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Prediction of moisture content and energy consumption in microwave
drying of beef based on an optimized SSA-BP model
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Abstract: This study investigates the application of an enhanced Back-Propagation (BP) neural network model for analyzing
and predicting beef microwave drying processes. Based on Fick’s second law of diffusion, effective moisture diffusivity was
determined under varying microwave power levels (70-420 W) and relative humidity conditions (0%, 30%, 50%).
Experimental results revealed moisture diffusivity values ranging from 2.23x107 to 2.87x10® m?s. A significant inverse
relationship was observed between microwave power and specific energy consumption, with optimal energy efficiency
(8.39 MJ/kg water) achieved at 420 W. A multi-layer BP neural network architecture was developed to model drying kinetics
and energy consumption patterns, with subsequent optimization using Sparrow Search Algorithm (SSA) for weight and
threshold parameter calibration. Comparative analysis demonstrated that the SSA-optimized BP neural network significantly
outperformed both conventional BP models and genetic algorithm-optimized variants in predictive accuracy. The enhanced
model exhibited robust performance in predicting moisture content evolution and energy consumption dynamics throughout the
drying process. These findings provide valuable insights for developing energy-efficient industrial-scale beef drying systems
while maintaining product quality. The proposed intelligent computing framework represents a promising approach for precise
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modeling, prediction, and optimization of microwave drying processes in food processing applications.
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1 Introduction

Beef jerky is a popular snack made from sliced whole-muscle
meat that undergoes curing and drying processes. This method not
only enhances flavor but also reduces moisture content, which helps
inhibit microbial growth. By lowering water activity, jerky can be
stored for extended periods without refrigeration, making it a
convenient and portable protein source!”. For microbiological
safety and shelf-stability, beef jerky products require a moisture
content between 10-50 g per 100 g of product, with water activity
below 0.851.

For drying purposes, the modern meat processing industry
employs multiple techniques such as hot air, microwave, and
vacuum drying®. While conventional hot air drying remains
predominant, it presents significant limitations including color
deterioration, compromised nutritional

rehydration capacity,

degradation, flavor alterations, and accelerated lipid oxidation®*.
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These quality issues necessitate exploring alternative drying
technologies.

The ongoing advancements in drying technologies have
positioned microwave drying as a significant and actively
researched area within agricultural and food processing”. This
technique offers notable advantages over conventional hot air
drying, effectively mitigating some of its inherent limitations and
substantially enhancing the drying efficiency of agricultural
commodities"”. During microwave drying, the polar molecules
within the material selectively absorb microwave radiation energy,
leading to rapid volumetric heating. This internal energy conversion
generates pressure gradients that promote efficient moisture
migration from the product’s interior to its surface, resulting in
accelerated and effective drying!'"'?.,

To optimize meat drying processes for enhanced energy
efficiency, productivity, and product quality, a comprehensive
understanding of moisture transport phenomena is essential®".L
However, experimental investigations are resource-intensive and
time-consuming. Meat dehydration complexity is influenced by
multiple factors including drying parameters, processing conditions,
sample characteristics, and pretreatment methods'. While semi-
empirical and empirical models have been used to describe drying
kinetics™, their applicability is often limited to specific conditions,
with meat dehydration complexity frequently exceeding their
predictive capacity!.

Artificial Neural (ANNSs), particularly Back-
Propagation (BP) networks, have demonstrated superior capabilities
in modeling complex food processing operations!'>'¢l.

Their ability to model non-linear relationships without
requiring explicit prior knowledge of the system has led to
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successful applications in various drying scenarios. Examples
include the characterization of microwave-dried thyme leaves!”, the
prediction of energy and exergy parameters during mushroom slice
drying, and the modeling of physicochemical changes in dried root
vegetables'™, with high correlation coefficients (R>0.80). The
microwave drying process of meat presents unique analytical
challenges due to its inherent characteristics as a small sample
dataset exhibiting complex nonlinear relationships between
moisture content and energy consumption parameters.

Back-Propagation (BP) networks, while effective for modeling
complex non-linear relationships, are susceptible to limitations such
as slow convergence and entrapment in local minima, largely
dependent on the optimization of weights and thresholds. Various
optimization algorithms, including Genetic Algorithms (GAs)"",
Particle Swarm Optimization (PSO)®, and Sparrow Search
Algorithm (SSA)?", have been employed to address these
challenges. The SSA method offers enhanced advantages for BP
network optimization. SSA’s superior global search capability,
faster convergence rates, and a more robust balance between
exploration and exploitation enable more efficient and accurate
training, leading to improved model generalization compared to
other methods.

