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Convolutional Neural Network (CNN)-based transfer learning framework

for cherry tomato production
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Abstract: As crop harvesting becomes more difficult in environments affected by climate change, the application of artificial
intelligence technology to crop management through accurate yield prediction is receiving worldwide attention. This study
proposes a convolutional neural network (CNN)-based transfer learning framework to increase the productivity and improve
the economic feasibility of cherry tomatoes (solanum lycopersicum) in South Korea. You-Only-Look-Once 10 Nano
(YOLOv10n) is adopted as a CNN-based algorithm. The source model for transfer learning is trained using cherry tomato
imagery from the Tomato Plantfactory Dataset, while the target model is trained based on field survey data collected by the
National Institute of Horticultural & Herbal Science, Rural Development Administration, Korea. In that process, an image
segmentation technique is developed to improve the prediction accuracy, which reduces the root-mean-square deviation of the
existing YOLOv10n from 32.3 to 19.8, a 38.7% reduction. Also, the devised economic feasibility analysis method finds the
cost of producing cherry tomatoes in South Korea to be 11.12 USD/m?, while the maximum revenue can reach 22.44 USD/m’.
As a result, the proposed transfer learning framework helps general farms where it is difficult to collect big data to use machine
learning techniques to predict crop or vegetable production.
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1 Introduction

The tomato is one of the most popular fruits worldwide. The
total world tomato production in 2021 was approximately 189.1
million metric tons. Production quantities from China, India,
Turkey, and the United States were 67.5, 21.1, 13.1, and
10.5 Mt, respectively. These four countries produce 59.37% of the
total world production. Tomato is considered to be one of the
primary dietary sources in many countries, due to its nutrients, like
vitamins, carotenoids, and phenolic compounds®. South Korea
produced 0.4 Mt of tomatoes in 2021"), valued at 8§96.59 million
USD. Therefore, as in other countries, tomato in South Korea is
considered an essential fruit.

Numerous studies have been conducted in different countries to
improve tomato production; e.g., Tiirkten and Ceyhan* proposed an
environmentally efficient way to produce tomatoes using soilless
farming technology in a greenhouse farm in Turkey; Rivard et al.””
investigated the impact of grafting techniques on tomato (Solanum
lycopersicum) production in Ivanhoe, North Carolina and Strasburg,
Pennsylvania in the U.S.; Guo et al.”! attempted to reduce fertilizer
and pesticide use in cherry tomato production using a life cycle
assessment (LCA) approach; while Lee et al.”’ used four different
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rootstocks (i.e., ‘Powerguard’, ‘T1°, ‘L1’, and ‘B.blocking’) for
cherry tomato cultivation to improve its growth and yield in South
Korea.

There have also been efforts to use machine learning (ML)
techniques to improve the production yield of cherry tomatoes and
tomatoes. Due to climate conditions, tomatoes in South Korea are
cultivated in greenhouses. The ML techniques are integrated with
the concept of smart farming, which refers to advanced technology
use (e.g., the [0T) to improve the productivity of crops by weather
data collection, crop growth monitoring, preventive maintenance of
crop diseases, and prevention of inefficient activities in crop
harvesting!®. For example, Liu et al.”? proposed a tomato detection
algorithm using the YOLO version 3 algorithm to enhance fruit
detection accuracy under a complex monitoring mechanism
involving illumination variation and branch, leaf, and fruit overlap;
Yang and Ju"” presented a deep learning-based approach to
distinguish the ripeness of cherry tomatoes in real time by
leveraging YOLOvVS and YOLOv8 (with ResNet50 backbone)
models; Nyalala et al."" estimated the volume and mass of tomatoes
via computer vision technology based on a cherry tomato model
with support vector machine (SVM) and radial basis function
(RBF); while Kabas et al.'” used an artificial neural network
(ANN), logistic regression, and decision tree to estimate the
deformation energy of cherry tomatoes from twelve independent
variables of length, thickness, width, geometric diameter, sphericity,
surface area, rupture force, firmness, Poisson’s ratio, and modulus
of elasticity. These studies have shown that while ML or artificial
intelligence (AI) methodologies can contribute to improving crop
yields, they have the disadvantage of first requiring big data for
model learning, while they have not suggested how to establish
production plans that take economic feasibility into account based
on prediction results obtained through ML. In particular,
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considering that it is difficult for general farmers to develop
separate ML (or Al) models and collect big data, a new approach
should be considered in countries like South Korea, where the goal
is to spread smart agricultural technology to farmers in general!l,

This study proposes a convolutional neural network (CNN)-
based transfer learning framework to increase the productivity and
improve the economic feasibility of cherry tomatoes (solanum
lycopersicum) in South Korea. The You-Only-Look-Once 10
(YOLOv10) algorithm, one of the popular convolution neural
network algorithms used to detect an object!, is selected as the
CNN-based cherry tomato detection algorithm. The proposed
framework consists of four modules: (1) cherry tomato monitoring,
(2) cherry tomato detection, (3) harvest yield estimation, and (4)
economic feasibility analysis. After the camera collects the tomato
images in the cherry tomato tracking module, the cherry tomato
detection module uses the devised CNN-based transfer learning
algorithm to detect cherry tomatoes. The harvest yield estimation
module analyzes the sizes of the detected cherry tomatoes, and
computes the total yield. The economic feasibility analysis module
considers the sales revenue, production cost, and transportation cost
of the supply chain to compute the total profit of cherry tomatoes.
Two data sources, namely the Tomato Plantfactory Dataset!"”), a
publicly available cherry tomato dataset, and the field study data
collected from the National Institute of Horticultural and Herbal
Science in South Korea, are used to develop the cherry tomato
detection module via CNN-based transfer learning. This study also
conducts experiments to determine the detection accuracy of the
devised algorithm and the estimated profitability of cherry tomatoes
sold in major wholesale markets in South Korea. This study makes
the following contributions: first, the concept of transfer learning is
applied to the existing CNN methodology including YOLO, which
requires a big dataset; i.c., a source model is created through a big
dataset, and a target model is created for individual farms. This has
the advantage of helping farms, which have relative difficulty in
collecting big data, use ML techniques such as CNN. Second, the
proposed framework addresses the detection accuracy of crops by
applying ML techniques, while also predicting quantity prediction
and performing economic analysis at the time of sale, showing that
the use of ML techniques makes it possible to manage the economic
production of cherry tomatoes. Third, the proposed framework uses
You-Only-Look-Once 10 Nano (YOLOv10n), and exploits the
developed image segmentation technique in the image
preprocessing step to improve the detection ability for cherry
tomatoes. In consequence, the proposed transfer learning framework
helps small-scale farms—where it is difficult to collect big
data—use ML techniques to predict crop or vegetable production,
showing that this contributes to the expansion of smart agricultural
technology, while increasing farm income.

