trapezoidal.

Traditional  Normalized  Difference  Vegetation  Index  (NDVI)-
based  feature  space  models  are  prone  to  saturation  in  areas  with
dense  vegetation,  reducing  their  sensitivity  to  soil  moisture
variations[10].  Saturation  occurs  as  NDVI  reaches  its  maximum,
challenging the differentiation of soil moisture changes. This study
proposed  replacing  NDVI  with  leaf  area  index  (LAI),  a  more
reliable indicator  of  vegetation density and photosynthetic activity,
in  combination  with  LST.  Based  on  this,  a  two-stage  trapezoidal
feature  space  model  was  constructed  to  enhance  soil  moisture
retrieval at various depths.

Unlike  NDVI,  which  saturates  in  dense  vegetation[11],  LAI
maintains  a  linear  relationship  with  vegetation  cover  and  more
accurately  reflects  photosynthetic  capacity.  LAI  is  less  susceptible
to  saturation  and  exhibits  a  stronger  correlation  with  deep  soil
moisture.  By  incorporating  LAI,  the  two-stage  trapezoidal  feature

space  model  addresses  the  saturation  issue  of  NDVI  and  offers  a
more  accurate  representation  of  vegetation’s  influence  on  soil
moisture. The model divides the feature space into upper and lower
triangular  regions,  facilitating  a  clearer  differentiation  between
shallow  and  deep  soil  moisture  response  mechanisms  while
effectively  capturing  the  dynamic  characteristics  of  vegetation  and
bare soil temperatures.

The  objectives  of  this  study  include:  1)  utilize  UAV-based
multispectral  and  thermal  infrared  imaging  technology  to  capture
high-resolution  remote  sensing  data  and  monitor  dynamic
conditions  in  the  orchard;  2)  validate  the  soil  moisture  inversion
model  using ground truth data  and apply the two-stage trapezoidal
feature space model to differentiate shallow and deep soil moisture
responses;  3)  replace  NDVI  with  LAI  to  enhance  model  accuracy
and  integrate  LAI  with  LST  to  improve  deep  soil  moisture
inversion; and 4) develop the TLDI model to enhance soil moisture
estimation accuracy.

 2    Materials and methods
 2.1    Study area

The study was conducted in an apple orchard located in Fufeng
County,  Baoji  City,  Shaanxi  Province,  within  the  Weihe  Basin  of
the  Guanzhong  Plain.  The  region  covers  an  area  of  720  km2  and
experiences a continental humid monsoon climate characterized by
an annual average temperature of 12.4°C, 592 mm of rainfall, and a
frost-free period of 209 d. The 40.2 hm2 orchard cultivates the ‘Gala’
variety of apple trees, planted at a spacing of 1.0 m×3.5 m. The soil
consists  of  a  mixture  of  sand,  loam,  and  clay,  exhibiting  critical
properties  such  as  bulk  density,  porosity,  and  hydraulic
conductivity.  These  properties  significantly  influence  water
retention and movement. Nutrient availability is governed by factors
like  soil  pH,  electrical  conductivity,  and  organic  matter  content.
These  features  are  essential  for  accurate  soil  moisture  inversion,
precision agriculture, and water resource management (Figure 1).

 
 

108°0′0″E

34
°0
′0
″E

34
°3
0′
0″
E

35
°0
′0
″E

108°0′0″E107°50′0″E107°40′0″E 108°10′0″E107°0′0″E106°0′0″E

34
°2
0′
0″
E

34
°3
0′
0″
E

Study area

FufengBaoji

H: 3728

L: 401 0 30 60 km 0 9 18 km

Figure 1    Location of the study area
 

 2.2    Data sources
 2.2.1    UAV platform specifications and onboard sensors

The experiment was conducted on April 10 and May 6, 2023. A
DJI  M30ORTK  drone  equipped  with  thermal  infrared  and
multispectral  sensors  from  MicaSense  (USA)  was  utilized  to
capture data. Flights were carried out at an altitude of 80 meters and
a speed of 5 m/s, with 80% forward and side overlap. The data were
collected between 14:00 and 15:00 local time under clear skies and
stable  lighting,  without  cirrus  or  cumulonimbus  clouds,  ensuring
high-quality  imagery.  The  drone  data  facilitated  the  calculation  of
LAI  from  NDVI  images  and  the  determination  of  LST  via
reflectance  maps  generated  using  Pix4Dmapper  after  stitching,

calibration, and preprocessing of the thermal infrared images.
 2.2.2    Soil moisture content

