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Abstract: Accurate detection of tomato leaf diseases is crucial for early prevention and ensuring agricultural production. This
study addresses six tomato leaf diseases: bacterial spot, early blight, late blight, leaf mold, septoria leaf spot, and yellow leaf
curl virus. A lightweight detection model, YOLO-LGS, is proposed to achieve efficient and automated disease detection. The
dataset  of  tomato  leaf  diseases  was  first  augmented  to  enrich  the  disease  features,  thereby  improving  the  model’s  detection
performance.  The  YOLO-LGS  model  is  built  on  the  YOLOv11  architecture,  incorporating  lightweight  group  attention  net
(LWGANet) to reconstruct the backbone network, replacing the convolutional block with parallel spatial attention mechanism
with  the  grouped  channel-wise  self-attention  (GCSA)  mechanism,  and  introducing  separated  and  enhanced  attention  module
(SEAM) into the detection head to balance performance and efficiency. Experimental results show that the YOLO-LGS model
achieves an mAP50 of 0.693 and an F1 score of 0.677, outperforming other YOLO models (YOLOv8s, YOLOv9s, YOLOv10s,
and YOLOv11s). Additionally, the model’s parameter size is only 6.333 M, and its GFLOPs is 13.4, representing reductions of
32.739%  and  37.089%,  respectively,  compared  to  YOLOv11s,  significantly  lowering  computational  cost  while  maintaining
detection performance.  The results  demonstrate the effectiveness of LWGANet,  GCSA, and SEAM. The development of the
YOLO-LGS  model  provides  an  efficient,  lightweight  solution  for  tomato  leaf  disease  detection  in  resource-constrained
environments.
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 1    Introduction
With  the  rapid  development  of  global  agriculture,  accurate

identification  and  control  of  crop  diseases  have  become  key  to
ensuring food security  and sustainable  agricultural  development[1,2].
As  one  of  the  most  important  economic  crops  worldwide,  tomato
disease  poses  a  significant  threat  to  both  yield  and  quality.
Traditional  disease  detection  methods  mainly  rely  on  manual
observation,  which  is  not  only  inefficient  but  also  subject  to
subjective  biases[3,4].  Furthermore,  some  laboratory-based  detection
methods  often  require  specialized  equipment  and  personnel,  with
long detection cycles that fail to meet the demands for rapid, large-
scale,  and  high-precision  field  diagnostics[5].  Therefore,  developing

an  efficient,  accurate,  and  automated  tomato  disease  recognition
technology is of significant practical importance.

In recent years, with the rapid development of computer vision
technology, deep learning-based image recognition algorithms have
been  widely  applied  in  agricultural  disease  detection[6,7].  There  are
mainly two types of deep learning detection networks: the R-CNN-
based  two-stage  detection  network  and  the  single-stage  network
represented  by  YOLO  series  algorithms.  The  R-CNN-based  two-
stage detection network decomposes the detection task into two key
stages:  candidate  region  extraction  and  region  classification.  This
staged  approach  effectively  improves  detection  accuracy  and
efficiency[8-10].  For  large-scale  crop  disease  detection,  Hua  et  al.[11]

integrated multiple features in an R-CNN model to improve disease
detection  accuracy  and  efficiency,  enabling  fast  and  accurate
identification  of  crop  surface  diseases.  Deng  et  al.[12]  proposed  an
orchard  disease  detection  method  based  on  federated  learning  and
improved Faster R-CNN, significantly improving accuracy in small
target  disease  detection  and  diverse  pest  identification  in  complex
environments. To enhance the detection accuracy of Faster R-CNN,
Alruwaili  et  al.[13]  improved  the  model  by  reducing  network  layers
and  optimizing  the  regions  of  interest  pooling  layer,  developing  a
real-time tomato leaf  disease detection system with an accuracy of
0.974. Kaur et al.[14] proposed an improved Mask R-CNN model for
tomato  leaf  disease  detection  by  adjusting  anchor  ratios  in  the
region  proposal  network  and  optimizing  the  backbone  network
structure,  utilizing  an  ensemble  deep  learning  technique  to
effectively segment disease areas on leaves.

Although  two-stage  networks  have  shown  high  accuracy  in
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diversified disease detection, they require networks that can handle
large  amounts  of  image  data  within  short  timeframes,  maintaining
both  real-time  performance  and  accuracy,  especially  in  resource-
constrained  environments.  In  comparison,  YOLO  series  object
detection  networks  have  received  widespread  attention  in  many
fields  due  to  their  efficiency  and  fast  response  capabilities[15-17].
YOLO  series  models  perform  end-to-end  training,  allowing  direct
prediction on input images and outputting target class and location
information,  effectively  reducing computational  load and detection
time[18,19].  Researchers  have  improved  YOLO  networks  by
optimizing  modules  and  attention  mechanisms,  significantly
enhancing  model  detection  accuracy  and  achieving  further
lightweighting.  Wang  and  Liu[20]  developed  an  efficient  deep
learning  model,  TomatoDet,  by  optimizing  the  feature  extraction
module,  activation  functions,  and  feature  fusion  structure  of  the
YOLOv8n  model,  resulting  in  an  8.700%  improvement  in  mAP,
enabling high-precision real-time tomato disease detection. Kang et
al.[21] based their model on YOLOv8, introducing the Ghost module
and  convolutional  block  attention  module  to  improve  the  network
architecture,  developing  a  lightweight  tomato  growth  monitoring
algorithm  (YOLO-TGI)  with  a  minimum  checkpoint  weight  of
3.7  MB.  Lin  et  al.[22]  optimized  the  YOLOv4 model  using  channel
attention  mechanism  and  introduced  an  osprey  search  strategy  for
hyperparameter optimization, achieving a 0.863 mAP. For small or
dense  disease  targets,  Xu  et  al.[23]  proposed  the  Pruned-YOLO
v5s+Shuffle  (PYSS)  model,  which  can  perform  real-time  disease
detection  in  complex  greenhouse  environments,  improving
detection  for  small  target  diseases,  with  a  model  size  of  1.1  MB.
Wang et al.[24] introduced lightweight convolutional neural networks
and  group  shuffle  convolution  into  the  YOLO  framework  to
efficiently  detect  small  target  diseases  while  reducing  model  size,
achieving a parameter size of 2.96 M.