The remaining sections are organized as follows: Section 2
describes the proposed method, and summarizes the cherry tomato
data from the Tomato Plantfactory Dataset!"” and field study data in
South Korea!®, Section 3 evaluates the performance of the proposed
framework concerning the detection accuracy of cherry tomatoes,
and estimates the profit of cherry tomatoes sold to wholesale
markets in South Korea. Section 4 provides the discussion, while
Section 5 concludes the study.

2 Materials and methods

2.1 Data collection
Two datasets are needed for transfer learning: (1) a big dataset
to develop a source model, which is a generalized machine learning

model that can be commonly applied to multiple cases, and (2) a
case-specific dataset to develop a target model, which can be
applied to a specific farm. First, this study used a publicly available
cherry tomato dataset, the Tomato Plantfactory Dataset!'”], to
develop a source model. This dataset includes 520 images collected
in a fully artificially illuminated plant factory laboratory at the
Henan Institute of Science and Technology (HIST), Xinxiang,
China. This dataset, focusing on the micro tomato variety, includes
a total of 9112 tomato objects (5996 green and 3116 red tomatoes),
and was collected from the flowering stage in December 2021
through to the maturation stage in February 2022. The dataset was
captured by Canon 80D DSLR camera at (6000%4000) pixels
resolution and an iPhone 11 wide-angle camera at (4032x3024)
pixels resolution under diverse artificial lighting conditions,
including variations in tomato fruit development, complex lighting
environments, distance changes, occlusion, and blurring.

Second, to develop a target model, field study data on cherry
tomatoes (solanum lycopersicum) were collected at the National
Institute of Horticultural and Herbal Science in Wanju, South Korea
(35°830'N, 127°030'E) (Figure 11 shows the location of the subject
farm, near Jeonju)'’. Seeds were sown on March 16, 2022, in
plastic trays ((54 cmx28 cm) in size, (5 cmx10 cm) cells with pot
volume 3.7 L) with commercial bedding soil labeled ‘Bio Sangto’.
The soil contains (67.5%, 17.0%, 5.0%, 10.0%, 0.3%, 0.014%, and
0.185%), cocopeat, peat moss, zeolite, perlite, pH adjuster,
humectant, and fertilizers containing 270 mg/kg each of N, P, and
K, respectively. Seedlings were grown to fully expanded mature
leaf stages of 25-30 cm height in a glasshouse at the subject facility.
Forty-eight days after sowing, cherry tomato seedlings were
transferred to a greenhouse with black plastic mulch film on May 3,
2022. Plants were watered and fertigated weekly with nutrient
solution A (Nitrogen, Potassium, Calcium, Boron, Iron, Zinc, and
Molybdenum (N, K, Ca, B, Fe, Zn, and Mo) at 5.5%, 4.5%, 4.5%,
0.000 14%, 0.05%, 0.0001%, and 0.0002%, respectively, and
solution B of (N, P, K, Mg, B, Mn, Zn, and Cu) at 6%, 2%, 4%, 1%,
0.05%, 0.01%, 0.005%, and 0.0015%, respectively (Mulpure,
Daeyu, Seoul, Republic of Korea). The average air temperature in
the greenhouse was maintained between 25°C-35°C, while the
relative humidity ranged from 50%-85%. The sub-plot in the
greenhouse was laid out in a randomized complete design with five
transplants (30 cm apart) and three replicates of single-row plots of
1.5 m length. The distance between single-row plots was 140 cm.
The weights of harvested fruits ranged (15 to 25) g (Park et al.,
2023). Imagery data of the cherry tomato fruits were collected by a
Red-Green—Blue (RGB) camera sensor from May 17, 2022 to July
6, 2022.

2.2 Tomato and cherry tomato detection using YOLO

The YOLO algorithm” is one of the most widely used state-of-
the-art algorithms in the field of object detection®. In contrast to
conventional two-stage detection methods, like deformable parts
models (DPM)'" and Region-based Convolutional Neural Networks
(R-CNN)™, which initially identify potential object locations within
an image and subsequently examine the identified regions
individually, YOLO integrates object classification and localization
into a unified regression problem, focusing on class probability.
This allows a single neural network to analyze an entire image, and
simultaneously predict bounding boxes and class probabilities.

YOLO divides the input image into an SxS grid, with each grid
cell tasked with detecting an object if the center of the object falls
within that cell. Each grid cell predicts bounding boxes, wherein
each box is defined as a 5-tuple (a, b, w, h, Confidence score),



92 October, 2025 Int J Agric & Biol Eng

Open Access at https://www.ijabe.org

Vol. 18 No. 5

corresponding to the center coordinates, width, height, and
confidence score of the box. The confidence score is expressed as
the product of the probability that an object exists in a cell (Pr(ob)))
and the Intersection over Union (IoU) between the predicted box
and the ground truth box (IoUp

red /*

Confidencescore = Pr(obj) x IoU™" (1)

pred

Although the early versions of the YOLO algorithm focused on
real-time processing, it has, through continuous improvements,
demonstrated a high level of accuracy™. Liu and Nouaze® utilized
YOLO version 3 to detect tomatoes even under complex
environmental conditions, such as lighting changes, occlusion of
branches and leaves, and overlapping of fruits. To this end, the
existing rectangular bounding box (R—Bbox) was replaced with a
circular bounding box (C—Bbox) that is close to the tomato model,
thereby improving the IoU calculation for the Non-Maximum
Suppression (NMS), hence tomato  detection
performance.

