
  

Prediction of moisture content and energy consumption in microwave
drying of beef based on an optimized SSA-BP model

Jing Ling1, Jie Xu2*, Dennis R. Heldman3, Ting Wu1
(1. School of Computer Science, Guangzhou Maritime University, Guangzhou 510725, China;

2. Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA;
3. Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA)

Abstract: This study investigates the application of an enhanced Back-Propagation (BP) neural network model for analyzing
and predicting beef microwave drying processes. Based on Fick’s second law of diffusion, effective moisture diffusivity was
determined  under  varying  microwave  power  levels  (70-420  W)  and  relative  humidity  conditions  (0%,  30%,  50%).
Experimental  results  revealed  moisture  diffusivity  values  ranging  from  2.23×10–9  to  2.87×10–8  m2/s.  A  significant  inverse
relationship  was  observed  between  microwave  power  and  specific  energy  consumption,  with  optimal  energy  efficiency
(8.39 MJ/kg water) achieved at 420 W. A multi-layer BP neural network architecture was developed to model drying kinetics
and  energy  consumption  patterns,  with  subsequent  optimization  using  Sparrow  Search  Algorithm  (SSA)  for  weight  and
threshold  parameter  calibration.  Comparative  analysis  demonstrated  that  the  SSA-optimized  BP neural  network  significantly
outperformed  both  conventional  BP  models  and  genetic  algorithm-optimized  variants  in  predictive  accuracy.  The  enhanced
model exhibited robust performance in predicting moisture content evolution and energy consumption dynamics throughout the
drying process.  These  findings  provide  valuable  insights  for  developing energy-efficient  industrial-scale  beef  drying systems
while maintaining product quality. The proposed intelligent computing framework represents a promising approach for precise
modeling, prediction, and optimization of microwave drying processes in food processing applications.
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1    Introduction

Beef  jerky is  a  popular  snack made from sliced whole-muscle
meat  that  undergoes curing and drying processes.  This  method not
only enhances flavor but also reduces moisture content, which helps
inhibit  microbial  growth.  By  lowering  water  activity,  jerky  can  be
stored  for  extended  periods  without  refrigeration,  making  it  a
convenient  and  portable  protein  source[1-3].  For  microbiological
safety  and  shelf-stability,  beef  jerky  products  require  a  moisture
content  between 10-50 g  per  100 g  of  product,  with  water  activity
below 0.85[4].

For  drying  purposes,  the  modern  meat  processing  industry
employs  multiple  techniques  such  as  hot  air,  microwave,  and
vacuum  drying[5].  While  conventional  hot  air  drying  remains
predominant,  it  presents  significant  limitations  including  color
deterioration,  compromised  rehydration  capacity,  nutritional
degradation,  flavor  alterations,  and  accelerated  lipid  oxidation[6-8].

These  quality  issues  necessitate  exploring  alternative  drying
technologies.

The  ongoing  advancements  in  drying  technologies  have
positioned  microwave  drying  as  a  significant  and  actively
researched  area  within  agricultural  and  food  processing[9].  This
technique  offers  notable  advantages  over  conventional  hot  air
drying,  effectively  mitigating  some  of  its  inherent  limitations  and
substantially  enhancing  the  drying  efficiency  of  agricultural
commodities[10].  During  microwave  drying,  the  polar  molecules
within  the  material  selectively  absorb microwave radiation energy,
leading to rapid volumetric heating. This internal energy conversion
generates  pressure  gradients  that  promote  efficient  moisture
migration  from  the  product’s  interior  to  its  surface,  resulting  in
accelerated and effective drying[11,12].

To  optimize  meat  drying  processes  for  enhanced  energy
efficiency,  productivity,  and  product  quality,  a  comprehensive
understanding  of  moisture  transport  phenomena  is  essential[3,13].
However,  experimental  investigations  are  resource-intensive  and
time-consuming.  Meat  dehydration  complexity  is  influenced  by
multiple factors including drying parameters, processing conditions,
sample  characteristics,  and  pretreatment  methods[14].  While  semi-
empirical  and empirical  models  have  been used  to  describe  drying
kinetics[5],  their  applicability  is  often limited to  specific  conditions,
with  meat  dehydration  complexity  frequently  exceeding  their
predictive capacity[15].

Artificial  Neural  Networks  (ANNs),  particularly  Back-
Propagation (BP) networks, have demonstrated superior capabilities
in modeling complex food processing operations[15,16].