The traditional drying method was used to determine soil water
content (SWC) across a 70 m×80 m orchard area with 27 sampling
points.  Samples  were  taken  from depths  of  0  cm-60  cm,  sealed  to
prevent moisture loss, and dried at 105°C±2°C until they reached a
constant dry weight. The process was validated by rehydrating and
redrying  the  samples,  with  all  equipment  calibrated  to  ensure
accuracy. The SWC was determined using the following formula:

SWC(% ) = Mwet −Mdry

Mdry
×100 (1)

where, Mwet is the wet weight; Mdry is the dry weight.
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 2.2.3    LAI data
A  fisheye  camera  (180°  wide-angle  lens)  was  adopted  to

capture images of apple tree leaves from the ground at 27 locations
within the orchard. For each location, three images of the same tree
were  taken  and  processed  using  Plant  Canopy  Analysis  System
(PCAS)  software.  The  average  of  these  images  was  used  to
calculate the LAI for each tree.
 2.3    Remote sensing data

Pix4Dmapper  software  was  employed  to  stitch  the  drone-
captured images, followed by radiometric and geometric corrections
to  minimize  distortions.  Pseudo-invariant  feature  radiometric
correction,  using  strategically  placed  whiteboard  images,  was
applied  to  generate  accurate  surface  reflectance  images.
Subsequently,  ENVI  5.6  software  was  utilized  to  crop  the
experimental area, classify the apple trees, and extract their spectral
images using the BandMath tool.
 2.4    NDVI calculation and calibration

Vegetation indices are typically associated with the abundance
of green vegetation and serve as quantitative measures for assessing
vegetation  cover.  Over  the  years,  various  vegetation  indices  have
been  developed  to  interpret  remote  sensing  data,  with  the  NDVI
being  the  most  commonly  used.  The  NDVI  can  be  obtained  using
the following formula:

NDVI = ρNIR −ρred
ρNIR +ρred

(2)

ρNIR ρredwhere,    and    represent  the  surface  reflectance  in  the  near-
infrared and red bands, respectively.
 2.5    TLDI calculation and calibration

This  study  established  a  two-stage  trapezoidal  feature  space
model  leveraging  drone-based  remote  sensing  data.  The  model
integrated LST and LAI to estimate soil moisture. The feature space
was  partitioned  into  upper  and  lower  triangular  regions,  where  the
dry  edge  represents  minimum  soil  moisture  and  the  wet  edge
corresponds  to  maximum  soil  moisture.  Figure  2  illustrates  the
partitioning  of  the  feature  space.  The  upper  triangular  region
demonstrates  greater  accuracy  for  deep  soil  moisture  inversion
(40  cm-60  cm),  while  the  lower  triangular  region  is  more  suitable
for  shallow  soil  moisture  inversion  (0  cm-30  cm).  The  proposed
TLDI  exhibits  a  negative  correlation  with  soil  moisture  and
enhances  inversion  accuracy,  thus  improving  irrigation  precision
and water resource management.
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Figure 2    Diagram of the dry and wet edges in land surface
temperature and fractional leaf area index (LST/LAI) space

 

TLDI can be expressed as follows:

TLDI = Ti −Ti,min

Ti,max −Ti,min
(3)

Ti

Ti,max Ti,min

where,    represents  the  land  surface  temperature  of  any  given
pixel,  and    and  denote  the  maximum and  minimum land
surface  temperatures  corresponding  to  respective  LAI  values.  The

Ti,max

Ti,min

linear fitting equation for the scatter plot with a given LAI value is
referred  to  as  the  dry/wet  edge  equation.  The  values  of    and

 can be derived from the following equation:

Ti,max = a1 +b1 ×LAI (4)

Ti,min = a1 +b1 ×LAI (5)

a1 a2 b1 b2where,  ,  ,  , and   represent fitting coefficients. LAI and LST
data were extracted and fitted using MATLAB. Then, a scatter plot
was generated to approximate the four fitting coefficients.
 2.6    Evaluation indicators