YOLOv5 and YOLOVS, developed in 2020 and 2023,
respectively, have been widely adopted in various object detection
research fields®. The YOLOvVS model is particularly useful in
agricultural environments with lighting
conditions, because it improves the basic recognition accuracy by
applying various data augmentation techniques that include image

rotation, saturation adjustment, and exposure control. It has the

enhancing

complex irregular

particular advantage of automatically optimizing anchor selection
by dynamically calculating anchor boxes that fit the training dataset
during training to maximize performance. However, when dealing
with complex backgrounds, it faces limitations due to reduced
detection capabilities, which can lead to errors in distinguishing
object boundaries, and inaccurate recognition of crop health,
diseases, and pests. YOLOVS replaces the Cross Stage Partial (CSP)
layer used in YOLOvVS with a more efficient and streamlined C2f
module to reduce structural complexity and improve computational
efficiency, making it a more suitable algorithm for real-time
processing. When the Spatial Pyramid Pooling Fast (SPPF) layer is

included, it has the advantage of pooling image features of various
sizes into a fixed-size feature map, which can further accelerate the
processing speed. Considering the characteristics of YOLOvS and
YOLOV8 mentioned above, Yang and Ju"” applied both algorithms
to a real-time cherry tomato ripening classification robot, and
showed that the performance of the cherry tomato ripening
classification task could be improved.

YOLOvV10¥, released in 2024, represents a significant
innovation, in that it is free of NMS. Previous versions of
YOLOv10 have addressed duplicate detection by removing
bounding boxes with IoU below a certain threshold via a post-
processing mechanism termed NMS, whereas YOLOv10 adopts a
dual-label assignment strategy that combines one-vs.-one and one-
vs.-many assignment strategies to minimize duplicate predictions,
and eliminate the dependency on NMS.

Figure 1 shows that YOLOV10 consists of Backbone, Neck,
and Head structures™, which are the same as the previous YOLO
versions, while the Backbone layer consists of a Cross-stage partial
network (CSPNet)®™ structure, which repeatedly performs
convolution operations to extract low-level to high-level features,
and transfer them to the Neck, respectively. The Neck layer adopts
the improved Path aggregation network (PANet)® structure, and
integrates the multi-scale features extracted from the YOLO
backbone through the asymmetric path aggregation method that
adds a bottom—up augmentation path to the top—down path of the
Feature pyramid network (FPN)®!. The head layer is the layer that
performs the final prediction, and performs simultaneous bounding
box regression and object classification. YOLOv10 has, through
extensive experiments, shown better detection accuracy and latency
improvement, compared to previous versions. Because of its
lightweight design, it is a more suitable algorithm for individual
farmers who, due to budget restrictions, must use low-spec
computers. YOLOV10 is classified into five versions, n, s, m, I, and
x, according to the number of parameters. The YOLOv10n version
has the minimum number of parameters, so it is particularly suitable
for lightweight computing environments.

Backbone (CSPNet) Neck (PA-Net)

One-to-many head

High-level feature

Top-down backbone

Regression & Classification

One-to-one head

Bottom-up augmentation

Regression & Classification

Low-level feature \

Figure 1

2.3 CNN-based transfer learning framework for cherry
tomato production

This study proposes a transfer learning framework for
economical cherry tomato production using the YOLOv10n
algorithm. Figure 2 represents the proposed framework that consists
of four modules: (1) cherry tomato monitoring, (2) cherry tomato
detection, (3) harvest yield estimation, and (4) economic feasibility
analysis. In the framework, cherry tomato cultivation conditions are
monitored through the cherry tomato monitoring module involving
camera sensors, microclimate sensors, and soil sensors. The image
data of cherry tomatoes are mainly used in the detection module to
train and test the devised YOLOv10n transfer learning algorithm.
The status of the detected cherry tomatoes is analyzed, while the

Architecture of You-Only-Look-Once version 10

harvest yield estimation module estimates the total yield. The
economic feasibility analysis module computes the production cost
of the cherry tomatoes, and the sale to the best market that
maximizes the total profit.
2.3.1 Cherry tomato detection via transfer learning

Datasets collected from individual farms reflect the actual
cultivation environment, so they incur several inherent difficulties,
such as low image quality, high density and overlap of tomatoes,
variation in tomato size depending on the perspective, and difficulty
in distinguishing green immature tomatoes from leaves®™. In
addition, the small size of the dataset makes it difficult to
sufficiently learn various patterns, which makes it highly likely to
overfit to the training sample, making it difficult to develop a
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generalized and reliable model””.

To solve the problems that can occur in learning ML algorithms
that can be brought about by such small-scale field datasets, this
study applies transfer learning to develop a tomato detection model.
Transfer learning is developed for farms (i.e., target farms) that
wish to apply an optimized machine learning model with fast and
reliable performance by using the weights of a model learned
through a large-scale source dataset (i.e., an online tomato dataset).
In general, the tomato dataset collected from a target farm has a
small number of samples, making it difficult to sufficiently teach
the ML model. However, by performing additional learning for the
target farm based on the weights of the model learned through the
big dataset in advance, it helps develop an efficient machine
learning model. Figure 3 shows the YOLO transfer learning process
used for tomato detection in this study.

In the transfer learning, the Convolution (Conv) block of the
YOLO backbone is the basic component that performs down-
sampling. For the given input feature map (i.e., multi-dimensional
tensor representing spatially extracted features from the input

image), a 3x3 kernel (k=3) is strided by 2 (s=2), and the feature
map size is significantly reduced. Faster cross-stage partial
bottleneck with 2 convolutions (C2f) and spatial-channel decoupled
down-sampling (SCDown) are also convolution-based blocks that
process the feature map. The C2f block splits the input feature map
into two paths: one path bypasses transformation and retains the
original features, while the other passes through a bottleneck block
consisting of two convolution layers with k=3 and s=1, and then
finally both paths are concatenated to integrate the extracted
features. Note that s=1 preserves the feature map size, while
performing feature extraction and refinement. This allows the
gradient flow to be distributed across different network paths,
preventing redundant computations and improving computational
efficiency™. Compact inverted block (CIB) replaces the bottleneck
block in C2f and maintains the overall structure of C2f, which is
termed C2fCIB. CIB performs three depth-wise convolutions of
k=3, s=1, and two alternating convolutions of #=1, s=1 to maintain
the feature extraction performance of the bottleneck block and
enhance computational efficiency.