In addition, improving drying processes by reducing energy
consumption and providing high quality with minimal increase in
economic input has become the goal of modern drying”’. Therefore,
the aim of this study was to study the effects of microwave power
on drying kinetics, specific energy consumption, and modeling of
drying of beef. The present study addresses these challenges by

Fiber optical sensor

integrating advanced machine learning techniques with BP neural
networks to develop an improved predictive model for microwave
drying of beef. The research objectives encompass:

1) Systematic investigation of drying characteristics under
varying microwave power levels (70-420 W) and relative humidity
conditions (0%-50%);

2) Development and validation of an enhanced BP neural
network architecture for precise prediction of moisture content
evolution and energy consumption patterns;

3) Comparative analysis with existing neural network models to
establish optimal modeling frameworks for microwave drying
processes.

2 Materials and methods

The experimental data were collected during microwave drying
of lean beef tenderloin samples. A Galanz-G90F23 microwave oven
(Guangdong Galanz Electrical Appliances Manufacturing Co., Ltd.,
China) was used for sample treatment. A LQ-W50002 electronic
analytical balance (UKO-weight Electronic Technologies Ltd., UK)
was used to measure the sample mass in relation to drying time. The
system consisted of three subsystems: an online mass-monitoring
microwave heating system, a unidirectional airflow control system
for moisture evacuation, and a humidity measurement system, as
shown in Figure 1. The equipment has a microwave magnetron
frequency of 2450 MHz, and provides a maximum output of
900 W. The microwave oven was equipped with an electronic
balance and provided real-time transmission and storage of sample
mass as moisture was removed during drying.
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2.1 Experimental methods and data acquisition

The initial sample mass and moisture content (using AOAC
procedures) were determined”!. The initial moisture content was
(73.4+0.5)% (wet basis), initial mass was 25+0.05 g, and the sample
thickness was 10+0.5 mm. The final moisture content of sample in
this study was set to 25% (wet basis) based on the requirements of
general dried beef jerky (USDA
Experimental data were collected at six microwave power levels
(70 W, 140 W, 210 W, 280 W, 350 W, and 420 W) and three
relative humidity levels (0%, 30%, and 50%) at room temperature.
Single-factor test analysis method was employed and grouped

commercial resource)!,

microwave drying data according to different relative humidity
levels and power levels ),

To address the issue of controlling the convection air humidity
during the microwave drying process, a modified Galanz-G90F23
microwave oven (Guangdong Galanz Electrical Appliances
Manufacturing Co., Ltd.) was used to develop a new microwave

drying system. The modified microwave oven had a 900 W

Structural diagram of experimental drying system

magnetron, with the cathode and anode plates powered by
independent power supplies, allowing for linear adjustment of the
microwave power output from 0 to 900 W. A rotating stirrer
installed inside the microwave cavity ensured more uniform
microwave irradiation. Beef samples were housed in a sealed
cylindrical Teflon container, measuring 100 mm in diameter and
130 mm in height. The sidewall of the container is equipped with
ports for air intake, exhaust, and fiber optic sensor installation.
Comparable experimental methods have been used to explore the
impact of relative humidity on the microwave drying process of
agricultural products®=".

The container was mounted on an electronic analytical balance
(LQ-W50002, UKO-weight Electronic Technologies Ltd., UK)
supported by a pedestal and a Type-I support frame, enabling
ongoing tracking of the sample mass during the drying process.
Compressed air, maintained at a temperature between 23°C and
25°C and dried using a desiccant, was supplied to the sample
container via a Teflon pipeline from a compressor (OutStanding,
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750-30L, China). Airflow rate, crucial for maintaining stable
relative humidity, was regulated by a mass flow controller
(SevenStar, MFC DO07-19C, China) installed between the
compressor and the container. To prevent condensation prior to
humidity measurement, a thermal insulation pipeline and chamber
were installed downstream of the sample container. As the
compressed air expelled moisture from the container, a high-
precision electronic hygrometer (Vaisala, HMT130) was selected
for the experiment to ensure accurate measurement of the relative
humidity within the sample container. For control and recording
purposes, data on power, mass, and relative humidity were updated
and transmitted to a host computer every 10 seconds.
2.2 Modeling of drying process

The drying rate (V) of the sample was estimated as follows!':

M.n—M,

Vor = T (1)

where, Vpg stands for the drying rate; M,,,, is the moisture content
(g water/g dry matter) at t+Ar; At is an incremental time (s) for a
defined variation in moisture content.