Their  ability  to  model  non-linear  relationships  without
requiring  explicit  prior  knowledge  of  the  system  has  led  to
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successful  applications  in  various  drying  scenarios.  Examples
include the characterization of microwave-dried thyme leaves[17], the
prediction of energy and exergy parameters during mushroom slice
drying, and the modeling of physicochemical changes in dried root
vegetables[18],  with  high  correlation  coefficients  (R>0.80).  The
microwave  drying  process  of  meat  presents  unique  analytical
challenges  due  to  its  inherent  characteristics  as  a  small  sample
dataset  exhibiting  complex  nonlinear  relationships  between
moisture content and energy consumption parameters.

Back-Propagation (BP) networks, while effective for modeling
complex non-linear relationships, are susceptible to limitations such
as  slow  convergence  and  entrapment  in  local  minima,  largely
dependent  on  the  optimization  of  weights  and  thresholds.  Various
optimization  algorithms,  including  Genetic  Algorithms  (GAs)[19],
Particle  Swarm  Optimization  (PSO)[20],  and  Sparrow  Search
Algorithm  (SSA)[21],  have  been  employed  to  address  these
challenges.  The  SSA  method  offers  enhanced  advantages  for  BP
network  optimization.  SSA’s  superior  global  search  capability,
faster  convergence  rates,  and  a  more  robust  balance  between
exploration  and  exploitation  enable  more  efficient  and  accurate
training,  leading  to  improved  model  generalization  compared  to
other methods.

In  addition,  improving  drying  processes  by  reducing  energy
consumption  and  providing  high  quality  with  minimal  increase  in
economic input has become the goal of modern drying[22]. Therefore,
the aim of this study was to study the effects of microwave power
on  drying  kinetics,  specific  energy  consumption,  and  modeling  of
drying  of  beef.  The  present  study  addresses  these  challenges  by

integrating  advanced  machine  learning  techniques  with  BP  neural
networks  to  develop  an  improved  predictive  model  for  microwave
drying of beef. The research objectives encompass:

1)  Systematic  investigation  of  drying  characteristics  under
varying microwave power levels (70-420 W) and relative humidity
conditions (0%-50%);

2)  Development  and  validation  of  an  enhanced  BP  neural
network  architecture  for  precise  prediction  of  moisture  content
evolution and energy consumption patterns;

3) Comparative analysis with existing neural network models to
establish  optimal  modeling  frameworks  for  microwave  drying
processes. 

2    Materials and methods
The experimental data were collected during microwave drying

of lean beef tenderloin samples. A Galanz-G90F23 microwave oven
(Guangdong Galanz Electrical Appliances Manufacturing Co., Ltd.,
China)  was  used  for  sample  treatment.  A  LQ-W50002  electronic
analytical balance (UKO-weight Electronic Technologies Ltd., UK)
was used to measure the sample mass in relation to drying time. The
system  consisted  of  three  subsystems:  an  online  mass-monitoring
microwave  heating  system,  a  unidirectional  airflow control  system
for  moisture  evacuation,  and  a  humidity  measurement  system,  as
shown  in  Figure  1.  The  equipment  has  a  microwave  magnetron
frequency  of  2450  MHz,  and  provides  a  maximum  output  of
900  W.  The  microwave  oven  was  equipped  with  an  electronic
balance and provided real-time transmission and storage of sample
mass as moisture was removed during drying.
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Figure 1    Structural diagram of experimental drying system
 
 

2.1    Experimental methods and data acquisition
The  initial  sample  mass  and  moisture  content  (using  AOAC

procedures)  were  determined[23].  The  initial  moisture  content  was
(73.4±0.5)% (wet basis), initial mass was 25±0.05 g, and the sample
thickness was 10±0.5 mm. The final moisture content of sample in
this study was set to 25% (wet basis) based on the requirements of
general  commercial  dried  beef  jerky  (USDA  resource)[24].
Experimental  data  were  collected  at  six  microwave  power  levels
(70  W,  140  W,  210  W,  280  W,  350  W,  and  420  W)  and  three
relative humidity levels (0%, 30%, and 50%) at room temperature.
Single-factor  test  analysis  method  was  employed  and  grouped
microwave  drying  data  according  to  different  relative  humidity
levels and power levels [25].