Cherry tomato monitoring Cherry tomato detection
— T
Camera — Image YOLOv10 Detecti
a . . etection
Sensors " Image database d preprocessing transfer learning
|
T
—_— T
i i - : Harvest yield estimation Economic feasibilit
Microclimate | | Microclimate | | y o y
sensors database analysis
-~
— N Tomato growth A Tomato yield P Cost and revenue
e . -
. ] status analysis estimation analysis
Soil sensors (¥ Soil database ||
— Market selection

Figure 2 Overview of the proposed framework

Big dataset

Training Validation Testing
dataset dataset dataset

Backbone Neck g0xg( Head

Detection

Concat
C2fCIB Detection Transfer
SCDown (Structure
&
Parameters)

C2fCIB Detection

Conv (k=1, s=1)

Concat -Bottleneck
Conv (k=1, s=1)

1
]
Conv (k=3, s=1) :
]
Conv (k=3, s=1) 1

|

Backbone Custom head

80x80

Custom neck

backbone

Output/Classes

Performance ana

Figure 3 Transfer learning for tomato detection with You-Only-Look-Once version 10

The SCDown block down-samples by applying a
computationally efficient depth-wise convolution after adjusting the
channel-level features by a convolution operation of k=1 and s=I.
The YOLO backbone repeatedly connects the above blocks to
perform gradual downsampling, extracting low-level features, such
as the color, texture, and edge of the tomato in the early stage, and

learning more abstract and high-level features, like the round shape
and size of the tomato as the network deepens.

The spatial pyramid pooling-fast (SPPF) block successively
applies the max pooling operation, which down-samples by
selecting the maximum value in the kernel in three stages, and then
concatenates the operation results of each layer to generate scale-
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invariant feature representations of cherry tomatoes. The partial self-
attention (PSA) block incorporates a feedforward network to the
attention block to enhance global feature modeling. While the
existing convolutional neural networks (CNNs) learn local
information (i.e., shape, texture, and edges of individual tomatoes),
self-attention learns the relationships between pixels and distant
features from cherry tomatoes and their surroundings, improving
detection accuracy in occluded or clustered scenarios. Equation (2)
represents the mechanism of self-attention; this calculates the
similarity by calculating the inner product between the feature query
(Q) of the current position and the feature key (K) of other
positions, and then weights the feature value V' to emphasize
features that are highly correlated with the other elements. It is
presumed that <, denotes the dimension of both QO and K
(dim(Q) = dim(K) = d;).

Attention (Q,IC,V) = softmax ( 3%) 1% 2)

3 by 3 feature map

2 by 2 feature map

»

Figure 4 Examples of down-sampling

YOLO neck aims to effectively combine high-level and low-
level features to accurately detect cherry tomatoes in various
environments (e.g., lighting, distance, size). The Up-sampling (Up-
sample) block is repeatedly used to integrate multi-scale features
extracted from the backbone. The nearest neighbor up-sampling
method, which replicates and uses adjacent pixel values, is adopted
to increase the feature map resolution, and the expanded feature
map is concatenated with the feature maps of ((40x40) and (80%80))
pixels resolution generated from each C2f block of the backbone.
This integration from high-level to low-level is termed a top—down
method, while a bottom—up augmentation path is added to
supplement the information of the up-sampling process and transfer
low-level information back to the high-level®. This consists of C2f,
C2fCIB, Conv, and SCDown blocks to repeatedly perform feature
refinement and down-sampling, and the concatenation between the
two paths enables information exchange (see Figure 4).

Finally, the detection block of the head is concatenated with
feature maps of different resolutions of ((80%80), (40%40), and

(20x20)) pixels, respectively, generated from the bottom—up
augmentation path of the neck to detect tomato objects of multiple
sizes (i.e., small, medium, and large, respectively). This detection
head consists of two convolutional layer branches, which perform
bounding box coordinate regression and object classification,
respectively.

The learning of the YOLO model is the process of developing a
model that calculates the loss between the predicted value and the
observed value, and minimizes the loss function based on gradient
descent (e.g., SGD, Adam optimizer). For this purpose, the weights
of the YOLO network are updated in the opposite direction to the
gradient. Equations (3)—(5) represent the YOLO loss function.
Equation (3) computes the cross-entropy loss between the predicted
class probability distribution p; and the true class distribution g¢;,
while Equation (4) computes the bounding box coordinate loss. The
apeq and b, represent the predicted bounding box center
coordinates, a.,, and b, represent the true center coordinates,
Wpea and A, represent the predicted bounding box width and
height, and w,, and Ay, represent the true width and height,
respectively. Equation (5) represents the confidence loss as the sum
of the confidence that the predicted bounding box will contain the
true object, and the background confidence that it will not (see
Equation (1)). The p.; and gqq; represent the predicted value and the
true confidence, respectively. Equation (6) represents the process of
integrating the loss of each task (i.e., class prediction, bounding box
prediction, confidence estimation) through weight 4,. Equation (7)
represents the gradient descent update formula to minimize the
objective function L(6), while ¢ represents the iteration step in the
optimization process, and 7 represents the learning rate.

Lcls == Z pilqui (3)

Leooa = Z ( (aprcd - amnh) ’ + (bprcd = bmnh) 2) +
Z ( (Wpred - anxh) ’ + (hpred - hlrulh) 2) (4)

Leows = _Zpobjl()gqobj - Z (1 - pobj) log (1 _‘Inbj) (5)

Llo!al = /lchls + /lZLcoord + /13 Lconf (6)

9r+1 = 01 - UVHL (0) (7)

First, the weights of the YOLO network are learned and
updated from the source dataset (i.e., a big dataset) from the initial
value. In the step of additional learning with the target dataset, the
learned weights of the source model are used as the initial values for
the target model. This process is conducted through parameter-
based transfer learning”'. At this time, to maintain the visual
features of typical tomatoes that have been pre-learned, the weights
from the initial layer in the input direction to the SPPF block (i.e.,
the YOLO backbone) are frozen, without being updated. On the
other hand, the PSA block in the backbone plays a role in
controlling spatial attention, so it is adjusted to suit the individual-
visual farm dataset, where the arrangement of tomatoes varies.