Specific energy consumption can be calculated using the
following equation”:

_ 1,PX107°

Epe==— 2)

m,

where, E,,. is the specific energy consumption in MJ/kg [H,O].
2.3 Effective moisture diffusivity
Moisture diffusion within the product involved diffusion of
liquid or vapor. A widely accepted mechanism used to describe the
characteristics is Fick’s second law™:
OMR < MR >
eff

o P Tan @

where, D and ¢ denote the effective diffusion coefficient, m*/s and
drying time, s. MR is the moisture content ratio, and r is diffusion
path, m. The mathematical solution of Equation (5) in an infinite
slab is given by:

MR = S exp ( @)

2

—m2 Dt >
a5

The effective moisture diffusivity was estimated from the slope
of moisture ratio, using the following equation***:

M, 8  m*Dgt
In—=Ih—-
M, 2 0?

)

D¢ can be calculated from the plot of In (MR) versus ¢. Based
on the best-fit linear curve, the slope and D, were computed from
Equations (6) and (7):

slope = — (7r2 DCH) (6)

52

Power level

Real-time mass

slope x ¢*

(7

off =
71-2

where, ¢ is the half-thickness of the sample, m.
2.4 Statistical of the
performance

The performance of the neural network model was assessed

analysis neural network model

using the following four statistical metrics®**'"
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where, n is the total number of experiments, and y., and y.

x 100% (10)

R =1 (11)

represent the measured and calculated moisture content (g water/g
dry matter), respectively.
2.5 SSA improved BP neural network

This study developed a prediction network comprising four
input neurons representing microwave power, relative humidity,
drying time, and real-time mass, and two output neurons for
moisture content and specific energy consumption (Figure 2). These
four input variables have been demonstrated to significantly
influence the microwave drying process™ >, rendering them
appropriate for predictive modeling. Addressing the limitations of
traditional neural network design where the number of hidden layers
and neurons is often determined by empirical formulas, which can
restrict model accuracy, this research introduces a hybrid
optimization approach. This method integrates a recurrent
embedded error backpropagation algorithm with empirical
guidelines to optimize the number of neurons within the hidden
layers. The neural network architecture optimization was conducted
through a systematic methodology combining theoretical principles
and empirical analysis. Based on established engineering heuristics,
the initial range for the number of hidden layer nodes was
constrained between 3 and 12. A comprehensive optimization
procedure was implemented to determine the optimal network
topology by integrating the backpropagation (BP) algorithm with
fundamental neural network design principles.

Output layer Output
\ e \
------ - Moisture
) @ content
Yo
Purelin @ Specific energy
consumptlon

Figure 2 SSA-BP neural network prediction model
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The performance of the network was evaluated using the mean
squared error (MSE) as the primary metric. The results for various
hidden layer configurations are presented in Table 1. Through
iterative analysis, the optimal architecture was determined to consist
of nine hidden layer neurons, achieving a minimum training error of
5.68x10". The network architecture was further refined by
employing the hyperbolic tangent sigmoid (tansig) activation
function in both the input and hidden layers, while a linear transfer
function (purelin) was utilized in the output layer to facilitate
unrestricted output mapping.

2.6 Parameter optimization for SSA-BP

In this investigation, a serial structure was developed for the

integrated prediction algorithm design. As illustrated in Figure 3,

| Data pre-processing |

|

| Optimizing the Hidden Layer

the algorithm architecture comprises three principal components:
Hidden layer optimization, Sparrow Search Algorithm (SSA) optimi-
zation, and Back-Propagation (BP) neural network training. The
execution of the algorithm can be divided into the following steps:

Table 1 Comparison of optimization for different hidden
layer nodes

Hidden layer nodes MSE Hidden layer nodes MSE
3 0.010 712 8 0.000 910
4 0.002 822 9 0.000 568
5 0.001 844 10 0.001 278
6 0.001 016 11 0.000 985
7 0.001 027 12 0.009 387

Hidden layer optimization

Iterate through number of hidden
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Train BP network to minimize
MSE

|
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Are termination
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SSA optimization

Figure 3 SSA-BP neural network flow

Step 1: Initialize the prediction network and utilize optimized
iteration to determine the network structure.