To address the issue of controlling the convection air humidity
during  the  microwave  drying  process,  a  modified  Galanz-G90F23
microwave  oven  (Guangdong  Galanz  Electrical  Appliances
Manufacturing  Co.,  Ltd.)  was  used  to  develop  a  new  microwave
drying  system.  The  modified  microwave  oven  had  a  900  W

magnetron,  with  the  cathode  and  anode  plates  powered  by
independent  power  supplies,  allowing  for  linear  adjustment  of  the
microwave  power  output  from  0  to  900  W.  A  rotating  stirrer
installed  inside  the  microwave  cavity  ensured  more  uniform
microwave  irradiation.  Beef  samples  were  housed  in  a  sealed
cylindrical  Teflon  container,  measuring  100  mm  in  diameter  and
130  mm in  height.  The  sidewall  of  the  container  is  equipped  with
ports  for  air  intake,  exhaust,  and  fiber  optic  sensor  installation.
Comparable  experimental  methods  have  been  used  to  explore  the
impact  of  relative  humidity  on  the  microwave  drying  process  of
agricultural products[25-27].

The container was mounted on an electronic analytical balance
(LQ-W50002,  UKO-weight  Electronic  Technologies  Ltd.,  UK)
supported  by  a  pedestal  and  a  Type-I  support  frame,  enabling
ongoing  tracking  of  the  sample  mass  during  the  drying  process.
Compressed  air,  maintained  at  a  temperature  between  23°C  and
25°C  and  dried  using  a  desiccant,  was  supplied  to  the  sample
container  via  a  Teflon  pipeline  from  a  compressor  (OutStanding,
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750-30L,  China).  Airflow  rate,  crucial  for  maintaining  stable
relative  humidity,  was  regulated  by  a  mass  flow  controller
(SevenStar,  MFC  D07-19C,  China)  installed  between  the
compressor  and  the  container.  To  prevent  condensation  prior  to
humidity  measurement,  a  thermal  insulation  pipeline  and  chamber
were  installed  downstream  of  the  sample  container.  As  the
compressed  air  expelled  moisture  from  the  container,  a  high-
precision  electronic  hygrometer  (Vaisala,  HMT130)  was  selected
for  the  experiment  to  ensure  accurate  measurement  of  the  relative
humidity  within  the  sample  container.  For  control  and  recording
purposes, data on power, mass, and relative humidity were updated
and transmitted to a host computer every 10 seconds. 

2.2    Modeling of drying process
The drying rate (VDR) of the sample was estimated as follows[12]:

VDR =
Mt+∆t −Mt

∆t
(1)

Mt+∆t

t+∆t
where, VDR stands for the drying rate;   is the moisture content
(g  water/g  dry  matter)  at  ;  Δt  is  an  incremental  time  (s)  for  a
defined variation in moisture content.

Specific  energy  consumption  can  be  calculated  using  the
following equation[28]:

Emic =
tonP×10−6

mv

(2)

Emicwhere,   is the specific energy consumption in MJ/kg [H2O]. 

2.3    Effective moisture diffusivity
Moisture  diffusion  within  the  product  involved  diffusion  of

liquid or vapor. A widely accepted mechanism used to describe the
characteristics is Fick’s second law[29]:

∂MR
∂t
= Deff

Å
∂2MR
∂r2

ã
(3)

where, Deff and t denote the effective diffusion coefficient, m2/s and
drying time, s.  MR is the moisture content ratio,  and r  is  diffusion
path,  m.  The  mathematical  solution  of  Equation  (5)  in  an  infinite
slab is given by:

MR = 8
π2

exp
Å
−π2Defft

4δ2

ã
(4)

The effective moisture diffusivity was estimated from the slope
of moisture ratio, using the following equation[13,30]:

ln
Mt

M0
= ln

8
π2
− π

2Defft
δ2

(5)

Deff can be calculated from the plot of ln (MR) versus t. Based
on the best-fit linear curve, the slope and Deff were computed from
Equations (6) and (7):

slope = −
(
π2 Deff

δ2

)
(6)

Deff = −
slope×δ2

π2
(7)

δwhere,   is the half-thickness of the sample, m. 