This study employed the coefficient of determination (R2), root
mean  square  error  (RMSE),  and  relative  analytical  error  (RPD)  as
primary  evaluation  metrics.  R2  reflects  the  goodness  of  fit  of  the
model to the data, with higher values (closer to 1) indicating better
model  performance.  RMSE  quantifies  the  average  deviation
between  predicted  and  actual  values,  where  lower  values  denote
higher  predictive  accuracy.  RPD  assesses  the  predictive  capability
of  the  model,  which  is  defined  as  the  ratio  of  the  sample  standard
deviation  to  the  standard  deviation  of  the  residuals[12].  An  RPD
greater than 2.0 represents high predictive accuracy[13]; an RPD less
than 1.4 indicates general predictive performance; an RPD that falls
between  1.4  and  2.0  suggests  acceptable  predictive  accuracy.  To
eliminate  scale  differences  between  data  at  different  depths,  this
study  applies  the  min-max  normalization  method  for  standardi-
zation.  The  data  were  normalized  to  account  for  scale  variations
across  varying  depths,  ensuring  a  consistent  basis  for  comparison.
R2, RMSE, and RPD are expressed by Equations (6)-(9):

R2 = 1−

n∑
i=1

(yi − ŷi)2

n∑
i=1

(yi − ȳi)
2

(6)

y′ =
y−min(y)

max(y)−min(y)
(7)

RMSE =

Õ
n∑

i=1

(y′i − ŷ′i)

n
(8)

RPD =
σmeasured

σresidual

=

Õ
n∑

i=1

(y′i − ȳ′i)

nÕ
n∑

i=1

(y′i − ŷ′i)

n

(9)

ŷi

ȳi

where, yi represents the i-th measured value,   is the i-th predicted
value,   denotes the mean of the measured values, y is the original
data, min(y) is the minimum value of the original data, max(y) is the
maximum value of the original data, y′ is the normalized data, and n
signifies the number of data points.

 3    Results and discussion
 3.1    Feature space construction

The  NDVI  values  of  27  locations  were  obtained  using  ENVI
software  and  subsequently  fitted  to  the  measured  LAI  values  to
derive Equation (10) for LAI estimation. LAI data of May 6 can be
obtained from NDVI images using Equation (10) without additional
measurements.
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y = 10.616× x−7.72 (10)

where, y  represents LAI,  and x denotes NDVI. Figure 3 shows the
NDVI image of the apple trees, and Figure 4 depicts the LAI image
of the apple trees on April 10.
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Figure 3    NDVI image of the apple trees
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Figure 4    LAI image of the apple trees on April 10
 

The  LST  was  derived  from  drone-based  thermal  infrared
images processed using Pix4Dmapper. With an accuracy exceeding
90%,  it  served  as  a  reliable  representation  of  the  actual  surface
temperature[14], as shown in Figure 5.
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Figure 5    Remote sensing map of the surface temperature

 3.2    Feature space distribution
The  LST  and  LAI  data  were  analyzed  to  obtain  the  relevant

results. The two-stage feature space model was developed to extract
the  boundary  values  of  LST  associated  with  LAI.  Subsequently,
linear  regression  was  applied  to  generate  the  fitting  lines  and
formulas  for  the  dry  and  wet  edges,  providing  theoretical  support
for soil moisture inversion[15].

Table 1 lists the dry and wet edge fitting equations for the two-
stage feature space model  on April  10 and May 6,  2023.  On April
10,  the  upper  triangular  dry  edge  equation  yielded  an R2  value  of
0.7609,  while the lower triangular  dry edge equation demonstrated
higher accuracy with an R2 value of 0.8433. The wet edge equations
for both triangular spaces did not report R2 values.
  