Equations (8) and (9) show the mathematical logic of YOLO
learning and transfer learning. During the learning process, for a set
of N input images, the goal is to find the YOLO network parameters
6" that minimize the loss function L(6) between the YOLO network
output f(x;) for the input image x; and the actual value y;, which is
performed using Equation (7). In the transfer learning process,
learning is performed using a new input image set M, the YOLO
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backbone parameter is fixed to 6; . .., and the goal is to find the

optimal parameters 6., and 6, that minimize the same loss

ead
function L(6). At this time, the initial values of the parameters 6,
and 6, of the YOLO neck and head are set to 6, and 6,

respectively.

0 = argmainZL(f(Xi;g),yi) 3

i=1

Oneck Ohead

M
01/|cck,hcud =arg min Z L (f ('x;/'; gguckbonc’ eneck’ ghead) 7y/) (9)
j=1

61 = 6,— 1V, L(6) (10)

and 6, =6, In Figure 5, the YOLOv10n
transfer learning model is pre-trained using source image I, and
bounding box B,, and next additionally trained using target image /,
and bounding box B,, and the accuracy is then evaluated using the
test code. Specifically, the YOLO model was trained using the

where, 69, =6

n neck

Tomato Plantfactory Dataset collected in a controlled environment.
This dataset contains numerous tomato images under optimized
lighting and cultivation conditions, helping to comprehensively
learn key features of the tomatoes, such as their basic shape, color,
and texture.

: READ I, I, which are source, target tomato image set

: READ B,, B, which are text file of bounding boxes

: SPLIT I, B,, into train and validation sets (8:2)

: SPLIT I, B, into train, validation, and test sets (6:2:2)

: TRAIN model with 7, B,

: FREEZE 10 layers

: TRAIN model with 7, B,

: TEST the trained model

: CALCULATE the detection accuracy from the detected images

O X0 3NN B WK —

Figure 5 Pseudocode of transfer learning with You-Only-Look-
Once 10 Nano

Next, the pre-trained model was used to additionally learn
images collected from our farm. In this fine-tuning process, the
Backbone layer (i.e., the initial convolutional layers) of the YOLO
model was frozen to maintain the general feature extraction ability.
By fixing the layer that learned low-level features (e.g. Shape,
Edge, Contour, etc.) and adjusting the weights only for the upper
layer according to our farm data, the model is specialized for our
farm data, without destroying the general feature representation of
tomatoes that it has already learned.

The main parameters are batch size and the number of epochs.
The batch size affects computational efficiency and learning
stability, while the number of epochs can cause overfitting with a
small amount of data in additional learning, so it is important to
adjust it to an appropriate level.

In Figure 5, the YOLOvVI10n transfer learning model is pre-
trained using source image I, and bounding box B,, and next
additionally trained using target image I, and bounding box B,, and
the accuracy is then evaluated using the test code. Specifically, the
YOLO model was trained using the Tomato Plantfactory Dataset
collected in a controlled environment. This dataset contains
numerous tomato images under optimized lighting and cultivation
conditions, helping to comprehensively learn key features of the
tomatoes, such as their basic shape, color, and texture. Leave-three-
out cross-validation (LO30-CV), a cross-validation (CV) technique
that divides the dataset into three parts (training, validation, and test
sets), is adopted in Figure 5.

Next, the pre-trained model was used to additionally learn
images collected from our farm. In this fine-tuning process, the
Backbone layer (i.e., the initial convolutional layers) of the YOLO
model was frozen to maintain the general feature extraction ability.
By fixing the layer that learned low-level features (e.g. Shape,
Edge, Contour, etc.) and adjusting the weights only for the upper
layer according to our farm data, the model is specialized for our
farm data, without destroying the general feature representation of
tomatoes that it has already learned.

The main parameters are batch size and the number of epochs.
The batch size affects computational efficiency and learning
stability, while the number of epochs can cause overfitting with a
small amount of data in additional learning, so it is important to
adjust it to an appropriate level.

2.3.2 Harvest yield estimation

Harvest yield is estimated based on the status of the detected
cherry tomato images. As each tomato has different morphological
characteristics based on its growth status, the detected images are
compared to the growth curve of a typical cherry tomato. Equation
(10) estimates the yield of cherry tomatoes detected by the proposed
framework.

(D,-0)

Ot X Yharvesled (l 1 )

Y. estimated —

where, D, is the detected size of a cherry tomato at time #; O, is the
measured size of cherry tomato at time #; Viewa 1S the average
weight of harvested cherry tomatoes; and Y.muea is the estimated
weight of detected cherry tomatoes. Note that O, and Y},esea Should
be computed from historical data, because they are used as
reference points to estimate Y,imyea-
2.3.3 Economic feasibility analysis

Equation (11) computes profit by analyzing cost and revenue
under the estimated total yield of cherry tomatoes and the estimated
cost and revenue.

P,=R -C; (12)

where, P;, R;, C; are the profit, revenue, and cost at market i,
respectively. Note that the net present values (NPVs) of cost,
revenue, and profit are not computed, because in South Korea,
cherry tomatoes are harvested within three months. The market 7 is
selected with the maximum value of P;.

3 Results

3.1 Experiment scenario

This experiment compares the performance in terms of tomato
yield detection accuracy, model learning speed, and overfitting, and
predicts yield and evaluates the economics in selected farms. First,
the lightest version of the YOLO model, the Nano version, was
adopted for the experiment, considering that it would be operated in
the selected farm environment. The nano version is designed to
maintain detection performance while minimizing memory and
computational resources, and can be used even in limited hardware
environments. Table 1 describes the specific hardware and software
specifications used in this study.

Table 2 describes the different learning settings for the four
cases. Although the batch size is set to 16 for all model learning,
Cases | and 2, which are non-transfer learning, are trained for 700
epochs, while transfer learning is set to 500 epochs for the Source
model learning with the Tomato Plantfactory Dataset, and 200
epochs for the Target model learning with the subject Farm dataset.
The remaining parameters not described in Table 2 use the default
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values provided by YOLOv10n. For reference, the value of “freeze”
indicates the number of backbone layers. In YOLOvIOn, the
backbone is responsible for feature extraction, and an improved
version of the Cross-stage Partial Network (CSPNet) is used to
improve the gradient flow and reduce computational redundancy.

