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Abstract: As crop harvesting becomes more difficult in environments affected by climate change, the application of artificial
intelligence  technology  to  crop  management  through  accurate  yield  prediction  is  receiving  worldwide  attention.  This  study
proposes  a  convolutional  neural  network (CNN)-based transfer  learning framework to  increase  the  productivity  and improve
the  economic  feasibility  of  cherry  tomatoes  (solanum  lycopersicum)  in  South  Korea.  You-Only-Look-Once  10  Nano
(YOLOv10n)  is  adopted  as  a  CNN-based  algorithm.  The  source  model  for  transfer  learning  is  trained  using  cherry  tomato
imagery from the Tomato Plantfactory Dataset,  while  the  target  model  is  trained based on field  survey data  collected by the
National  Institute  of  Horticultural  &  Herbal  Science,  Rural  Development  Administration,  Korea.  In  that  process,  an  image
segmentation technique is developed to improve the prediction accuracy, which reduces the root-mean-square deviation of the
existing  YOLOv10n from 32.3  to  19.8,  a  38.7% reduction.  Also,  the  devised  economic  feasibility  analysis  method finds  the
cost of producing cherry tomatoes in South Korea to be 11.12 USD/m2, while the maximum revenue can reach 22.44 USD/m2.
As a result, the proposed transfer learning framework helps general farms where it is difficult to collect big data to use machine
learning techniques to predict crop or vegetable production.
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 1    Introduction
The  tomato  is  one  of  the  most  popular  fruits  worldwide.  The

total  world  tomato  production  in  2021  was  approximately  189.1
million  metric  tons[1].  Production  quantities  from  China,  India,
Turkey,  and  the  United  States  were  67.5,  21.1,  13.1,  and
10.5 Mt,  respectively.  These four countries produce 59.37% of the
total  world  production.  Tomato  is  considered  to  be  one  of  the
primary dietary sources in many countries, due to its nutrients, like
vitamins,  carotenoids,  and  phenolic  compounds[2].  South  Korea
produced  0.4  Mt  of  tomatoes  in  2021[3],  valued  at  896.59  million
USD.  Therefore,  as  in  other  countries,  tomato  in  South  Korea  is
considered an essential fruit.

Numerous studies have been conducted in different countries to
improve tomato production; e.g., Türkten and Ceyhan[4] proposed an
environmentally  efficient  way  to  produce  tomatoes  using  soilless
farming technology in a greenhouse farm in Turkey; Rivard et al.[5]

investigated the impact  of  grafting techniques on tomato (Solanum
lycopersicum) production in Ivanhoe, North Carolina and Strasburg,
Pennsylvania in the U.S.; Guo et al.[6] attempted to reduce fertilizer
and  pesticide  use  in  cherry  tomato  production  using  a  life  cycle
assessment  (LCA)  approach;  while  Lee  et  al.[7]  used  four  different

rootstocks  (i.e.,  ‘Powerguard’,  ‘T1’,  ‘L1’,  and  ‘B.blocking’)  for
cherry tomato cultivation to improve its growth and yield in South
Korea.

There  have  also  been  efforts  to  use  machine  learning  (ML)
techniques to improve the production yield of cherry tomatoes and
tomatoes.  Due  to  climate  conditions,  tomatoes  in  South  Korea  are
cultivated  in  greenhouses.  The  ML  techniques  are  integrated  with
the concept of smart farming, which refers to advanced technology
use (e.g.,  the IoT) to improve the productivity of crops by weather
data collection, crop growth monitoring, preventive maintenance of
crop  diseases,  and  prevention  of  inefficient  activities  in  crop
harvesting[8].  For  example,  Liu  et  al.[9] proposed a  tomato detection
algorithm  using  the  YOLO  version  3  algorithm  to  enhance  fruit
detection  accuracy  under  a  complex  monitoring  mechanism
involving illumination variation and branch, leaf, and fruit overlap;
Yang  and  Ju[10]  presented  a  deep  learning-based  approach  to
distinguish  the  ripeness  of  cherry  tomatoes  in  real  time  by
leveraging  YOLOv5  and  YOLOv8  (with  ResNet50  backbone)
models; Nyalala et al.[11] estimated the volume and mass of tomatoes
via  computer  vision  technology  based  on  a  cherry  tomato  model
with  support  vector  machine  (SVM)  and  radial  basis  function
(RBF);  while  Kabas  et  al.[12]  used  an  artificial  neural  network
(ANN),  logistic  regression,  and  decision  tree  to  estimate  the
deformation  energy  of  cherry  tomatoes  from  twelve  independent
variables of length, thickness, width, geometric diameter, sphericity,
surface  area,  rupture  force,  firmness,  Poisson’s  ratio,  and  modulus
of  elasticity.  These  studies  have  shown that  while  ML or  artificial
intelligence  (AI)  methodologies  can  contribute  to  improving  crop
yields,  they  have  the  disadvantage  of  first  requiring  big  data  for
model  learning,  while  they  have  not  suggested  how  to  establish
production  plans  that  take  economic  feasibility  into  account  based
on  prediction  results  obtained  through  ML.  In  particular,
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considering  that  it  is  difficult  for  general  farmers  to  develop
separate  ML (or  AI)  models  and  collect  big  data,  a  new  approach
should be considered in countries like South Korea, where the goal
is to spread smart agricultural technology to farmers in general[13].

This  study  proposes  a  convolutional  neural  network  (CNN)-
based transfer  learning framework to  increase  the  productivity  and
improve  the  economic  feasibility  of  cherry  tomatoes  (solanum
lycopersicum)  in  South  Korea.  The  You-Only-Look-Once  10
(YOLOv10)  algorithm,  one  of  the  popular  convolution  neural
network  algorithms  used  to  detect  an  object[14],  is  selected  as  the
CNN-based  cherry  tomato  detection  algorithm.  The  proposed
framework consists of four modules: (1) cherry tomato monitoring,
(2)  cherry  tomato  detection,  (3)  harvest  yield  estimation,  and  (4)
economic feasibility  analysis.  After  the  camera collects  the  tomato
images  in  the  cherry  tomato  tracking  module,  the  cherry  tomato
detection  module  uses  the  devised  CNN-based  transfer  learning
algorithm  to  detect  cherry  tomatoes.  The  harvest  yield  estimation
module  analyzes  the  sizes  of  the  detected  cherry  tomatoes,  and
computes the total yield. The economic feasibility analysis module
considers the sales revenue, production cost, and transportation cost
of  the supply chain to  compute the total  profit  of  cherry tomatoes.
Two  data  sources,  namely  the  Tomato  Plantfactory  Dataset[15],  a
publicly  available  cherry  tomato  dataset,  and  the  field  study  data
collected  from  the  National  Institute  of  Horticultural  and  Herbal
Science  in  South  Korea,  are  used  to  develop  the  cherry  tomato
detection module via CNN-based transfer learning. This study also
conducts  experiments  to  determine  the  detection  accuracy  of  the
devised algorithm and the estimated profitability of cherry tomatoes
sold in major wholesale markets in South Korea. This study makes
the following contributions: first, the concept of transfer learning is
applied to the existing CNN methodology including YOLO, which
requires a big dataset;  i.e.,  a source model is created through a big
dataset, and a target model is created for individual farms. This has
the  advantage  of  helping  farms,  which  have  relative  difficulty  in
collecting  big  data,  use  ML techniques  such  as  CNN.  Second,  the
proposed  framework  addresses  the  detection  accuracy  of  crops  by
applying  ML  techniques,  while  also  predicting  quantity  prediction
and performing economic analysis at the time of sale, showing that
the use of ML techniques makes it possible to manage the economic
production of cherry tomatoes. Third, the proposed framework uses
You-Only-Look-Once  10  Nano  (YOLOv10n),  and  exploits  the
developed  image  segmentation  technique  in  the  image
preprocessing  step  to  improve  the  detection  ability  for  cherry
tomatoes. In consequence, the proposed transfer learning framework
helps  small-scale  farms—where  it  is  difficult  to  collect  big
data—use  ML  techniques  to  predict  crop  or  vegetable  production,
showing that this contributes to the expansion of smart agricultural
technology, while increasing farm income.