Table 1    Dry and wet edge fitting equations
Date Fitting equation R2

2023-4-10

Upper triangular dry edge: y = –4.7691x+50.4021
0.7609

Upper triangular wet edge: y = –14.539x+53.6932
Lower triangular dry edge: y = –14.539x+53.6932

0.8433
Lower triangular wet edge: y = –1.7498x+25.1206

2023-5-6

Upper triangular dry edge: y = –3.7457x+43.4131
0.4607

Upper triangular wet edge: y = –26.585x+45.1363
Lower triangular dry edge: y = –26.585x+45.1363

0.6937
Lower triangular wet edge: y = –2.6575x+26.4399

 

On May 6, the upper triangular dry edge equation showed an R2

value of 0.4607, indicating reduced accuracy compared to April 10.
By comparison, the lower triangular dry edge equation achieved an
R2  value  of  0.6937,  representing  improved  performance.  These
results suggest that the lower triangular space provides higher fitting
accuracy,  particularly  for  dry  edges,  thus  supporting  its  suitability
for soil moisture inversion in specific scenarios[16].
 3.3    Soil moisture remote sensing inversion

The TLDI values were obtained from the data of LST and LAI
of 27 detection points within the test area[17]. Subsequently, a linear
regression  method  was  employed  to  correlate  the  measured  soil
moisture with the parameters of TLDI. The inversion accuracy was
derived from the coefficient of determination (R2).  The distribution
of 27 detection points for LST and LAI is shown in Figures 6 and 7.
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Figure 6    Feature space distribution on April 10
 

Figures  8  and  9  illustrate  the  fitting  results  of  TLDI  and  soil
moisture content at  depths of 0 cm-60 cm on April  10 and May 6,
2023, respectively. The depth of the shallow soil region was defined
as 0 cm-30 cm, while that of the deep soil region was set to be 40 cm-
60  cm.  TLDI  and  soil  moisture  at  varying  depths  displayed  a
negative  correlation,  and  the  coefficient  of  determination  (R2)
decreased with soil depth[18].

According to  the  results  of  shallow soil  moisture  inversion on
April  10,  the  lower  triangular  space  outperformed  the  upper
triangular space across all major metrics, with R2 values of 0.8180,
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0.7801,  and  0.7338,  RMSE values  of  0.1695,  0.1696,  and  0.1851,
and  RPD  values  of  2.0897,  2.0598,  and  1.8602,  reflecting  high
accuracy and predictive reliability. In contrast,  the upper triangular
space yielded lower R2 values of 0.7006, 0.6806, and 0.6480, RMSE
values  of  0.1960,  0.2075,  and  0.1970,  and  RPD values  of  1.5011,
1.5379,  and  1.5607,  suggesting  reduced  precision  in  shallow  soil
moisture inversion[19].
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Figure 7    Feature space distribution on May 6
 

In the deep soil region, the upper triangular space demonstrated
higher  values  of  R2  (0.6395,  0.5750,  and  0.5604)  and  RMSE
(0.2259,  0.2037,  and  0.2176).  Additionally,  the  upper  triangular

space achieved greater  RPD values of 1.3081,  1.2542,  and 1.3498.
In  contrast,  the  lower  triangular  space  has  R2  values  of  0.6115,
0.5481,  and  0.4749,  RMSE values  of  0.2272,  0.2208,  and  0.2817,
and RPD values  of  1.2923,  1.1605,  and 0.8935,  further  supporting
the superior performance of the upper triangular space for deep soil
moisture inversion.

In conclusion, the lower triangular space is suitable for shallow
soil  moisture  inversion,  while  the  upper  triangular  space  performs
effectively for deep soil moisture inversion[20].

The fitting results of May 6 followed a similar pattern to those
observed on April  10. For the shallow soil  region, the R2 values in
the upper triangular space were 0.7063, 0.6922, and 0.6625. These
values were lower than those in the lower triangular space (0.8054,
0.7299,  and 0.6756);  the higher  the R2,  the better  the performance.
And  the  RMSE  values  in  the  upper  triangular  space  were  0.2129,
0.2624, and 0.2144, while those in the lower triangular space were
lower  at  0.1603,  0.1509,  and  0.1850;  the  smaller  the  RMSE,  the
better  the  performance.  Meanwhile,  the  RPD  values  in  the  upper
triangular space were 1.5727, 1.4553, and 1.1090, lower than those
in  the  lower  triangular  space  (2.0073,  1.7360,  and  1.6724);  the
higher the RPD, the better the performance. These results verify that
the lower triangular space provides higher accuracy for shallow soil
moisture inversion[21].
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Figure 8    Linear regression of TLDI and SWC/% fitting results for April 10
 