2.4    Statistical  analysis  of  the  neural  network  model
performance

The  performance  of  the  neural  network  model  was  assessed
using the following four statistical metrics[30,31]:

MSE =
1
n

n∑
i=1

(ycal,i − yreal,i)
2 (8)

RMSE =

[
1
n

n∑
i=1

(yreal,i − ycal,i)

] 1
2

(9)

MAPE =
1
n

n∑
i=1

∣∣yreal,i − ycal,i

∣∣
yreal,i

×100% (10)

R2 = 1−

n∑
i=1

(yreal,i − ycal,i)
2

n∑
i=1

(yreat,i − yreal,mean)
2

(11)

yreal ycalwhere,  n  is  the  total  number  of  experiments,  and    and 
represent  the  measured  and  calculated  moisture  content  (g  water/g
dry matter), respectively. 

2.5    SSA improved BP neural network
This  study  developed  a  prediction  network  comprising  four

input  neurons  representing  microwave  power,  relative  humidity,
drying  time,  and  real-time  mass,  and  two  output  neurons  for
moisture content and specific energy consumption (Figure 2). These
four  input  variables  have  been  demonstrated  to  significantly
influence  the  microwave  drying  process[25,32,33],  rendering  them
appropriate  for  predictive  modeling.  Addressing  the  limitations  of
traditional neural network design where the number of hidden layers
and neurons  is  often determined by empirical  formulas,  which can
restrict  model  accuracy,  this  research  introduces  a  hybrid
optimization  approach.  This  method  integrates  a  recurrent
embedded  error  backpropagation  algorithm  with  empirical
guidelines  to  optimize  the  number  of  neurons  within  the  hidden
layers. The neural network architecture optimization was conducted
through a systematic methodology combining theoretical principles
and empirical analysis. Based on established engineering heuristics,
the  initial  range  for  the  number  of  hidden  layer  nodes  was
constrained  between  3  and  12.  A  comprehensive  optimization
procedure  was  implemented  to  determine  the  optimal  network
topology  by  integrating  the  backpropagation  (BP)  algorithm  with
fundamental neural network design principles.
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Figure 2    SSA-BP neural network prediction model
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The performance of the network was evaluated using the mean
squared error (MSE) as the primary metric. The results for various
hidden  layer  configurations  are  presented  in  Table  1.  Through
iterative analysis, the optimal architecture was determined to consist
of nine hidden layer neurons, achieving a minimum training error of
5.68×10–4.  The  network  architecture  was  further  refined  by
employing  the  hyperbolic  tangent  sigmoid  (tansig)  activation
function in both the input and hidden layers, while a linear transfer
function  (purelin)  was  utilized  in  the  output  layer  to  facilitate
unrestricted output mapping. 

2.6    Parameter optimization for SSA-BP
In  this  investigation,  a  serial  structure  was  developed  for  the

integrated  prediction  algorithm  design.  As  illustrated  in  Figure  3,

the  algorithm  architecture  comprises  three  principal  components:
Hidden layer optimization, Sparrow Search Algorithm (SSA) optimi-
zation,  and  Back-Propagation  (BP)  neural  network  training.  The
execution of the algorithm can be divided into the following steps:
  

Table 1    Comparison of optimization for different hidden
layer nodes

Hidden layer nodes MSE Hidden layer nodes MSE
3 0.010 712 8 0.000 910
4 0.002 822 9 0.000 568
5 0.001 844 10 0.001 278
6 0.001 016 11 0.000 985
7 0.001 027 12 0.009 387
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Figure 3    SSA-BP neural network flow
 

Step  1:  Initialize  the  prediction  network  and  utilize  optimized
iteration to determine the network structure.

Step  2:  The  algorithm  calculates  fitness  values  for  each
individual  in  the  sparrow  population,  subsequently  identifying  the
current  optimal  and  worst  fitness  values  along  with  their
corresponding  positional  parameters.  The  position  information  of
producer sparrows is updated according to Equation (12):

Xt
i, j =

Xt
i, j · exp

( −i
α · itermax

)
, if R2 < ST

Xt
i, j +Q ·L, if R2 ≥ ST

(12)

j = 1,2,3, ...,d
itermax

Xt
i, j

R2

where,  t  represents  the  current  iteration  number;    is
the  range  of  the  optimization  variable  dimensions;    denotes
the  maximum  number  of  iterations;    represents  the  position
information  of  the  i-th  sparrow  in  the  j-th  dimension  at  the  t-th
iteration;   is a random number within the range of 0 to 1; ST and
α  represent  the  safety  threshold  range  and  early  warning  value,
respectively;  Q  is  a  random  number  drawn  from  a  normal
distribution; L is a 1×j matrix with all elements equal to 1.