The  remaining  sections  are  organized  as  follows:  Section  2
describes  the proposed method,  and summarizes  the cherry tomato
data from the Tomato Plantfactory Dataset[15] and field study data in
South Korea[16]. Section 3 evaluates the performance of the proposed
framework  concerning  the  detection  accuracy  of  cherry  tomatoes,
and  estimates  the  profit  of  cherry  tomatoes  sold  to  wholesale
markets  in  South  Korea.  Section  4  provides  the  discussion,  while
Section 5 concludes the study.

 2    Materials and methods
 2.1    Data collection

Two datasets are needed for transfer learning: (1) a big dataset
to develop a source model, which is a generalized machine learning

model  that  can  be  commonly  applied  to  multiple  cases,  and  (2)  a
case-specific  dataset  to  develop  a  target  model,  which  can  be
applied to a specific farm. First, this study used a publicly available
cherry  tomato  dataset,  the  Tomato  Plantfactory  Dataset[15],  to
develop a source model. This dataset includes 520 images collected
in  a  fully  artificially  illuminated  plant  factory  laboratory  at  the
Henan  Institute  of  Science  and  Technology  (HIST),  Xinxiang,
China. This dataset, focusing on the micro tomato variety, includes
a total of 9112 tomato objects (5996 green and 3116 red tomatoes),
and  was  collected  from  the  flowering  stage  in  December  2021
through to the maturation stage in February 2022. The dataset  was
captured  by  Canon  80D  DSLR  camera  at  (6000×4000)  pixels
resolution  and  an  iPhone  11  wide-angle  camera  at  (4032×3024)
pixels  resolution  under  diverse  artificial  lighting  conditions,
including variations  in  tomato fruit  development,  complex lighting
environments, distance changes, occlusion, and blurring.

Second,  to  develop  a  target  model,  field  study  data  on  cherry
tomatoes  (solanum  lycopersicum)  were  collected  at  the  National
Institute of Horticultural and Herbal Science in Wanju, South Korea
(35°830′N, 127°030′E) (Figure 11 shows the location of the subject
farm,  near  Jeonju)[16].  Seeds  were  sown  on  March  16,  2022,  in
plastic  trays  ((54 cm×28 cm) in  size,  (5  cm×10 cm) cells  with  pot
volume 3.7 L) with commercial bedding soil  labeled ‘Bio Sangto’.
The soil contains (67.5%, 17.0%, 5.0%, 10.0%, 0.3%, 0.014%, and
0.185%),  cocopeat,  peat  moss,  zeolite,  perlite,  pH  adjuster,
humectant,  and fertilizers  containing  270 mg/kg each of  N,  P,  and
K,  respectively.  Seedlings  were  grown  to  fully  expanded  mature
leaf stages of 25-30 cm height in a glasshouse at the subject facility.
Forty-eight  days  after  sowing,  cherry  tomato  seedlings  were
transferred to a greenhouse with black plastic mulch film on May 3,
2022.  Plants  were  watered  and  fertigated  weekly  with  nutrient
solution  A  (Nitrogen,  Potassium,  Calcium,  Boron,  Iron,  Zinc,  and
Molybdenum (N, K, Ca, B, Fe, Zn, and Mo) at 5.5%, 4.5%, 4.5%,
0.000 14%,  0.05%,  0.0001%,  and  0.0002%,  respectively,  and
solution B of (N, P, K, Mg, B, Mn, Zn, and Cu) at 6%, 2%, 4%, 1%,
0.05%,  0.01%,  0.005%,  and  0.0015%,  respectively  (Mulpure,
Daeyu,  Seoul,  Republic  of  Korea).  The  average  air  temperature  in
the  greenhouse  was  maintained  between  25°C-35°C,  while  the
relative  humidity  ranged  from  50%-85%.  The  sub-plot  in  the
greenhouse was laid out in a randomized complete design with five
transplants (30 cm apart) and three replicates of single-row plots of
1.5  m  length.  The  distance  between  single-row plots  was  140  cm.
The  weights  of  harvested  fruits  ranged  (15  to  25)  g  (Park  et  al.,
2023). Imagery data of the cherry tomato fruits were collected by a
Red–Green–Blue (RGB) camera sensor from May 17, 2022 to July
6, 2022.
 2.2    Tomato and cherry tomato detection using YOLO

The YOLO algorithm[17] is one of the most widely used state-of-
the-art  algorithms  in  the  field  of  object  detection[18].  In  contrast  to
conventional  two-stage  detection  methods,  like  deformable  parts
models (DPM)[19] and Region-based Convolutional Neural Networks
(R-CNN)[20], which initially identify potential object locations within
an  image  and  subsequently  examine  the  identified  regions
individually, YOLO integrates object classification and localization
into  a  unified  regression  problem,  focusing  on  class  probability.
This allows a single neural network to analyze an entire image, and
simultaneously predict bounding boxes and class probabilities.

YOLO divides the input image into an S×S grid, with each grid
cell  tasked with detecting an object  if  the center of the object  falls
within  that  cell.  Each  grid  cell  predicts  bounding  boxes,  wherein
each  box  is  defined  as  a  5-tuple  (a,  b,  w,  h,  Confidence  score),
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Pr(ob j)

IoUtruth
pred

corresponding  to  the  center  coordinates,  width,  height,  and
confidence  score  of  the  box.  The  confidence  score  is  expressed  as
the product of the probability that an object exists in a cell ( )
and  the  Intersection  over  Union  (IoU)  between  the  predicted  box
and the ground truth box ( ).

Confidencescore = Pr(ob j)× IoUtruth
pred (1)

Although the early versions of the YOLO algorithm focused on
real-time  processing,  it  has,  through  continuous  improvements,
demonstrated a high level of accuracy[21].  Liu and Nouaze[9] utilized
YOLO  version  3  to  detect  tomatoes  even  under  complex
environmental  conditions,  such  as  lighting  changes,  occlusion  of
branches  and  leaves,  and  overlapping  of  fruits.  To  this  end,  the
existing  rectangular  bounding  box  (R−Bbox)  was  replaced  with  a
circular bounding box (C−Bbox) that is close to the tomato model,
thereby  improving  the  IoU  calculation  for  the  Non-Maximum
Suppression  (NMS),  hence  enhancing  tomato  detection
performance.