Table 1 Hardware and software specification used in
the experiment

Components Specification
CPU Intel” Core™ 17-14700K, 3400Mhz
GPU NVIDIA GeForce RTX 4060 Ti
RAM 32.0GB

Operating system Microsoft Windows 11 Pro

Framework PyTorch 2.5.1+cul24, YOLOv10n
CUDA CUDA 12.4
cuDNN cuDNN 9.1.0

Table 2 Model training parameter settings

Learning type Number of images Batch size Epochs
Case 1 16 16 700
Case 2 540 16 700
Case 3 (freeze=0) 540/16 16 500/200
Case 4 (freeze=10) 540/16 16 500/200

Model performance is evaluated using three standard metrics:

(1) mean absolute error (MAE), which measures the average
absolute difference between the predicted value and the observed
value (see Equation (12)); (2) root mean square error (RMSE),
- i £ = =~ -

a. Original

b. Labeled

which is used as an indicator to focus on outliers due to model
overfitting by calculating the square root of the mean square error
(see Equation (13)); and (3) mean absolute percentage error
(MAPE), which provides an intuitive sense of accuracy by
expressing the absolute error as a percentage of the observed value
(see Equation (14)). These metrics allow the error between the
observed actual tomato count and the predicted tomato count using
the ML algorithm to be quantitatively evaluated.

1 .
MAE= - " ly~3| (13)
i=1
_ BN oy
RMSE= [~ " (i=3) (14)

i=1

n

1
MAPE =~ Z

i=1

y;y' x 100 (15)
Vi
3.2 Cherry tomato detection accuracy

The devised transfer learning is evaluated according to the
experiment scenario of Section 3.1. Figure 6 illustrates examples of
cherry tomato detection using YOLOv10n.

Cherry tomatoes are detected by selecting the most appropriate
image segmentation level to improve the detection performance.
Figure 7 shows that the image is detected by selecting the
segmentation condition with the best detection performance among

four segmentation conditions of 1x1, 2x2, 3x3, and 4x4.

AP N AW P

tomato 0.76)

uLunigiv

c. Detected image

Figure 6 Examples of cherry tomato detection

Table 3 describes the performance evaluation under four
different image segmentation conditions, and shows different
performances depending on the three different YOLO versions and
experimental cases. In Case 1, which used only a small amount of
data from the subject farm, regardless of the segmentation, both no
segmentation and auto segmentation types show the same detection
performance, because the proposed auto segmentation automatically
considers no segmentation (one-by-one segmentation) to four-by-
four segmentation. That is, in this case, no segmentation shows the
best performance regardless of the YOLO version, and because the
amount of data is small, selecting no segmentation is relatively
advantageous for the YOLO model learning. In Case 2, which uses
a big dataset, auto segmentation showed higher Cherry Tomato
detection accuracy than no segmentation in all YOLO versions.
This result indicates that as the data becomes more diverse and
larger, it is necessary to use an appropriate segmentation technique.
On the other hand, similar to Case 1, in Case 3, non-segmentation

shows the best Cherry Tomato detection performance. This appears
to be because, under the condition freeze=0, model learning can be
efficiently conducted even without segmentation, because all layers
are adjusted to adapt to the target image. Case 4 shows that non-
segmentation is appropriate for YOLOVS, but segmentation shows
higher cherry tomato detection performance in YOLOvV5 and
YOLOv10. Despite the various experimental results, transfer
learning models (i.e., Case 3 or Case 4) have the highest detection
accuracy in all YOLO versions. In addition, the training time is the
shortest in all versions with an average of 314.6 s in Case 1, which
has a small number of images, and the longest in Case 2 with an
average of 4292.2 s. Case 3 or Case 4 using transfer learning can
reduce the learning time by about 26% compared to Case 2.
Comparing Case 3 and Case 4, Case 4 takes slightly less training
time than Case 3 in all versions, because it did not train with 10
layers fixed, with an average difference of 10.5 s.

Figure 8 shows MAE, RMSE, and MAPE results according to
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c. 3x3 segmentation

d. 4x4 segmentation

Figure 7 Examples of image segmentation

Table3 Performance evaluation under four different image
segmentation cases
Segmentation type MAE RMSE MAPE Time/s
No segmentation ~ 20.9 252 17.7
Case 1 . 292.6
Auto segmentation  20.9 252 17.7
No segmentation  63.0 69.4 52.8
Case 2 .
Auto segmentation  20.0 22.5 232
YOLOvV5 .
No segmentation ~ 13.9 16.5 13.2
Case 3 . 3088.0
Auto segmentation  13.9 16.5 13.2
No segmentation ~ 29.9 37.3 23.1
Auto segmentation  24.7 27.0 23.1
No segmentation ~ 17.9  20.0 19.3
Case 1 . 277.3
Auto segmentation  17.9 20.0 19.3
No segmentation ~ 55.8 63.9 43.7
Case 2 .
Auto segmentation  17.0 23.8 25.8
YOLOV8 .
No segmentation 9.5 11.8 7.6
Case 3 . 3194.6
Auto segmentation 9.5 11.8 7.6
No segmentation ~ 21.0 27.1 16.5
Auto segmentation  21.0 27.1 16.5
No segmentation ~ 25.1 29.3 233
Case 1 . 373.8
Auto segmentation  25.1 29.3 233
No segmentation ~ 55.0 63.2 434
Auto segmentation  17.8 23.7 26.9
No segmentation  16.9 18.0 17.0
Case 3 . 3186.5
Auto segmentation  16.9 18.0 17.0
No segmentation ~ 26.4 323 214

Case 4 . 3176.6
Auto segmentation  16.4 19.8 21.4

Version Case

4218.9

Case 4 3077.6

43425

Case 4 3183.4

Case 2 4315.2

YOLOv10

the Freeze parameter in three YOLO versions (YOLOvS, YOLOVS,
and YOLOv10). The x-axis of Figure 8 represents four
segmentation conditions, while represents  the
performance measure.