Regarding  the  deep  soil  region,  the  upper  triangular  space
outperformed the lower triangular space. The R2 values in the upper
triangular space were 0.6606, 0.6273, and 0.5936, higher than those
in  the  lower  triangular  space,  which  were  0.5274,  0.4405,  and
0.4388.  The  RMSE  values  in  the  upper  triangular  space  were
0.2210, 0.2356, and 0.2717, lower than those in the lower triangular
space  (0.2252,  0.2534,  and  0.2722).  The  RPD values  in  the  upper
triangular space were 1.5001, 1.3362, and 1.3705, greater than those

in  the  lower  triangular  space,  which  were  1.4279,  1.2876,  and
1.2899.

The results demonstrate that the lower triangular feature space
is  suitable  for  shallow  soil  moisture  inversion[22],  while  the  upper
triangular  feature  space  achieves  satisfying  performance  for  deep
soil moisture inversion.

The TLDI, calculated using the dry and wet edges in the LST-
LAI two-stage  feature  space[23],  yielded enhanced fitting  results  for
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deep soil moisture within the upper triangular feature space[24]. This
index  is  more  appropriate  for  modeling  deep  soil  moisture.  By
comparison,  the  lower  triangular  space  demonstrates  higher  inver-

sion accuracy for shallow soil moisture, making it more suitable for
shallow  moisture  modeling.  Remote  sensing  inversion  presented
lower R2 values in the deep layer than in the shallow layer[25].
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Figure 9    Linear regression of TLDI and SWC/% fitting results for May 6
 

The results  suggest  that  the  upper  triangular  feature  space  has
superior  performance  for  deep  soil  moisture  inversion,  while  the
lower  triangular  feature  space  is  optimal  for  shallow soil  moisture
inversion,  aligning  with  the  evaluation  results.  Tables  2  and  3
summarize the R2, RMSE, and RPD values at depths of 0 cm-60 cm
for April 10 and May 6.
  

Table 2    Variation in the upper triangle of the feature space
model for R2, RMSE, and RPD

Date Evaluation indicator 10 cm 20 cm 30 cm 40 cm 50 cm 60 cm

2023.4.10
R2 0.7006 0.6806 0.6480 0.6395 0.5750 0.5604

RMSE 0.1960 0.2075 0.1970 0.2259 0.2037 0.2176
RPD 1.5011 1.5379 1.5607 1.3081 1.2542 1.3498

2023.5.6
R2 0.7063 0.6922 0.6625 0.6606 0.6273 0.5936

RMSE 0.2129 0.2624 0.2144 0.2210 0.2356 0.2717
RPD 1.5727 1.4553 1.1090 1.5001 1.3362 1.3705

  
Table 3    Variation in the lower triangle of the feature space

model for R2, RMSE, and RPD
Date Evaluation indicator 10 cm 20 cm 30 cm 40 cm 50 cm 60 cm

2023.4.10
R2 0.8180 0.7801 0.7338 0.6115 0.5481 0.4749

RMSE 0.1695 0.1696 0.1851 0.2272 0.2208 0.2817
RPD 2.0897 2.0598 1.8602 1.2923 1.1605 0.8935

2023.5.6
R2 0.8054 0.7299 0.6756 0.5274 0.4405 0.4388

RMSE 0.1603 0.1509 0.1850 0.2252 0.2534 0.2722
RPD 2.0073 1.7360 1.6724 1.4279 1.2876 1.2899

 3.4    Remote sensing-based soil moisture distribution inversion
The soil moisture content for the shallow layer on April 10 and

May  6  was  estimated  using  the  fitting  function  derived  from  the
lower triangular feature space. That for the deep layer was assessed
via  the  fitting  function  from  the  upper  triangular  feature  space.
Figures 10 and 11 depict the estimated distribution of soil moisture
content  at  depths  of  0  cm-60  cm  for  April  10  and  May  6,
respectively. Based on these results, the subsequent section presents
a detailed evaluation and discussion of the model performance and
its applicability.