YOLOv5  and  YOLOv8,  developed  in  2020  and  2023,
respectively,  have  been widely  adopted  in  various  object  detection
research  fields[21].  The  YOLOv5  model  is  particularly  useful  in
complex  agricultural  environments  with  irregular  lighting
conditions,  because  it  improves  the  basic  recognition  accuracy  by
applying  various  data  augmentation  techniques  that  include  image
rotation,  saturation  adjustment,  and  exposure  control.  It  has  the
particular  advantage  of  automatically  optimizing  anchor  selection
by dynamically calculating anchor boxes that fit the training dataset
during  training  to  maximize  performance.  However,  when  dealing
with  complex  backgrounds,  it  faces  limitations  due  to  reduced
detection  capabilities,  which  can  lead  to  errors  in  distinguishing
object  boundaries,  and  inaccurate  recognition  of  crop  health,
diseases, and pests. YOLOv8 replaces the Cross Stage Partial (CSP)
layer  used  in  YOLOv5  with  a  more  efficient  and  streamlined  C2f
module to reduce structural complexity and improve computational
efficiency,  making  it  a  more  suitable  algorithm  for  real-time
processing. When the Spatial Pyramid Pooling Fast (SPPF) layer is

included, it has the advantage of pooling image features of various
sizes into a fixed-size feature map, which can further accelerate the
processing  speed.  Considering  the  characteristics  of  YOLOv5  and
YOLOv8 mentioned above, Yang and Ju[10] applied both algorithms
to  a  real-time  cherry  tomato  ripening  classification  robot,  and
showed  that  the  performance  of  the  cherry  tomato  ripening
classification task could be improved.

YOLOv10[22],  released  in  2024,  represents  a  significant
innovation,  in  that  it  is  free  of  NMS.  Previous  versions  of
YOLOv10  have  addressed  duplicate  detection  by  removing
bounding  boxes  with  IoU  below  a  certain  threshold  via  a  post-
processing  mechanism  termed  NMS,  whereas  YOLOv10  adopts  a
dual-label  assignment  strategy  that  combines  one-vs.-one  and  one-
vs.-many  assignment  strategies  to  minimize  duplicate  predictions,
and eliminate the dependency on NMS.

Figure  1  shows  that  YOLOv10  consists  of  Backbone,  Neck,
and  Head  structures[23],  which  are  the  same  as  the  previous  YOLO
versions, while the Backbone layer consists of a Cross-stage partial
network  (CSPNet)[22]  structure,  which  repeatedly  performs
convolution  operations  to  extract  low-level  to  high-level  features,
and transfer them to the Neck, respectively. The Neck layer adopts
the  improved  Path  aggregation  network  (PANet)[24]  structure,  and
integrates  the  multi-scale  features  extracted  from  the  YOLO
backbone  through  the  asymmetric  path  aggregation  method  that
adds  a  bottom–up  augmentation  path  to  the  top–down  path  of  the
Feature pyramid network (FPN)[25].  The head layer is  the layer that
performs the final prediction, and performs simultaneous bounding
box  regression  and  object  classification.  YOLOv10  has,  through
extensive experiments, shown better detection accuracy and latency
improvement,  compared  to  previous  versions.  Because  of  its
lightweight  design,  it  is  a  more  suitable  algorithm  for  individual
farmers  who,  due  to  budget  restrictions,  must  use  low-spec
computers. YOLOv10 is classified into five versions, n, s, m, l, and
x,  according to the number of parameters. The YOLOv10n version
has the minimum number of parameters, so it is particularly suitable
for lightweight computing environments.
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Figure 1    Architecture of You-Only-Look-Once version 10
 

 2.3    CNN-based  transfer  learning  framework  for  cherry
tomato production

This  study  proposes  a  transfer  learning  framework  for
economical  cherry  tomato  production  using  the  YOLOv10n
algorithm. Figure 2 represents the proposed framework that consists
of  four  modules:  (1)  cherry  tomato  monitoring,  (2)  cherry  tomato
detection, (3) harvest yield estimation, and (4) economic feasibility
analysis. In the framework, cherry tomato cultivation conditions are
monitored through the cherry tomato monitoring module involving
camera sensors,  microclimate sensors,  and soil  sensors.  The image
data of cherry tomatoes are mainly used in the detection module to
train  and  test  the  devised  YOLOv10n  transfer  learning  algorithm.
The  status  of  the  detected  cherry  tomatoes  is  analyzed,  while  the

harvest  yield  estimation  module  estimates  the  total  yield.  The
economic feasibility analysis module computes the production cost
of  the  cherry  tomatoes,  and  the  sale  to  the  best  market  that
maximizes the total profit.
 2.3.1    Cherry tomato detection via transfer learning

Datasets  collected  from  individual  farms  reflect  the  actual
cultivation  environment,  so  they incur  several  inherent  difficulties,
such  as  low  image  quality,  high  density  and  overlap  of  tomatoes,
variation in tomato size depending on the perspective, and difficulty
in  distinguishing  green  immature  tomatoes  from  leaves[26].  In
addition,  the  small  size  of  the  dataset  makes  it  difficult  to
sufficiently  learn  various  patterns,  which  makes  it  highly  likely  to
overfit  to  the  training  sample,  making  it  difficult  to  develop  a
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generalized and reliable model[27].
To solve the problems that can occur in learning ML algorithms

that  can  be  brought  about  by  such  small-scale  field  datasets,  this
study applies transfer learning to develop a tomato detection model.
Transfer  learning  is  developed  for  farms  (i.e.,  target  farms)  that
wish  to  apply  an  optimized  machine  learning  model  with  fast  and
reliable  performance  by  using  the  weights  of  a  model  learned
through a large-scale source dataset (i.e., an online tomato dataset).
In  general,  the  tomato  dataset  collected  from  a  target  farm  has  a
small  number  of  samples,  making  it  difficult  to  sufficiently  teach
the ML model. However, by performing additional learning for the
target  farm based on the weights  of  the model  learned through the
big  dataset  in  advance,  it  helps  develop  an  efficient  machine
learning model. Figure 3 shows the YOLO transfer learning process
used for tomato detection in this study.