The experimental results show that as the number of segments
increases, the RMSE tends to increase. In Case 1, for the no

the y-axis

segmentation (one-by-one segmentation) scenario, all versions
showed higher performance for all metrics, compared to Case 2.
However, in Case 1, as the number of segments increased, the
RMSE increased, reaching the highest values for YOLOVS,
YOLOVS, and YOLOVI10 of (237.2, 246.3, and 50.5), respectively,
in the four-by-four segmentation case. This behavior occurred more
significantly in YOLOv5 and YOLOVS than in YOLOV10, and the
RMSE differences between no segmentation and four-by-four
segmentation for YOLOv5, YOLOVS, and YOLOv10 were (212.0,
226.3, and 21.2), respectively.

In Case 2, the RMSE, MAE, and MAPE decreased in all
segmented scenarios, while in YOLOVS, the standard deviation of
the RMSE for segmentation types was 19.9. Conversely, in Case 1,
the RMSE standard deviation was 87.2, indicating a larger
performance variation according to the image segmentation and
weaker generalization performance, compared to Case 2. This
indicates that due to the small number of training images, the model
could be overfitted.

In YOLOV10, Case 3 showed the highest performance for no
segmentation, with MAE = 16.9, RMSE = 18.0, and MAPE = 17.0.
However, in all segmented scenarios, Case 4 recorded lower MAE,
RMSE, and MAPE than Case 3. Case 4 showed its best
performance in two-by-two segmentation, with MAE = 16.4,
RMSE = 19.8, and MAPE = 22.1. The RMSE standard deviations
for segmentation types for Case 1, Case 2, Case 3, and Case 4 were
(8.1, 15.8, 13.3, and 7.6), respectively, indicating that the proposed
Case 4 is more robust to image segmentation than the other cases.
These results show that Case 3 follows a similar trend to Case 1,
while Case 4 follows a similar trend to Case 2. In conclusion, MAE,
RMSE, and MAPE show different performances in all image
segmentation cases, which suggests that proper image learning
through the proposed auto segmentation helps to improve the
accuracy of cherry tomato detection.
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Figure 8 Visualized MAE, RMSE, and MAPE for YOLOVS, YOLOvVS, and YOLOvV10 across different image
segmentation cases (Cases 1—4)

3.3 Harvest yield estimation

As mentioned in Section 2.3.2, Equation (10) estimates the
yields of detected cherry tomatoes. To this end, reference points (O,
and Yiesea) should be computed from historical data. Figure 9
illustrates the observed plant height and net photosynthesis rate of
the cherry tomatoes from May 17, 2022 to July 6, 2022". Note that
those values are observed two weeks after the transfer into a
greenhouse on May 3, 2022. Cherry tomato plants were fully grown
35 d after the transplant, and their net photosynthesis rates were
stable. In addition, morphological characteristics, such as moisture
content, leaf area index (LAI), plant height, and stem thickness, of
the cherry tomatoes were measured (see Table 4).

Most morphological characteristics in Table 4, except LAI, are
stable during the harvesting period from June 21, 2022, to July 6,
2022. Note that LAI decreases during the harvesting season®.
Table 5 summarizes the information on the harvested cherry
tomatoes. Harvest index (HI) was computed by dividing the fresh
fruit weight by the total fresh weight. According to previous studies
of cherry tomatoes™®*", the HI values of cherry tomatoes ranged
from 0.60-0.68. Therefore, the HI of 0.65 in Table 5 indicates that
the field study has been appropriately conducted. The value of
Yiavesea Was computed by dividing the fresh fruit weight by the
number of fresh fruit count, resulting in 17.14 g/fruit.

Figure 10 shows the size and weight change of the cherry
tomatoes from anthesis to red-ripe. Figure 10a shows that the size of
cherry tomatoes in diameter does not significantly change 33 d after
anthesis. Joubes et al.’" showed a similar result. The weight pattern
in Figure 10b is quite similar to that of Figure 10a, because of the

Height/cm

pumol-m2-s™!
S =N WA A0

[eaNe e je No No No o e o)
T

Net photosynthesis rate/
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a. Plant height

0 5

10 1

5 20 25 30 35 40 45 50 55 60
Growing days
b. Net photosynthesis rate

Figure 9 Observed growing status of cherry tomatoes

Table 4 Moisture content, leaf area index (LAI), plant height,

and stem thickness of cherry tomatoes

Category 35d 57d
Moisture content/% 89+1.1 87+3.6
Leaf area index (LAI) 0.87+0.05 1.82+1.40
Plant height/cm 180+4 186+17
Stem thickness /mm 14.05+0.33 14.89+1.55
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high correlation between size and weight"". As mentioned in
Equation (10), Figure 9a is used to obtain the measured size (O,) of
a cherry tomato at time .

Table 5 Fresh weight (g), fresh fruit weight (g), and harvest
index of cherry tomatoes

Cateso Total fresh Fresh fruit Fresh fruit count/  Harvest
gory weight/g-m™ weight/g-m? number-m index
Observed  ¢151.3780 520542550 309150 0.65
value

3.4 Economic feasibility analysis

The estimated yield of cherry tomatoes is analyzed under the
cost and revenue Equation (11). In particular, five major wholesale
markets in South Korea are considered for economic feasibility
analysis. Figure 11 illustrates the locations and transportation costs
of wholesale markets from the subject farm at the National Institute
of Horticultural and Herbal Science in South Korea. The unit
transportation cost is assumed to be 1.45 USD/km-t®.

Table 5 describes the average yield of cherry tomatoes as 5.295
kg/m? while Table 6 describes the calculated price and profit of
cherry tomatoes based on this result.

Table 6 describes that the production cost of cherry tomatoes is
11.19 USD/m? and transportation costs for five different markets
are computed for distances from the subject farm to each market
(see Figure 11). Due to its location, Daejeon has the minimum
transportation cost, while Busan has the highest transportation cost.
However, the difference between the five wholesale markets is
relatively small, compared with the gaps between the revenues of
markets. The market sales prices in Seoul, Busan, Daegu, Daejeon,
and Gwangju are 4.79, 6.75, 5.20, 4.34, and 4.01 USD/kg,
respectively®. Most cherry tomato farms are located in the western
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Figure 10  Size and weight change of a cherry tomato from
anthesis to red-ripe stage

region in South Korea. Busan and Daegu have higher sales prices
than the other three locations. Therefore, despite their high
transportation costs, the Busan and Daegu areas are selected as the
most profitable markets. In addition, considering that the profit of
cherry tomatoes ranges from 11.12 to 22.44 USD/m? the annual
operation and maintenance cost of the proposed framework should
be less than $11.12 /m’.