Step 2: The algorithm calculates fitness values for each
individual in the sparrow population, subsequently identifying the
current optimal and worst fitness values along with their
corresponding positional parameters. The position information of
producer sparrows is updated according to Equation (12):

X, -exp (_71), if R, <ST
k Q- iteF gy

X, +0Q-L, if R,>ST

(12)

(—
X, =

where, ¢ represents the current iteration number; j=1,2,3,....d is
the range of the optimization variable dimensions; iter,,, denotes

the maximum number of iterations; X! . represents the position

LJ
information of the i-th sparrow in the j-th dimension at the #-th
iteration; R, is a random number within the range of 0 to 1; ST and
a represent the safety threshold range and early warning value,
respectively; O is a random number drawn from a normal
distribution; L is a 1% matrix with all elements equal to 1.

Step 3: The position information of joiner sparrows is updated

according to Equation (13):

Xworst_X{') . n
cexp| ——2 ), if i>=
¢ p( P 2 (13)

X, +1X;,;—X,""|-A- L, otherwise

(-
Xi./' -

where, X' represents the best foraging location of the producers;
X, TEpresents the worst foraging location of the producers. 4 are
matrices satisfying specific optimization conditions A* = A"(AA")™.

Step 4: The position information of scouters (early warning
sparrows) is updated according to Equation (14):

Xt B-1X = Xl 1 fi>
Xl = X -X' | (14)
L i,j worst .
X +K- u’ if =
" (fi-f+e F=4

where, X, represents the current global best position; f is a

est
random number drawn from a standard normal distribution;
K €(-1,1) is a random number that determines the direction of
sparrow flight and relates to step length parameter adjustment; f; is
the current fitness value of the scouter; f, and f, are the current
global best and worst fitness values, respectively; & is a constant
preventing zero-division errors.

Step 5: Select the individuals with better positions to update the
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positions of the producers, gleaners, and early warnings, and x107
i 30
calculate the fitness of the updated population. « D, vs. P(R*=0.9837) 2

Step 6: Calculate the population fitness and check if the
termination condition is met. If yes, return the optimal thresholds
and weights; otherwise, jump to Step 4 and continue the execution.

Step 7: Input the optimal thresholds and weights into the BP
neural network structure, perform network training, and complete
the prediction of moisture content and energy consumption.

3 Results and analysis

3.1 Influence of power level on effective moisture diffusivity

The experimental values of In (MR) were plotted versus drying
time (s) as shown in Figure 4. The experimental data were used to
estimate the statistical best-fit and following relationships for each
microwave power level.
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Figure 4 Variation of In (MR) vs. drying time for beef muscle
samples fried at different power levels

Based on the slope of curve for each power level, the effective
diffusivity coefficient was calculated from Equations (6) and (7),
and the results are presented in Table 2.

Table 2 Effective diffusivity of beef muscle at different
power levels

Microwave power levels/W Effective diffusivity/m*s!

70 2.230%x10”
140 4.994x10”
210 1.291x10°*
280 1.771x10°*
350 2.681x10°*
420 2.870x10°*

Microwave power level is a key factor influencing the effective
moisture diffusion coefficient, as indicated in Table 2. The D
values reported here fall within the typical range of 10">-10"* m?/s
for food materials®. It was observed by Darvishi et al. that the D.g
values of microwave dried sardine fish were between 7.16x10"* m*/s
and 3.05x107 m%s as the MW power level was increased from 200
to 500 W™ The increased heating from the higher microwave
power density boosts the mobility and diffusion of the water
molecules in the sample. As a result, this enhancement in moisture
diffusivity allows the water to migrate more easily from the interior
to the surface of the material. The regression equation of D
and microwave power was obtained as illustrated in Figure 5. From
this illustration, it is evident that the relationship is linear and
described by:

D =7.902x10°P-3.301x 10 (R*=0.9837)  (15)

5 5 | —¥=7.902E-09x—3.301E—09 *

2.0 /
1.5

1.0}

2.q1
D, g/m*s

05 -

100 200 300 400
Microwave power level/W

Figure 5 Influence of microwave power level on D in

beef muscle

3.2 Influence of drying parameters on microwave drying
process of beef
3.2.1 Effect of power level on drying process modeling