In  the  transfer  learning,  the  Convolution  (Conv)  block  of  the
YOLO  backbone  is  the  basic  component  that  performs  down-
sampling.  For  the  given  input  feature  map  (i.e.,  multi-dimensional
tensor  representing  spatially  extracted  features  from  the  input

k s

k s

s

image),  a  3×3  kernel  ( =3)  is  strided  by  2  ( =2),  and  the  feature
map  size  is  significantly  reduced.  Faster  cross-stage  partial
bottleneck with 2 convolutions (C2f) and spatial-channel decoupled
down-sampling  (SCDown)  are  also  convolution-based  blocks  that
process the feature map. The C2f block splits the input feature map
into  two  paths:  one  path  bypasses  transformation  and  retains  the
original features, while the other passes through a bottleneck block
consisting  of  two  convolution  layers  with  =3  and  =1,  and  then
finally  both  paths  are  concatenated  to  integrate  the  extracted
features.  Note  that  =1  preserves  the  feature  map  size,  while
performing  feature  extraction  and  refinement.  This  allows  the
gradient  flow  to  be  distributed  across  different  network  paths,
preventing  redundant  computations  and  improving  computational
efficiency[22]. Compact inverted block (CIB) replaces the bottleneck
block  in  C2f  and  maintains  the  overall  structure  of  C2f,  which  is
termed  C2fCIB.  CIB  performs  three  depth-wise  convolutions  of
k=3, s=1, and two alternating convolutions of k=1, s=1 to maintain
the  feature  extraction  performance  of  the  bottleneck  block  and
enhance computational efficiency.
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Figure 2    Overview of the proposed framework
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Figure 3    Transfer learning for tomato detection with You-Only-Look-Once version 10
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The  SCDown  block  down-samples  by  applying  a
computationally efficient depth-wise convolution after adjusting the
channel-level  features by a convolution operation of  =1 and  =1.
The  YOLO  backbone  repeatedly  connects  the  above  blocks  to
perform gradual downsampling, extracting low-level features,  such
as the color, texture, and edge of the tomato in the early stage, and

learning more abstract and high-level features, like the round shape
and size of the tomato as the network deepens.

The  spatial  pyramid  pooling-fast  (SPPF)  block  successively
applies  the  max  pooling  operation,  which  down-samples  by
selecting the maximum value in the kernel in three stages, and then
concatenates  the  operation  results  of  each  layer  to  generate  scale-
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Q K
V

dk Q K
dim(Q) = dim(K) = dk

invariant feature representations of cherry tomatoes. The partial self-
attention  (PSA)  block  incorporates  a  feedforward  network  to  the
attention  block  to  enhance  global  feature  modeling.  While  the
existing  convolutional  neural  networks  (CNNs)  learn  local
information (i.e., shape, texture, and edges of individual tomatoes),
self-attention  learns  the  relationships  between  pixels  and  distant
features  from  cherry  tomatoes  and  their  surroundings,  improving
detection accuracy in occluded or clustered scenarios. Equation (2)
represents  the  mechanism  of  self-attention;  this  calculates  the
similarity by calculating the inner product between the feature query
( )  of  the  current  position  and  the  feature  key  ( )  of  other
positions,  and  then  weights  the  feature  value    to  emphasize
features  that  are  highly  correlated  with  the  other  elements.  It  is
presumed  that    denotes  the  dimension  of  both    and 
( ).

Attention (Q,K,V) = so f tmax
Å
QKT

√
dk

ã
V (2)
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Figure 4    Examples of down-sampling
 

YOLO  neck  aims  to  effectively  combine  high-level  and  low-
level  features  to  accurately  detect  cherry  tomatoes  in  various
environments (e.g., lighting, distance, size). The Up-sampling (Up-
sample)  block  is  repeatedly  used  to  integrate  multi-scale  features
extracted  from  the  backbone.  The  nearest  neighbor  up-sampling
method, which replicates and uses adjacent pixel values, is adopted
to  increase  the  feature  map  resolution,  and  the  expanded  feature
map is concatenated with the feature maps of ((40×40) and (80×80))
pixels  resolution  generated  from  each  C2f  block  of  the  backbone.
This integration from high-level to low-level is termed a top–down
method,  while  a  bottom–up  augmentation  path  is  added  to
supplement the information of the up-sampling process and transfer
low-level information back to the high-level[24]. This consists of C2f,
C2fCIB,  Conv,  and  SCDown blocks  to  repeatedly  perform feature
refinement and down-sampling,  and the concatenation between the
two paths enables information exchange (see Figure 4).

Finally,  the  detection  block  of  the  head  is  concatenated  with
feature  maps  of  different  resolutions  of  ((80×80),  (40×40),  and

(20×20))  pixels,  respectively,  generated  from  the  bottom–up
augmentation path of the neck to detect tomato objects of multiple
sizes  (i.e.,  small,  medium,  and  large,  respectively).  This  detection
head  consists  of  two  convolutional  layer  branches,  which  perform
bounding  box  coordinate  regression  and  object  classification,
respectively.

pi qi

apred bpred

atruth btruth

wpred hpred

wtruth htruth

pobj qobj

λi

L (θ)
η

The learning of the YOLO model is the process of developing a
model  that  calculates  the  loss  between  the  predicted  value  and  the
observed value,  and minimizes the loss  function based on gradient
descent (e.g., SGD, Adam optimizer). For this purpose, the weights
of  the  YOLO network  are  updated  in  the  opposite  direction  to  the
gradient.  Equations  (3)–(5)  represent  the  YOLO  loss  function.
Equation (3) computes the cross-entropy loss between the predicted
class  probability  distribution    and  the  true  class  distribution  ,
while Equation (4) computes the bounding box coordinate loss. The

  and    represent  the  predicted  bounding  box  center
coordinates,    and    represent  the  true  center  coordinates,

  and    represent  the  predicted  bounding  box  width  and
height,  and    and    represent  the  true  width  and  height,
respectively. Equation (5) represents the confidence loss as the sum
of  the  confidence that  the  predicted  bounding box will  contain  the
true  object,  and  the  background  confidence  that  it  will  not  (see
Equation (1)). The   and   represent the predicted value and the
true confidence, respectively. Equation (6) represents the process of
integrating the loss of each task (i.e., class prediction, bounding box
prediction,  confidence  estimation)  through weight  .  Equation  (7)
represents  the  gradient  descent  update  formula  to  minimize  the
objective  function  ,  while  t  represents  the  iteration step  in  the
optimization process, and   represents the learning rate.

Lcls = −
∑

pilogqi (3)
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Lconf = −
∑

pobjlogqobj −
∑(

1− pobj

)
log

(
1−qobj

)
(5)

Ltotal = λ1Lcls +λ2Lcoord +λ3Lconf (6)

θt+1 = θt −η∇θL (θ) (7)

First,  the  weights  of  the  YOLO  network  are  learned  and
updated from the source dataset (i.e., a big dataset) from the initial
value. In the step of additional learning with the target dataset,  the
learned weights of the source model are used as the initial values for
the  target  model.  This  process  is  conducted  through  parameter-
based  transfer  learning[21].  At  this  time,  to  maintain  the  visual
features of typical tomatoes that have been pre-learned, the weights
from the initial  layer in the input direction to the SPPF block (i.e.,
the  YOLO  backbone)  are  frozen,  without  being  updated.  On  the
other  hand,  the  PSA  block  in  the  backbone  plays  a  role  in
controlling spatial  attention,  so it  is  adjusted to suit  the individual-
visual farm dataset, where the arrangement of tomatoes varies.