Step 3: The position information of joiner sparrows is updated
according to Equation (13):

Xt
i, j =

Q · exp
Å

Xworst −Xt
i, j

i2

ã
, if i >

n
2

Xt
i, j + |Xi, j −Xt+1

p | ·A ·L, otherwise
(13)

Xt
p

Xworst

A+ = AT (AAT )−1

where,    represents  the  best  foraging  location  of  the  producers;
 represents the worst foraging location of the producers. A are

matrices satisfying specific optimization conditions  .
Step  4:  The  position  information  of  scouters  (early  warning

sparrows) is updated according to Equation (14):

Xt+1
i, j =


Xt

best +β · |Xt
i, j −Xt

best|, if fi > fg

Xt
i, j +K ·

|Xt
i, j −Xt

worst|
( fi − fw)+ε

, if fi = fg

(14)

Xt
best

K ∈ (−1,1)
fi

fg fw

ε

where,    represents  the  current  global  best  position;  β  is  a
random  number  drawn  from  a  standard  normal  distribution;

  is  a  random  number  that  determines  the  direction  of
sparrow flight and relates to step length parameter adjustment;   is
the  current  fitness  value  of  the  scouter;    and    are  the  current
global  best  and  worst  fitness  values,  respectively;    is  a  constant
preventing zero-division errors.

Step 5: Select the individuals with better positions to update the
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positions  of  the  producers,  gleaners,  and  early  warnings,  and
calculate the fitness of the updated population.

Step  6:  Calculate  the  population  fitness  and  check  if  the
termination  condition  is  met.  If  yes,  return  the  optimal  thresholds
and weights; otherwise, jump to Step 4 and continue the execution.

Step  7:  Input  the  optimal  thresholds  and  weights  into  the  BP
neural  network  structure,  perform  network  training,  and  complete
the prediction of moisture content and energy consumption. 

3    Results and analysis
 

3.1    Influence of power level on effective moisture diffusivity
The experimental values of ln (MR) were plotted versus drying

time (s) as shown in Figure 4. The experimental data were used to
estimate  the  statistical  best-fit  and following relationships  for  each
microwave power level.
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Figure 4    Variation of ln (MR) vs. drying time for beef muscle
samples fried at different power levels

 

Based on the slope of curve for each power level, the effective
diffusivity  coefficient  was  calculated  from  Equations  (6)  and  (7),
and the results are presented in Table 2.
  

Table 2    Effective diffusivity of beef muscle at different
power levels

Microwave power levels/W Effective diffusivity/m2∙s–1

70 2.230×10–9

140 4.994×10–9

210 1.291×10–8

280 1.771×10–8

350 2.681×10–8

420 2.870×10–8

 

Microwave power level is a key factor influencing the effective
moisture  diffusion  coefficient,  as  indicated  in  Table  2.  The  Deff

values  reported  here  fall  within  the  typical  range  of  10–12-10–8 m2/s
for food materials[34]. It was observed by Darvishi et al. that the Deff

values of microwave dried sardine fish were between 7.16×10–8 m2/s
and 3.05×10–7 m2/s as the MW power level was increased from 200
to  500  W[22].  The  increased  heating  from  the  higher  microwave
power  density  boosts  the  mobility  and  diffusion  of  the  water
molecules in the sample. As a result, this enhancement in moisture
diffusivity allows the water to migrate more easily from the interior
to  the  surface  of  the  material.  The  regression  equation  of  Deff

and microwave power was obtained as illustrated in Figure 5. From
this  illustration,  it  is  evident  that  the  relationship  is  linear  and
described by:

Deff = 7.902×10−9P−3.301×10−9 (R2 = 0.9837) (15)
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Figure 5    Influence of microwave power level on Deff in
beef muscle

  