 4    Discussion
 4.1    Applicability of the upper triangular feature space in deep
soil moisture inversion

Deep  soil  moisture  typically  is  less  susceptible  to  short-term
environmental  fluctuations  due  to  the  thermal  inertia  of  deep  soil.
This  causes  LST  to  respond  more  gradually  to  variations  in
moisture  content.  The  upper  triangular  feature  space,  which
integrates  LST and LAI,  demonstrates  high efficiency in  capturing
changes  in  deep  soil  moisture[26].  The  upper  triangular  space
integrates  LST  and  LAI  to  capture  the  slow  response  of  deep  soil
moisture to thermal inertia. LST in deep soil is less affected by short-
term climatic  fluctuations,  while  LAI reflects  long-term root  water
uptake  and  photosynthetic  dynamics.  This  physical  coupling
enables  the  upper  triangular  model  to  better  characterize  deep  soil
moisture  variations.  It  possesses  high  inversion  accuracy  at  depths
of 40 cm-60 cm, as evidenced by greater R2 values (0.6606, 0.6273,
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and  0.5936)  than  those  of  the  lower  triangular  space  (0.5274,
0.4405,  and  0.4388).  These  findings  suggest  that  the  upper
triangular  feature  space  is  better  suited  for  modeling  gradual

variations  in  deep  soil  moisture,  which  is  consistent  with  previous
studies.

Additionally,  deep  soil  moisture  influences  vegetation  root
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Figure 10    Inversion results of regional soil moisture content in the study area on April 10
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water  uptake  and  photosynthesis.  LAI  values  vary  with  moisture
changes.  Due  to  this,  LAI-based  feature  space  models  show
enhanced  performance  for  deep  soil  moisture  inversion.  Given  the
seasonal and long-term trends in deep soil moisture, combining the
upper  triangular  feature  space  with  time-series  analysis  provides  a
robust  method  for  monitoring  deep  soil  moisture  via  remote
sensing, thus contributing to agricultural irrigation optimization and
regional water resource management[27].
 4.2    Applicability  of  the  lower  triangular  feature  space  in
shallow soil moisture inversion

Shallow  soil  moisture  is  highly  sensitive  to  environmental
factors, such as rainfall and evaporation. It can reflect the dynamic
balance  between  water  input  and  output.  The  lower  triangular
feature space, by capturing the relationship between LST and LAI,
effectively  tracks  these  rapid  variations  in  shallow  soil  moisture,
making it an ideal tool for short-term dynamic monitoring[28]. RMSE
evaluation  exhibited  that  the  lower  triangular  feature  space
outperformed  the  upper  triangular  feature  space  in  shallow  soil
moisture inversion (0 cm-30 cm), with lower RMSE values (0.1603,
0.1509, and 0.1850) than those (0.2129, 0.2624, and 0.2144) in the
upper  triangular  space.  Additionally,  the  RPD  values  (2.0073,
1.7360, and 1.6724) were higher than those in the upper triangular
space  (1.5727,  1.4553,  and  1.1090).  The  lower  triangular  feature
space  provides  more  accurate  and  reliable  prediction  results  for
shallow  soil  moisture  inversion,  verifying  its  suitability  for
monitoring shallow soil moisture. It is highly effective for analyzing
rainfall  events  and  managing  irrigation.  For  instance,  following  a
rainfall  event,  the  lower  triangular  feature  space  model  can
accurately capture the rapid wetting of the soil surface layer[29].

Shallow  soil  moisture  impacts  vegetation  transpiration.  When
moisture levels are high, enhanced transpiration leads to a reduction
in  surface  temperature.  Conversely,  under  drought  conditions,
insufficient  moisture  restricts  transpiration.  The  lower  triangular
feature  space  demonstrates  high  sensitivity  to  these  dynamics,
making  it  particularly  effective  for  soil  moisture  inversion  in
regions with dense vegetation coverage[30].
 4.3    Limitations  of  the  upper  and  lower  triangular  feature
space model

Although  the  upper  and  lower  triangular  feature  spaces  offer
distinct  advantages  for  soil  moisture  inversion  at  various  depths,
their  complementary  nature  allows  for  a  more  comprehensive
solution  when  used  in  tandem.  The  upper  triangular  feature  space
excels  in  deep  soil  moisture  inversion  in  areas  experiencing  long-
term  droughts  and  dense  vegetation.  By  comparison,  the  lower
triangular feature space is better suited for short-term monitoring of
shallow  soil  moisture.  Combining  both  feature  spaces  facilitates
precise  inversion  of  soil  moisture  at  varying  depths,  thereby
improving precision irrigation and water resource management[31].