θ∗ L (θ)
f (xi) xi yi

Equations  (8)  and  (9)  show  the  mathematical  logic  of  YOLO
learning and transfer learning. During the learning process, for a set
of N input images, the goal is to find the YOLO network parameters
 that minimize the loss function   between the YOLO network

output   for the input image   and the actual value  , which is
performed  using  Equation  (7).  In  the  transfer  learning  process,
learning  is  performed  using  a  new  input  image  set M,  the  YOLO
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backbone  parameter  is  fixed  to  ,  and  the  goal  is  to  find  the
optimal  parameters    and    that  minimize  the  same  loss
function  . At this time, the initial values of the parameters 
and    of  the  YOLO  neck  and  head  are  set  to    and  ,
respectively.

θ∗ = argmin
θ

N∑
i=1

L ( f (xi;θ) ,yi) (8)
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where,    and  .  In  Figure  5,  the  YOLOv10n
transfer  learning  model  is  pre-trained  using  source  image    and
bounding box  , and next additionally trained using target image 
and bounding box  , and the accuracy is then evaluated using the
test  code.  Specifically,  the  YOLO  model  was  trained  using  the
Tomato Plantfactory Dataset collected in a controlled environment.
This  dataset  contains  numerous  tomato  images  under  optimized
lighting  and  cultivation  conditions,  helping  to  comprehensively
learn key features of the tomatoes, such as their basic shape, color,
and texture.
  

1: READ I
s
, I
t
 which are source, target tomato image set

2: READ B
s
, B

t
 which are text file of bounding boxes

3: SPLIT I
s
, B

t
, into train and validation sets (8:2)

4: SPLIT I
s
, B

t
 into train, validation, and test sets (6:2:2)

5: TRAIN model with I
s
, B

s

6: FREEZE 10 layers

7: TRAIN model with I
t
, B

t

8: TEST the trained model

9: CALCULATE the detection accuracy from the detected images

Figure 5    Pseudocode of transfer learning with You-Only-Look-
Once 10 Nano

 

Next,  the  pre-trained  model  was  used  to  additionally  learn
images  collected  from  our  farm.  In  this  fine-tuning  process,  the
Backbone layer (i.e.,  the initial convolutional layers) of the YOLO
model was frozen to maintain the general feature extraction ability.
By  fixing  the  layer  that  learned  low-level  features  (e.g.  Shape,
Edge,  Contour,  etc.)  and  adjusting  the  weights  only  for  the  upper
layer  according  to  our  farm  data,  the  model  is  specialized  for  our
farm data,  without  destroying  the  general  feature  representation  of
tomatoes that it has already learned.

The main parameters are batch size and the number of epochs.
The  batch  size  affects  computational  efficiency  and  learning
stability,  while  the  number  of  epochs  can  cause  overfitting  with  a
small  amount  of  data  in  additional  learning,  so  it  is  important  to
adjust it to an appropriate level.
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It Bt

In  Figure  5,  the  YOLOv10n  transfer  learning  model  is  pre-
trained  using  source  image    and  bounding  box  ,  and  next
additionally trained using target image   and bounding box  , and
the accuracy is then evaluated using the test code. Specifically, the
YOLO  model  was  trained  using  the  Tomato  Plantfactory  Dataset
collected  in  a  controlled  environment.  This  dataset  contains
numerous  tomato  images  under  optimized  lighting  and  cultivation
conditions,  helping  to  comprehensively  learn  key  features  of  the
tomatoes, such as their basic shape, color, and texture. Leave-three-
out cross-validation (LO3O-CV), a cross-validation (CV) technique
that divides the dataset into three parts (training, validation, and test
sets), is adopted in Figure 5.

Next,  the  pre-trained  model  was  used  to  additionally  learn
images  collected  from  our  farm.  In  this  fine-tuning  process,  the
Backbone layer (i.e.,  the initial convolutional layers) of the YOLO
model was frozen to maintain the general feature extraction ability.
By  fixing  the  layer  that  learned  low-level  features  (e.g.  Shape,
Edge,  Contour,  etc.)  and  adjusting  the  weights  only  for  the  upper
layer  according  to  our  farm  data,  the  model  is  specialized  for  our
farm data,  without  destroying  the  general  feature  representation  of
tomatoes that it has already learned.

The main parameters are batch size and the number of epochs.
The  batch  size  affects  computational  efficiency  and  learning
stability,  while  the  number  of  epochs  can  cause  overfitting  with  a
small  amount  of  data  in  additional  learning,  so  it  is  important  to
adjust it to an appropriate level.
 2.3.2    Harvest yield estimation

Harvest  yield  is  estimated  based  on  the  status  of  the  detected
cherry tomato images. As each tomato has different morphological
characteristics  based  on  its  growth  status,  the  detected  images  are
compared to the growth curve of a typical cherry tomato. Equation
(10) estimates the yield of cherry tomatoes detected by the proposed
framework.

Yestimated =
(Dt −Ot)

Ot

×Yharvested (11)

Dt Ot

Yharvested

Yestimated

Ot Yharvested

Yestimated

where,   is the detected size of a cherry tomato at time t;   is the
measured  size  of  cherry  tomato  at  time  t;    is  the  average
weight  of  harvested  cherry  tomatoes;  and    is  the  estimated
weight of detected cherry tomatoes. Note that   and   should
be  computed  from  historical  data,  because  they  are  used  as
reference points to estimate  .
 2.3.3    Economic feasibility analysis

Equation  (11)  computes  profit  by  analyzing  cost  and  revenue
under the estimated total yield of cherry tomatoes and the estimated
cost and revenue.

Pi = Ri −Ci (12)

Pi Ri Ci

Pi

where,  ,  ,    are  the  profit,  revenue,  and  cost  at  market  i,
respectively.  Note  that  the  net  present  values  (NPVs)  of  cost,
revenue,  and  profit  are  not  computed,  because  in  South  Korea,
cherry tomatoes are harvested within three months. The market i is
selected with the maximum value of  .

 3    Results
 3.1    Experiment scenario

This experiment compares the performance in terms of tomato
yield detection accuracy, model learning speed, and overfitting, and
predicts yield and evaluates the economics in selected farms. First,
the  lightest  version  of  the  YOLO  model,  the  Nano  version,  was
adopted for the experiment, considering that it would be operated in
the  selected  farm  environment.  The  nano  version  is  designed  to
maintain  detection  performance  while  minimizing  memory  and
computational resources, and can be used even in limited hardware
environments. Table 1 describes the specific hardware and software
specifications used in this study.

Table  2  describes  the  different  learning  settings  for  the  four
cases.  Although  the  batch  size  is  set  to  16  for  all  model  learning,
Cases 1 and 2, which are non-transfer learning, are trained for 700
epochs,  while  transfer  learning is  set  to  500 epochs for  the Source
model  learning  with  the  Tomato  Plantfactory  Dataset,  and  200
epochs for the Target model learning with the subject Farm dataset.
The remaining parameters not  described in Table 2 use the default
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values provided by YOLOv10n. For reference, the value of “freeze”
indicates  the  number  of  backbone  layers.  In  YOLOv10n,  the
backbone  is  responsible  for  feature  extraction,  and  an  improved
version  of  the  Cross-stage  Partial  Network  (CSPNet)  is  used  to
improve the gradient flow and reduce computational redundancy.
  