The experimental data presented in Figure 6a describe the
variation in moisture content of experimental samples during drying
at six power levels (70 W, 140 W, 210 W, 280 W, 350 W, and 420 W).
These results indicate that as the microwave power level increases,
the slope of the drying curves rises, and the time required for
samples to reach the same moisture content decreases™. During the
early stages of drying, the microwave energy absorbing capacity
was high due to the higher moisture content of the experimental
samples. The larger quantities of energy increased the amount of
water evaporated and the vapor pressure gradients within the
sample. These vapor pressure gradients accelerate water vapor
transport from the interior regions of the sample to the external
surfaces®™.

3.0 0w
ﬁ\ —— 140 W
3 —— 210 W
o 23 yfi —— 280 W
i %f-,‘ ™, e 350W
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o0
=
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a. Drying curves at different power levels

\
'
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b. Drying rate curves at different power levels

Figure 6 Drying characteristics of beef muscle at different MW
power levels
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As the drying process continues, the decline in moisture content
leads to a decrease in the vapor pressure gradients within the
sample, resulting in a lower rate of drying as shown in Figure 6b.
These observations are consistent with earlier literature, which
indicates that during the microwave drying process, the migration of
moisture within the sample is closely related to the internal liquid
concentration gradient and the vapor pressure gradient®. The
observations also confirm the significant impact of microwave
power level on the rate of drying. Higher microwave power levels
result in a faster drying process due to enhanced moisture
evaporation and increased vapor pressure gradients within the
sample®7,

3.2.2 Effect of relative humidity on microwave drying process
of beef

Figure 7 illustrates the effect of relative humidity (0%, 30%,
and 50%) on moisture content during microwave drying of lean
beef samples at 350 W. The results demonstrate an inverse
relationship between relative humidity and moisture removal rate.
Higher relative humidity led to reduced vapor pressure gradients
within the samples, resulting in decreased drying rates. While lower
relative humidity levels achieved faster drying rates, higher vapor
pressures near the sample surface during drying potentially
improved the product structure””. The elevated relative humidity
extended the drying time to reach target moisture content while
preventing excessive surface dehydration.
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Figure 7 Drying characteristics of beef muscle at different
relative humidities

3.2.3 Effect of power level on energy consumption
Prior investigations have emphasized the
significant influence of microwave power level on specific energy

consistently

consumption (SEC) during drying processes™. Since optimizing

energy consumption while maximizing moisture removal efficiency
is crucial for drying process modeling, a thorough evaluation of
energy utilization in microwave-assisted beef muscle drying was
conducted. The relationship between SEC and moisture content is
illustrated in Figure 8. The final SEC values ranged from 8.9 to
11.9 MJ/kg of water, with similar trend patterns observed across
different microwave power levels. The SEC curves exhibited
stabilization as the sample moisture content decreased, particularly
after the initial ramp-up drying phase. This phenomenon can be
attributed to reduced microwave energy absorption as the moisture
during the later of drying®.
Consequently, more energy is required to remove an equivalent

content diminishes stages
mass of water in the final drying stages compared to the initial
phases, a finding consistent with previous studies on microwave
drying of Ficus carica Linn leaves"?. The results indicate that at
equivalent moisture contents, higher microwave power levels
correspond to lower energy consumption during the drying process.
However, excessive microwave power can result in sample
charring, corroborating previous findings from research on sardine
and mussel drying®*"
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Moisture content/g- g™ .d.b

Figure 8 Effect of microwave power and drying time on specific
energy consumption

As shown in the overall energy consumption change trend line
in Figure 9, the final average unit energy consumption reaches a
maximum of 10.46 MJ/kg water at a microwave power of 70 W,
and a minimum of 8.39 MJ/kg water at a microwave power of 420 W.