3.2    Influence  of  drying  parameters  on  microwave  drying
process of beef 

3.2.1    Effect of power level on drying process modeling
The  experimental  data  presented  in  Figure  6a  describe  the

variation in moisture content of experimental samples during drying
at six power levels (70 W, 140 W, 210 W, 280 W, 350 W, and 420 W).
These results indicate that as the microwave power level increases,
the  slope  of  the  drying  curves  rises,  and  the  time  required  for
samples to reach the same moisture content decreases[22]. During the
early  stages  of  drying,  the  microwave  energy  absorbing  capacity
was  high  due  to  the  higher  moisture  content  of  the  experimental
samples.  The  larger  quantities  of  energy  increased  the  amount  of
water  evaporated  and  the  vapor  pressure  gradients  within  the
sample.  These  vapor  pressure  gradients  accelerate  water  vapor
transport  from  the  interior  regions  of  the  sample  to  the  external
surfaces[35].
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As the drying process continues, the decline in moisture content
leads  to  a  decrease  in  the  vapor  pressure  gradients  within  the
sample,  resulting  in  a  lower  rate  of  drying  as  shown in Figure  6b.
These  observations  are  consistent  with  earlier  literature,  which
indicates that during the microwave drying process, the migration of
moisture  within  the  sample  is  closely  related  to  the  internal  liquid
concentration  gradient  and  the  vapor  pressure  gradient[36].  The
observations  also  confirm  the  significant  impact  of  microwave
power level  on the  rate  of  drying.  Higher  microwave power  levels
result  in  a  faster  drying  process  due  to  enhanced  moisture
evaporation  and  increased  vapor  pressure  gradients  within  the
sample[29,37]. 

3.2.2    Effect  of  relative  humidity  on  microwave  drying  process
of beef

Figure  7  illustrates  the  effect  of  relative  humidity  (0%,  30%,
and  50%)  on  moisture  content  during  microwave  drying  of  lean
beef  samples  at  350  W.  The  results  demonstrate  an  inverse
relationship  between  relative  humidity  and  moisture  removal  rate.
Higher  relative  humidity  led  to  reduced  vapor  pressure  gradients
within the samples, resulting in decreased drying rates. While lower
relative  humidity  levels  achieved  faster  drying  rates,  higher  vapor
pressures  near  the  sample  surface  during  drying  potentially
improved  the  product  structure[32].  The  elevated  relative  humidity
extended  the  drying  time  to  reach  target  moisture  content  while
preventing excessive surface dehydration.
 
 

a. Drying curves at different relative humidities

b. Drying rate curves at different relative humidities
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Figure 7    Drying characteristics of beef muscle at different
relative humidities

  

3.2.3    Effect of power level on energy consumption
Prior  investigations  have  consistently  emphasized  the

significant  influence  of  microwave  power  level  on  specific  energy
consumption  (SEC)  during  drying  processes[29].  Since  optimizing

energy consumption while maximizing moisture removal efficiency
is  crucial  for  drying  process  modeling,  a  thorough  evaluation  of
energy  utilization  in  microwave-assisted  beef  muscle  drying  was
conducted.  The  relationship  between  SEC  and  moisture  content  is
illustrated  in  Figure  8.  The  final  SEC  values  ranged  from  8.9  to
11.9  MJ/kg  of  water,  with  similar  trend  patterns  observed  across
different  microwave  power  levels.  The  SEC  curves  exhibited
stabilization as the sample moisture content  decreased,  particularly
after  the  initial  ramp-up  drying  phase.  This  phenomenon  can  be
attributed to reduced microwave energy absorption as the moisture
content  diminishes  during  the  later  stages  of  drying[38].
Consequently,  more  energy  is  required  to  remove  an  equivalent
mass  of  water  in  the  final  drying  stages  compared  to  the  initial
phases,  a  finding  consistent  with  previous  studies  on  microwave
drying  of  Ficus  carica  Linn  leaves[12].  The  results  indicate  that  at
equivalent  moisture  contents,  higher  microwave  power  levels
correspond to lower energy consumption during the drying process.
However,  excessive  microwave  power  can  result  in  sample
charring,  corroborating  previous  findings  from research  on  sardine
and mussel drying[22,29].
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As shown in the overall energy consumption change trend line
in  Figure  9,  the  final  average  unit  energy  consumption  reaches  a
maximum  of  10.46  MJ/kg  water  at  a  microwave  power  of  70  W,
and a minimum of 8.39 MJ/kg water at a microwave power of 420 W.
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3.3    SSA-BP neural network model validation
The SSA-BP neural  network  prediction  algorithm was  created

in  MATLAB,  with  409  groups  of  training  sets.  To  assess  the
network’s  performance,  the  predicted  values  were  visualized
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through  plotting.  Figure  10  illustrates  the  results  for  the  most
effective  network  in  modeling  and  predicting  the  variations  in
moisture  content  and  specific  energy  consumption  of  the  samples
during  the  drying  process.  The  findings  indicate  that  the  SSA-BP
model accurately predicts both moisture content and specific energy
consumption during the microwave drying process.
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Experimental  data  on  the  moisture  content  of  beef  muscle
samples over time at a microwave power of 280 W were randomly
selected  for  model  validation.  The  outcomes  in  Figure  11  provide
the MSE (mean square error) change of the SSA-BP model during
system training,  validation,  and testing.  The smaller  magnitudes of