Table 1    Hardware and software specification used in
the experiment

Components Specification
CPU Intel® CoreTM i7-14700K, 3400Mhz
GPU NVIDIA GeForce RTX 4060 Ti
RAM 32.0 GB

Operating system Microsoft Windows 11 Pro
Framework PyTorch 2.5.1+cu124, YOLOv10n
CUDA CUDA 12.4
cuDNN cuDNN 9.1.0

  

Table 2    Model training parameter settings
Learning type Number of images Batch size Epochs

Case 1 16 16 700
Case 2 540 16 700

Case 3 (freeze=0) 540/16 16 500/200
Case 4 (freeze=10) 540/16 16 500/200

 

Model  performance  is  evaluated  using  three  standard  metrics:
(1)  mean  absolute  error  (MAE),  which  measures  the  average
absolute  difference  between  the  predicted  value  and  the  observed
value  (see  Equation  (12));  (2)  root  mean  square  error  (RMSE),

which  is  used  as  an  indicator  to  focus  on  outliers  due  to  model
overfitting  by  calculating  the  square  root  of  the  mean square  error
(see  Equation  (13));  and  (3)  mean  absolute  percentage  error
(MAPE),  which  provides  an  intuitive  sense  of  accuracy  by
expressing the absolute error as a percentage of the observed value
(see  Equation  (14)).  These  metrics  allow  the  error  between  the
observed actual tomato count and the predicted tomato count using
the ML algorithm to be quantitatively evaluated.

MAE =
1
n

n∑
i=1

|yi − ŷi| (13)

RMSE =

√
1
n

n∑
i=1

(yi − ŷi)
2 (14)

MAPE =
1
n

n∑
i=1

∣∣∣∣ yi − ŷi

yi

∣∣∣∣×100 (15)

 3.2    Cherry tomato detection accuracy
The  devised  transfer  learning  is  evaluated  according  to  the

experiment scenario of Section 3.1. Figure 6 illustrates examples of
cherry tomato detection using YOLOv10n.

Cherry tomatoes are detected by selecting the most appropriate
image  segmentation  level  to  improve  the  detection  performance.
Figure  7  shows  that  the  image  is  detected  by  selecting  the
segmentation condition with the best detection performance among
four segmentation conditions of 1×1, 2×2, 3×3, and 4×4.

 
 

a. Original b. Labeled c. Detected image

Figure 6    Examples of cherry tomato detection
 

Table  3  describes  the  performance  evaluation  under  four
different  image  segmentation  conditions,  and  shows  different
performances depending on the three different YOLO versions and
experimental  cases.  In Case 1,  which used only a  small  amount  of
data from the subject farm, regardless of the segmentation, both no
segmentation and auto segmentation types show the same detection
performance, because the proposed auto segmentation automatically
considers  no  segmentation  (one-by-one  segmentation)  to  four-by-
four segmentation. That is, in this case, no segmentation shows the
best performance regardless of the YOLO version, and because the
amount  of  data  is  small,  selecting  no  segmentation  is  relatively
advantageous for the YOLO model learning. In Case 2, which uses
a  big  dataset,  auto  segmentation  showed  higher  Cherry  Tomato
detection  accuracy  than  no  segmentation  in  all  YOLO  versions.
This  result  indicates  that  as  the  data  becomes  more  diverse  and
larger, it is necessary to use an appropriate segmentation technique.
On the other  hand,  similar  to  Case 1,  in  Case 3,  non-segmentation

shows the best Cherry Tomato detection performance. This appears
to be because, under the condition freeze=0, model learning can be
efficiently conducted even without segmentation, because all layers
are  adjusted  to  adapt  to  the  target  image.  Case  4  shows  that  non-
segmentation  is  appropriate  for  YOLOv8,  but  segmentation  shows
higher  cherry  tomato  detection  performance  in  YOLOv5  and
YOLOv10.  Despite  the  various  experimental  results,  transfer
learning models (i.e.,  Case 3 or Case 4) have the highest  detection
accuracy in all YOLO versions. In addition, the training time is the
shortest in all versions with an average of 314.6 s in Case 1, which
has  a  small  number  of  images,  and  the  longest  in  Case  2  with  an
average  of  4292.2  s.  Case  3  or  Case  4  using  transfer  learning  can
reduce  the  learning  time  by  about  26%  compared  to  Case  2.
Comparing  Case  3  and  Case  4,  Case  4  takes  slightly  less  training
time  than  Case  3  in  all  versions,  because  it  did  not  train  with  10
layers fixed, with an average difference of 10.5 s.

Figure 8 shows MAE, RMSE, and MAPE results according to
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the Freeze parameter in three YOLO versions (YOLOv5, YOLOv8,
and  YOLOv10).  The  x-axis  of  Figure  8  represents  four
segmentation  conditions,  while  the  y-axis  represents  the
performance measure.

The experimental results show that as the number of segments
increases,  the  RMSE  tends  to  increase.  In  Case  1,  for  the  no

segmentation  (one-by-one  segmentation)  scenario,  all  versions
showed  higher  performance  for  all  metrics,  compared  to  Case  2.
However,  in  Case  1,  as  the  number  of  segments  increased,  the
RMSE  increased,  reaching  the  highest  values  for  YOLOv5,
YOLOv8, and YOLOv10 of (237.2, 246.3, and 50.5), respectively,
in the four-by-four segmentation case. This behavior occurred more
significantly in YOLOv5 and YOLOv8 than in YOLOv10, and the
RMSE  differences  between  no  segmentation  and  four-by-four
segmentation for YOLOv5, YOLOv8, and YOLOv10 were (212.0,
226.3, and 21.2), respectively.

In  Case  2,  the  RMSE,  MAE,  and  MAPE  decreased  in  all
segmented  scenarios,  while  in  YOLOv5,  the  standard  deviation  of
the RMSE for segmentation types was 19.9. Conversely, in Case 1,
the  RMSE  standard  deviation  was  87.2,  indicating  a  larger
performance  variation  according  to  the  image  segmentation  and
weaker  generalization  performance,  compared  to  Case  2.  This
indicates that due to the small number of training images, the model
could be overfitted.

In  YOLOv10,  Case  3  showed  the  highest  performance  for  no
segmentation, with MAE = 16.9, RMSE = 18.0, and MAPE = 17.0.
However, in all segmented scenarios, Case 4 recorded lower MAE,
RMSE,  and  MAPE  than  Case  3.  Case  4  showed  its  best
performance  in  two-by-two  segmentation,  with  MAE  =  16.4,
RMSE = 19.8,  and MAPE = 22.1.  The  RMSE standard  deviations
for segmentation types for Case 1, Case 2, Case 3, and Case 4 were
(8.1, 15.8, 13.3, and 7.6), respectively, indicating that the proposed
Case 4 is  more robust  to  image segmentation than the other  cases.
These  results  show  that  Case  3  follows  a  similar  trend  to  Case  1,
while Case 4 follows a similar trend to Case 2. In conclusion, MAE,
RMSE,  and  MAPE  show  different  performances  in  all  image
segmentation  cases,  which  suggests  that  proper  image  learning
through  the  proposed  auto  segmentation  helps  to  improve  the
accuracy of cherry tomato detection.