Furthermore,  the  proposed  two-stage  feature  space  model
surpasses  traditional  soil  moisture  inversion  models  (e.g.,  NDVI-
LST and TVDI models). By substituting LAI for NDVI, the model
avoids  vegetation  saturation  issues  and  promotes  the  accuracy  of
deep  soil  moisture  inversion.  Compared  to  machine  learning
models,  ground  sensors,  and  traditional  physical  models,  the
proposed  model  demonstrates  greater  interpretability,  adaptability,
and  stability.  It  is  well-suited  for  large-scale  and  real-time
monitoring with reduced computational costs,  making it  a valuable
tool for precision irrigation and other practical applications[32].

Despite  its  significant  applicability  in  experimental  contexts,
the  two-stage  feature  space  model  has  limitations  in  diverse
environments. In areas with sparse vegetation or complex soil types,

the  relationship  between  LAI  and  LST  can  be  affected  by
environmental  factors,  potentially  degrading  the  model’s
effectiveness.  Additionally,  extreme  climate  events,  such  as  heavy
rainfall or abnormal temperatures, can disrupt LST observations and
diminish the stability of the dry-wet edge fitting curve[33].

Future  research  can  incorporate  multi-source  remote  sensing
data  (such  as  microwave  and  optical  data)  and  machine  learning
techniques  to  expand  the  model’s  applicability  in  complex
environments. Additionally, seasonal experiments can be conducted
to  assess  the  model’s  performance  during  peak  vegetation  growth
and  drought  periods,  thus  promoting  its  generalizability  and
accuracy.

 5    Conclusions
This  study  employed  UAV-based  multispectral  and  thermal

infrared  imagery  to  estimate  soil  moisture  in  an  apple  orchard.  A
two-stage  feature  space  model  was  developed  using  the  derived
LST and LAI data. The results indicated that the TLDI is negatively
correlated with soil  moisture.  The upper triangular feature space is
more suitable for estimating deep soil moisture (40 cm-60 cm), with
R2 values of 0.6395 (0.6606), 0.5750 (0.6273), and 0.5604 (0.5936);
RMSE  values  of  0.2259  (0.2210),  0.2037  (0.2356),  and  0.2176
(0.2717); and RPD values of 1.3081 (1.5001), 1.2542 (1.3362), and
1.3498  (1.3705).  In  contrast,  the  lower  triangular  space  provides
better  accuracy  for  shallow  soil  moisture  (0  cm-30  cm),  with  R2

values  of  0.8180  (0.8054),  0.7801  (0.7299),  and  0.7338  (0.6756);
RMSE  values  of  0.1695  (0.1603),  0.1696  (0.1509),  and  0.1851
(0.1850); and RPD values of 2.0897 (2.0073), 2.0598 (1.7360), and
1.8602 (1.6724). R2,  RMSE, and RPD values on both April 10 and
May  6  revealed  that  the  upper  triangular  space  outperformed  in
deep soil layers, while the lower triangular space was more effective
for shallow layers. Furthermore, soil moisture increased with depth,
although  the  growth  trend  slowed  at  greater  depths.  The  results
demonstrate  the  significant  potential  of  soil  moisture  inversion  in
the  deep  layers  of  orchard  soils.  The  integration  of  UAV  remote
sensing technology with the two-stage feature space model (TLDI)
improves the accuracy of soil  moisture monitoring, particularly for
deep soil moisture estimation. This method offers reliable technical
support  for  future  soil  moisture  monitoring.  However,  several
limitations  remain,  including  the  model’s  sensitivity  to  vegetation
types,  extreme climatic  conditions,  and limited temporal  sampling.
Future research may integrate multi-source data and apply machine
learning  techniques  to  improve  the  model’s  robustness  and
generalizability.
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