MSE  represent  more  accurate  predictions  by  the  model.  As  is
evident, the overall MSE decreases consistently and eventually ends
after  the  155th  iteration,  and  with  the  MSE  reaching  a  minimum
value  of  2.211E-4.  The  regression  plots  related  to  the  training,
validation,  testing,  and  overall  performance  of  the  network  are
presented in Figure 12. The fit across all datasets was quite robust,
with correlation coefficients approaching 1. An analysis of the data
point  distribution  reveals  that  nearly  all  points  are  closely  aligned
along  the  45°  line,  indicating  a  strong  agreement  between  the
network outputs and the targets. Notably, the correlation coefficient
for  the  training  data  is  0.999 11,  while  the  coefficients  for
validation, testing, and the overall neural network process were 0.998 81,
0.998 37,  and  0.998 92,  respectively.  These  performance  metrics
suggest  that  the  designed  SSA-BP  neural  network  is  capable  of
effectively  predicting  moisture  content  and  specific  energy
consumption during the drying process of beef slices.
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To  confirm  the  accuracy  and  stability  of  the  SSA-BP  model
prediction  for  changes  in  moisture  content  of  beef  during
microwave drying, a comparison with outcomes from the BP[39], GA-
BP[40],  and  the  SSA-BP  model  was  conducted.  The  present  study
theoretically evaluated the model relevance and prediction accuracy,
employing  R-squared  (R2)  and  root  mean  square  error  (RMSE)  as
metrics  for  model  relevance  verification,  and  mean  absolute
percentage error (MAPE) as a metric for model prediction accuracy
verification.  The  goodness  of  fit,  RMSE,  and  MAPE  of  the  BP
model,  GA-BP  model,  and  the  SSA-BP  prediction  model  are
comparatively  presented  in  Table  3.  The  results  indicate  that  the
SSA-BP  model  effectively  predicts  the  moisture  content  of  beef
muscle slices during microwave drying. The RMSE, MAPE, and R2

values for the SSA-BP model were found to be 0.2354, 3.7604, and
0.9821, respectively.
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Table 3    Comparative analysis of model
predictive performance

Model
Moisture content Specific energy consumption

R2 RMSE MAPE/% R2 RMSE MAPE/%
BP 0.9972 0.7849 1.4172 0.9352 0.450 90 6.1722

GA-BP 0.9988 0.5268 0.9701 0.9434 0.433 47 4.9425
SSA-BP 0.9999 0.1247 0.2091 0.9821 0.235 40 3.7604

  

4    Conclusions
This  study  demonstrated  an  effective  approach  for  modeling

and optimizing microwave drying of beef muscle. The experimental
investigation  revealed  moisture  diffusivity  values  ranging  from
2.23×10–9  to  2.87×10–9  m2/s,  with  minimal  specific  energy
consumption  (8.39  MJ/kg  water)  achieved  at  420  W  microwave
power.  These  findings  provide  valuable  insights  into  both  drying
kinetics  and  energy  efficiency  parameters  critical  for  industrial
applications.

A  novel  SSA-optimized  BP  neural  network  model  was
developed  to  accurately  predict  moisture  content  during  variable
microwave  power  drying.  The  multi-objective  Sparrow  Search
Algorithm  effectively  optimized  the  initial  weights  and  thresholds
of the neural  network,  resulting in superior predictive performance
compared to conventional approaches. Validation metrics confirmed
the  model’s  exceptional  accuracy  (RMSE:  0.2354,  MAPE:
3.7604%, R2: 0.9821), demonstrating significant improvements over
traditional BP neural networks and GA-optimized BP networks.

The  proposed  modeling  framework  establishes  a  robust
foundation  for  process  optimization  in  microwave-based  food
dehydration  systems.  The  integration  of  SSA  optimization  with
neural  network  modeling  presents  a  promising  approach  for
intelligent  control  systems  in  industrial-scale  microwave  drying
operations,  potentially  leading  to  improved  product  quality  and
energy efficiency in commercial food processing applications. 
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