 

a. 1×1 segmentation b. 2×2 segmentation

c. 3×3 segmentation d. 4×4 segmentation

Figure 7    Examples of image segmentation
 

Table 3    Performance evaluation under four different image
segmentation cases

Version Case Segmentation type MAE RMSE MAPE Time/s

YOLOv5

Case 1
No segmentation 20.9 25.2 17.7

292.6
Auto segmentation 20.9 25.2 17.7

Case 2
No segmentation 63.0 69.4 52.8

4218.9
Auto segmentation 20.0 22.5 23.2

Case 3
No segmentation 13.9 16.5 13.2

3088.0
Auto segmentation 13.9 16.5 13.2

Case 4
No segmentation 29.9 37.3 23.1

3077.6
Auto segmentation 24.7 27.0 23.1

YOLOv8

Case 1
No segmentation 17.9 20.0 19.3

277.3
Auto segmentation 17.9 20.0 19.3

Case 2
No segmentation 55.8 63.9 43.7

4342.5
Auto segmentation 17.0 23.8 25.8

Case 3
No segmentation 9.5 11.8 7.6

3194.6
Auto segmentation 9.5 11.8 7.6

Case 4
No segmentation 21.0 27.1 16.5

3183.4
Auto segmentation 21.0 27.1 16.5

YOLOv10

Case 1
No segmentation 25.1 29.3 23.3

373.8
Auto segmentation 25.1 29.3 23.3

Case 2
No segmentation 55.0 63.2 43.4

4315.2
Auto segmentation 17.8 23.7 26.9

Case 3
No segmentation 16.9 18.0 17.0

3186.5
Auto segmentation 16.9 18.0 17.0

Case 4
No segmentation 26.4 32.3 21.4

3176.6
Auto segmentation 16.4 19.8 21.4
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Figure 8    Visualized MAE, RMSE, and MAPE for YOLOv5, YOLOv8, and YOLOv10 across different image
segmentation cases (Cases 1−4)

 

 3.3    Harvest yield estimation

Ot

Yharvested

As  mentioned  in  Section  2.3.2,  Equation  (10)  estimates  the
yields of detected cherry tomatoes. To this end, reference points (
and  )  should  be  computed  from  historical  data.  Figure  9
illustrates  the  observed  plant  height  and  net  photosynthesis  rate  of
the cherry tomatoes from May 17, 2022 to July 6, 2022[16]. Note that
those  values  are  observed  two  weeks  after  the  transfer  into  a
greenhouse on May 3, 2022. Cherry tomato plants were fully grown
35  d  after  the  transplant,  and  their  net  photosynthesis  rates  were
stable.  In  addition,  morphological  characteristics,  such  as  moisture
content,  leaf area index (LAI),  plant height,  and stem thickness,  of
the cherry tomatoes were measured (see Table 4).

Yharvested

Most morphological characteristics in Table 4, except LAI, are
stable  during  the  harvesting  period  from June  21,  2022,  to  July  6,
2022.  Note  that  LAI  decreases  during  the  harvesting  season[28].
Table  5  summarizes  the  information  on  the  harvested  cherry
tomatoes.  Harvest  index  (HI)  was  computed  by  dividing  the  fresh
fruit weight by the total fresh weight. According to previous studies
of  cherry  tomatoes[29,30],  the  HI  values  of  cherry  tomatoes  ranged
from 0.60-0.68. Therefore,  the HI of 0.65 in Table 5 indicates that
the  field  study  has  been  appropriately  conducted.  The  value  of

  was  computed  by  dividing  the  fresh  fruit  weight  by  the
number of fresh fruit count, resulting in 17.14 g/fruit.

Figure  10  shows  the  size  and  weight  change  of  the  cherry
tomatoes from anthesis to red-ripe. Figure 10a shows that the size of
cherry tomatoes in diameter does not significantly change 33 d after
anthesis. Joubes et al.[31] showed a similar result. The weight pattern
in Figure 10b is  quite similar  to that  of Figure 10a,  because of the

 

a. Plant height

b. Net photosynthesis rate
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Figure 9    Observed growing status of cherry tomatoes
 

Table 4    Moisture content, leaf area index (LAI), plant height,
and stem thickness of cherry tomatoes

Category 35 d 57 d

Moisture content/% 89±1.1 87±3.6

Leaf area index (LAI) 0.87±0.05 1.82±1.40

Plant height/cm 180±4 186±17

Stem thickness /mm 14.05±0.33 14.89±1.55
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Ot

high  correlation  between  size  and  weight[11].  As  mentioned  in
Equation (10), Figure 9a is used to obtain the measured size ( ) of
a cherry tomato at time t.
  

Table 5    Fresh weight (g), fresh fruit weight (g), and harvest
index of cherry tomatoes

Category Total fresh
weight/g·m–2

Fresh fruit
weight/g·m–2

Fresh fruit count/
number·m–2

Harvest
index

Observed
value 8151±3789 5295±2550 309±150 0.65

 

 3.4    Economic feasibility analysis
The  estimated  yield  of  cherry  tomatoes  is  analyzed  under  the

cost and revenue Equation (11). In particular, five major wholesale
markets  in  South  Korea  are  considered  for  economic  feasibility
analysis. Figure 11 illustrates the locations and transportation costs
of wholesale markets from the subject farm at the National Institute
of  Horticultural  and  Herbal  Science  in  South  Korea.  The  unit
transportation cost is assumed to be 1.45 USD/km·t [32].

Table 5 describes the average yield of cherry tomatoes as 5.295
kg/m2,  while  Table  6  describes  the  calculated  price  and  profit  of
cherry tomatoes based on this result.

Table 6 describes that the production cost of cherry tomatoes is
11.19  USD/m2,  and  transportation  costs  for  five  different  markets
are  computed  for  distances  from  the  subject  farm  to  each  market
(see  Figure  11).  Due  to  its  location,  Daejeon  has  the  minimum
transportation cost, while Busan has the highest transportation cost.
However,  the  difference  between  the  five  wholesale  markets  is
relatively  small,  compared  with  the  gaps  between  the  revenues  of
markets. The market sales prices in Seoul, Busan, Daegu, Daejeon,
and  Gwangju  are  4.79,  6.75,  5.20,  4.34,  and  4.01  USD/kg,
respectively[33]. Most cherry tomato farms are located in the western

region  in  South  Korea.  Busan  and  Daegu  have  higher  sales  prices
than  the  other  three  locations.  Therefore,  despite  their  high
transportation costs, the Busan and Daegu areas are selected as the
most  profitable  markets.  In  addition,  considering  that  the  profit  of
cherry  tomatoes  ranges  from  11.12  to  22.44  USD/m2,  the  annual
operation and maintenance cost  of  the proposed framework should
be less than $11.12 /m2.