3000 —e- Final specific energy consumption ] 12

1046 Drying time
2500 H3dy~ 9.59

2000 - 8.39

1500 \

Drying time/s
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\720
<52 i
500 | . \\396__336
T
0

2
70W 140W 210W 280W 350W 420 W

Microwave power level/W

Final specific energy
consumption//MJ-kg ™' water

Figure 9 Variation of drying time and energy consumption under
different microwave power levels

3.3 SSA-BP neural network model validation

The SSA-BP neural network prediction algorithm was created
in MATLAB, with 409 groups of training sets. To assess the
network’s performance, the predicted values were visualized
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through plotting. Figure 10 illustrates the results for the most
effective network in modeling and predicting the variations in
moisture content and specific energy consumption of the samples
during the drying process. The findings indicate that the SSA-BP
model accurately predicts both moisture content and specific energy
consumption during the microwave drying process.
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—— SSA-BP model predictions (70 W)
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Figure 10 Comparison of optimized SSA-BP model predictions
and measured results at different power levels

Experimental data on the moisture content of beef muscle
samples over time at a microwave power of 280 W were randomly
selected for model validation. The outcomes in Figure 11 provide
the MSE (mean square error) change of the SSA-BP model during
system training, validation, and testing. The smaller magnitudes of

Training: R*=0.99991 Validation: R=0.99881

1*Target+0.0089

Output

MSE represent more accurate predictions by the model. As is
evident, the overall MSE decreases consistently and eventually ends
after the 155" iteration, and with the MSE reaching a minimum
value of 2.211E-4. The regression plots related to the training,
validation, testing, and overall performance of the network are
presented in Figure 12. The fit across all datasets was quite robust,
with correlation coefficients approaching 1. An analysis of the data
point distribution reveals that nearly all points are closely aligned
along the 45° line, indicating a strong agreement between the
network outputs and the targets. Notably, the correlation coefficient
for the training data is 0.999 11, while the coefficients for
validation,testing,andtheoverallneuralnetworkprocesswere(0.998 81,
0.998 37, and 0.998 92, respectively. These performance metrics
suggest that the designed SSA-BP neural network is capable of
effectively predicting moisture content and specific energy
consumption during the drying process of beef slices.
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Figure 11 System mean square error curve of SSA-BP

model (280 W)

To confirm the accuracy and stability of the SSA-BP model
prediction for changes in moisture content of beef during
microwave drying, a comparison with outcomes from the BP, GA-
BP* and the SSA-BP model was conducted. The present study
theoretically evaluated the model relevance and prediction accuracy,
employing R-squared (R?) and root mean square error (RMSE) as
metrics for model relevance verification, and mean absolute
percentage error (MAPE) as a metric for model prediction accuracy
verification. The goodness of fit, RMSE, and MAPE of the BP
model, GA-BP model, and the SSA-BP prediction model are
comparatively presented in Table 3. The results indicate that the
SSA-BP model effectively predicts the moisture content of beef
muscle slices during microwave drying. The RMSE, MAPE, and R
values for the SSA-BP model were found to be 0.2354, 3.7604, and
0.9821, respectively.
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Table 3 Comparative analysis of model
predictive performance

Moisture content Specific energy consumption

Model
RMSE MAPE/% R RMSE  MAPE/%
BP 0.9972 0.7849 1.4172 0.9352 0.450 90 6.1722
GA-BP 0.9988 0.5268  0.9701 0.9434 0.433 47 4.9425
SSA-BP  0.9999 0.1247  0.2091 0.9821 0.235 40 3.7604

4 Conclusions

This study demonstrated an effective approach for modeling
and optimizing microwave drying of beef muscle. The experimental
investigation revealed moisture diffusivity values ranging from
2.23x10° to 2.87x10° m?s, with minimal specific energy
consumption (8.39 MJ/kg water) achieved at 420 W microwave
power. These findings provide valuable insights into both drying
kinetics and energy efficiency parameters critical for industrial
applications.

A novel SSA-optimized BP neural network model was
developed to accurately predict moisture content during variable
microwave power drying. The multi-objective Sparrow Search
Algorithm effectively optimized the initial weights and thresholds
of the neural network, resulting in superior predictive performance
compared to conventional approaches. Validation metrics confirmed
the model’s exceptional accuracy (RMSE: 0.2354, MAPE:
3.7604%, R*: 0.9821), demonstrating significant improvements over
traditional BP neural networks and GA-optimized BP networks.

The proposed modeling framework establishes a robust
foundation for process optimization in microwave-based food
dehydration systems. The integration of SSA optimization with
neural network modeling presents a promising approach for
intelligent control systems in industrial-scale microwave drying
operations, potentially leading to improved product quality and
energy efficiency in commercial food processing applications.
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