Market | Distance to| Transportation
farm/km | cost/$ kg™

Seoul 212 0.307

Busan 275 0.399

Daegu |224 0.325

Daejeon |83 0.120

Gwangju | 90 0.131

© Farm

@ Market

Figure 11 Example of subject markets in South Korea

Table 6 Cost, revenue, and profit of cherry tomatoes selling to
five subject markets in South Korea

Market
Category - -
Seoul Busan Daegu Daejeon Gwangju
Cost Production/ ($-m?)'  11.19 11.19 11.19 11.19 11.19
0s

Transportation/ ($-m?) 1.63  2.11 1.72 0.64 0.69
Revenue/($-m?)? 2534 3574 27.52 2295 21.25
Profit/($-m™) 12.52 2244 1461 11.12 9.37

! Material cost includes costs of seed, fertilizer, pesticides, labor, overhead, tax,
and miscellaneous; * It considers historical selling price data in South Korea®.

4 Discussion

The proposed framework is developed using the cherry tomato
data from the National Institute of Horticultural and Herbal Science

in South Korea!"®. To accurately detect cherry tomatoes from image
data, YOLOv10n, one of the most popular image detection
algorithms, is applied to the transfer learning framework. Since
there are multiple examples of YOLO with different versions in
crop and vegetable detection using inexpensive camera sensors® >,
engineers can easily apply the proposed framework to detecting
other crops and vegetables. Eventually, this standard technology
will promote the use of smart farming technologies by engineers
and farmers. For example, the proposed framework can be used to
recognize tomatoes in real time and predict growth by linking with a
monitoring system of crop growth through camera sensors in a
green house. Moreover, since YOLOv10n can be operated on a
small computer equipped with a microprocessor (e.g., raspberry pi),
if the proposed framework is implemented on a robot equipped with
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a camera sensor, crop growth can be monitored even in unmanned
production facilities (e.g., plant factory). If the proposed framework
determines whether cherry tomatoes are ripe, it can be installed on a
cultivation robot to automatically harvest cherry tomatoes that have
reached the ripening time. To this end, additional learning of the
model is required by linking with a database that determines
whether cherry tomatoes are ripe.

In addition, the transfer learning with the devised image
segmentation technique improves the MAE, RMSE, and MAPE by
37.88%, 38.70%, and 3.27%, respectively, over the non-segmented
case. Kaur and Kaur®” advise that image segmentation for a specific
object detection could significantly improve detection accuracy,
because it divides an original image into small images having
similar features and properties. Therefore, small images can have a
unified meaning, instead of an original image with multiple
meanings. This is not exceptional for either tomato or cherry tomato
detection, which involves fruits, plant stems, leaves, and other
background noise. This study shows the optimum segmentation
size of an image for accurate cherry tomato detection.

In the economic feasibility analysis of cherry tomatoes, profits
in the range of 11.12-22.44 USD/m’ are identified for the
production and transportation costs and revenue. Five major
wholesale markets are considered to compute the profit ranges.
Unlike existing studies that focus only on their methodological
aspects for detection accuracy improvement™'', the proposed
framework includes transfer learning with the economic feasibility
module, so that farmers can understand how much cost they must
invest to operate and maintain the smart farming technology
sustainably. According to the identified profit range, the annual
operation and maintenance cost of the proposed framework should
be less than 11.12 USD/m’. This implies that if the framework is
durable for five years at a discount rate of 5%, the investment cost
(or net present value) of the proposed framework should be less
than 48.14 USD/m’. Therefore, to generate a reasonable profit from
cherry tomato production through the use of commercial high-end
sensors (or a smart farming system) is challenging. This finding
supports the claims that Unmanned Aerial Vehicles (UAVs),
Internet of Things (IoT), and Artificial Intelligence (AI) are too
expensive to deploy on a mechanized farm™. To make the smart
farm profitable, those technologies should be implemented in
inexpensive devices (e.g., Raspberry pi-based image processing or
Arduino-based sensors), so that farmers can easily purchase and
operate the smart farming devices without incurring economic
burden.

5 Conclusions

This study proposes a CNN-based transfer learning framework
for the economic production of cherry tomatoes (solanum
lycopersicum) in South Korea. As climate change has become a
significant issue in harvesting crops and vegetables, it is necessary
to use Greenhouse Horticulture to help control the internal
environment despite the impact of the external environment. By
using smart farming technology in production management at a
greenhouse, sustainable crops and vegetables can be realized in
practice. The proposed framework comprises four significant
modules of cherry tomato monitoring, cherry tomato detection,
harvest yield estimation, and economic feasibility analysis. Once
cherry tomato growth status is monitored and detected by the
framework, yield is estimated based on the typical cherry tomato
growth curve. To accurately detect cherry tomatoes using camera
sensors, YOLOv10n is applied with the segmentation technique.

The experiment result shows that the proposed framework improves
the prediction accuracy by 38.7% in terms of the root-mean-square
deviation of the existing YOLOv10n. In addition, the harvest yield
was estimated by considering the growing curve of cherry tomatoes,
and the economic feasibility analysis demonstrated that the profit of
cherry tomatoes ranged from 11.12-22.44 USD/m’ in South Korea.
This implies that the annual operation and maintenance cost of the
proposed framework should be less than 11.12 USD/m’. As a result,
this study will contribute to the expansion of smart farming
technologies, and the provided cost guideline will also be used to
improve farmer income.

Although the devised framework accurately estimates the
monetary benefits of cherry tomato production using YOLOv10n,
more field study cases are needed to develop a reliable cherry
tomato detection algorithm. Future studies should consider both the
sample size increase of each field study site, and cherry tomato
cultivation under various environmental conditions (e.g., humidity,
temperature, soil nutrition, and ambient light).
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