 
 

Market Distance to Transportation

cost/$·kg−1

0.307

0.399

0.325

0.120
0.131

farm/km

212
275

224

83

90

Seoul

Busan

Daegu

Daejeon

Gwangju

Farm

Market

Figure 11    Example of subject markets in South Korea
 
 
 

Table 6    Cost, revenue, and profit of cherry tomatoes selling to
five subject markets in South Korea

Category
Market

Seoul Busan Daegu Daejeon Gwangju

Cost
Production/ ($·m–2)1 11.19 11.19 11.19 11.19 11.19

Transportation/ ($·m–2) 1.63 2.11 1.72 0.64 0.69
Revenue/($·m–2)2 25.34 35.74 27.52 22.95 21.25
Profit/($·m–2) 12.52 22.44 14.61 11.12 9.37

1 Material cost includes costs of seed, fertilizer, pesticides, labor, overhead, tax,
and miscellaneous; 2 It considers historical selling price data in South Korea[33].

 4    Discussion
The proposed framework is developed using the cherry tomato

data from the National Institute of Horticultural and Herbal Science

in South Korea[16]. To accurately detect cherry tomatoes from image
data,  YOLOv10n,  one  of  the  most  popular  image  detection
algorithms,  is  applied  to  the  transfer  learning  framework.  Since
there  are  multiple  examples  of  YOLO  with  different  versions  in
crop and vegetable detection using inexpensive camera sensors[34–36],
engineers  can  easily  apply  the  proposed  framework  to  detecting
other  crops  and  vegetables.  Eventually,  this  standard  technology
will  promote  the  use  of  smart  farming  technologies  by  engineers
and farmers.  For example,  the proposed framework can be used to
recognize tomatoes in real time and predict growth by linking with a
monitoring  system  of  crop  growth  through  camera  sensors  in  a
green  house.  Moreover,  since  YOLOv10n  can  be  operated  on  a
small computer equipped with a microprocessor (e.g., raspberry pi),
if the proposed framework is implemented on a robot equipped with
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a camera sensor,  crop growth can be monitored even in unmanned
production facilities (e.g., plant factory). If the proposed framework
determines whether cherry tomatoes are ripe, it can be installed on a
cultivation robot to automatically harvest cherry tomatoes that have
reached  the  ripening  time.  To  this  end,  additional  learning  of  the
model  is  required  by  linking  with  a  database  that  determines
whether cherry tomatoes are ripe.

In  addition,  the  transfer  learning  with  the  devised  image
segmentation technique improves the MAE, RMSE, and MAPE by
37.88%, 38.70%, and 3.27%, respectively, over the non-segmented
case. Kaur and Kaur[37] advise that image segmentation for a specific
object  detection  could  significantly  improve  detection  accuracy,
because  it  divides  an  original  image  into  small  images  having
similar features and properties. Therefore, small images can have a
unified  meaning,  instead  of  an  original  image  with  multiple
meanings. This is not exceptional for either tomato or cherry tomato
detection,  which  involves  fruits,  plant  stems,  leaves,  and  other
background  noise[38].  This  study  shows  the  optimum  segmentation
size of an image for accurate cherry tomato detection.

In the economic feasibility analysis of cherry tomatoes, profits
in  the  range  of  11.12-22.44  USD/m2  are  identified  for  the
production  and  transportation  costs  and  revenue.  Five  major
wholesale  markets  are  considered  to  compute  the  profit  ranges.
Unlike  existing  studies  that  focus  only  on  their  methodological
aspects  for  detection  accuracy  improvement[9,11,12],  the  proposed
framework includes  transfer  learning with  the  economic  feasibility
module,  so  that  farmers  can  understand  how much  cost  they  must
invest  to  operate  and  maintain  the  smart  farming  technology
sustainably.  According  to  the  identified  profit  range,  the  annual
operation and maintenance cost  of  the proposed framework should
be  less  than  11.12  USD/m2.  This  implies  that  if  the  framework  is
durable for five years at a discount rate of 5%, the investment cost
(or  net  present  value)  of  the  proposed  framework  should  be  less
than 48.14 USD/m2. Therefore, to generate a reasonable profit from
cherry  tomato  production  through  the  use  of  commercial  high-end
sensors  (or  a  smart  farming  system)  is  challenging.  This  finding
supports  the  claims  that  Unmanned  Aerial  Vehicles  (UAVs),
Internet  of  Things  (IoT),  and  Artificial  Intelligence  (AI)  are  too
expensive  to  deploy  on  a  mechanized  farm[8].  To  make  the  smart
farm  profitable,  those  technologies  should  be  implemented  in
inexpensive  devices  (e.g.,  Raspberry  pi-based  image  processing  or
Arduino-based  sensors),  so  that  farmers  can  easily  purchase  and
operate  the  smart  farming  devices  without  incurring  economic
burden.

 5    Conclusions
This study proposes a CNN-based transfer learning framework

for  the  economic  production  of  cherry  tomatoes  (solanum
lycopersicum)  in  South  Korea.  As  climate  change  has  become  a
significant issue in harvesting crops and vegetables,  it  is  necessary
to  use  Greenhouse  Horticulture  to  help  control  the  internal
environment  despite  the  impact  of  the  external  environment.  By
using  smart  farming  technology  in  production  management  at  a
greenhouse,  sustainable  crops  and  vegetables  can  be  realized  in
practice.  The  proposed  framework  comprises  four  significant
modules  of  cherry  tomato  monitoring,  cherry  tomato  detection,
harvest  yield  estimation,  and  economic  feasibility  analysis.  Once
cherry  tomato  growth  status  is  monitored  and  detected  by  the
framework,  yield  is  estimated  based  on  the  typical  cherry  tomato
growth  curve.  To  accurately  detect  cherry  tomatoes  using  camera
sensors,  YOLOv10n  is  applied  with  the  segmentation  technique.

The experiment result shows that the proposed framework improves
the prediction accuracy by 38.7% in terms of the root-mean-square
deviation of the existing YOLOv10n. In addition, the harvest yield
was estimated by considering the growing curve of cherry tomatoes,
and the economic feasibility analysis demonstrated that the profit of
cherry tomatoes ranged from 11.12-22.44 USD/m2  in South Korea.
This implies that the annual operation and maintenance cost of the
proposed framework should be less than 11.12 USD/m2. As a result,
this  study  will  contribute  to  the  expansion  of  smart  farming
technologies,  and  the  provided  cost  guideline  will  also  be  used  to
improve farmer income.

Although  the  devised  framework  accurately  estimates  the
monetary  benefits  of  cherry  tomato  production  using  YOLOv10n,
more  field  study  cases  are  needed  to  develop  a  reliable  cherry
tomato detection algorithm. Future studies should consider both the
sample  size  increase  of  each  field  study  site,  and  cherry  tomato
cultivation under  various environmental  conditions (e.g.,  humidity,
temperature, soil nutrition, and ambient light).
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