This  study  focuses  on  detecting  and  recognizing  tomato  leaf
diseases, targeting six disease types: bacterial spot, early blight, late
blight,  leaf  mold,  septoria  leaf  spot,  and  yellow  leaf  curl  virus.
These  diseases  frequently  appear  during  the  tomato  growth  cycle,
with  complex  and  diverse  symptoms.  The  disease  locations  are
often small and dense, presenting significant challenges for accurate
recognition.  To  address  these  issues,  the  study  builds  a  detection
model  based  on  the  latest  YOLO  series  algorithm  YOLOv11,
capable  of  efficiently  recognizing  diverse  disease  symptoms  on
tomato leaves. The improvements in this study are as follows: 1) the
introduction  of  lightweight  group  attention  net  (LWGANet)  to
reconstruct the YOLOv11 backbone network, reducing the model’s
parameter  size  while  retaining  efficient  feature  extraction
capabilities;  2)  the  addition  of  a  novel  attention  mechanism,
grouped channel-wise self-attention (GCSA), to replace the original
convolutional block with parallel spatial attention (C2PSA) module
in  YOLOv11,  improving the  model’s  detection  accuracy for  dense
and  small  disease  spots;  and  3)  the  introduction  of  separated  and
enhancement  attention  module  (SEAM)  in  the  detection  head  to
dynamically  adjust  the  importance  of  feature  channels.  Through
these  improvements,  this  study  aims  to  provide  an  efficient,
accurate,  and  widely  applicable  technical  solution  for  automated
tomato  disease  recognition,  offering  strong  support  for  early
diagnosis and precise prevention of tomato diseases.

 2    Materials and methods
 2.1    Dataset construction

The dataset  used in this  study is  based on a publicly available
tomato leaf disease dataset (https://github.com/ZhouGuoXiong/PDC-

VLD),  comprising  1782  raw  images  annotated  in  PASCAL  VOC
format.  The  dataset  includes  samples  of  six  tomato  leaf  diseases:
bacterial spot, early blight, late blight, leaf mold, septoria leaf spot,
and yellow leaf curl virus, with image examples shown in Figure 1.
While the original dataset contains rich disease features, it lacks the
diversity  of  disease  symptoms  found  in  natural  environments.
Therefore, this study employed data augmentation techniques on the
original  dataset  to  enrich  its  content  and  improve  the  model’s
generalization ability. The augmented images are shown in Figure 2.
The  data  augmentation  techniques  used  include  random  light
intensity  adjustment,  random  flipping,  random  masking,  random
rotation,  and  noise  addition,  simulating  the  actual  detection
environment  of  tomato  leaf  diseases  and  improving  the  model’s
detection accuracy and adaptability to complex environments. After
data  augmentation,  the  dataset  contains  8910  images,  which  were
randomly  divided  into  training,  testing,  and  validation  sets  with  a
ratio of 8:1:1. The training set consists of 7136 images, the testing
set contains 890 images, and the validation set contains 884 images.
  

Early blight

Late blight

Leaf mold

Septoria leaf spot

Bacterial spot

Yellow leaf curl virus

Figure 1    Images of tomato leaf diseases
  

Figure 2    Examples of augmented dataset images
 

 2.2    YOLOv11 model
As  the  latest  iteration  of  the  YOLO  series  object  detection

models, YOLOv11 achieves significant performance improvements
through  a  series  of  architectural  innovations[25].  One  of  its  primary
innovations  is  the  cross  stage  partial  with  kernel  size  2  (C3K2)
mechanism,  an  optimized  implementation  of  the  CSP  structure.
Inherited  from  C2f,  this  mechanism  utilizes  smaller  convolution
kernels  and  an  optimized  structural  design  to  achieve  lightweight
computation while effectively extracting deep-level features, further
enhancing  computational  efficiency  and  feature  extraction
flexibility[26,27].  The  second  major  innovation  in  YOLOv11  is  the
C2PSA module, which introduces a spatial attention mechanism to
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help the model focus more effectively on key feature regions within
an  image.  This  enhances  feature  representation  in  critical  areas,
improving  the  model’s  ability  to  recognize  small  or  partially
occluded  objects[28,29].  Additionally,  YOLOv11  incorporates
depthwise  separable  convolutions  in  the  detection  head,
significantly  reducing  computational  complexity  and  parameter
count.  By  decomposing  standard  convolution  into  depthwise  and
pointwise convolutions, the model reduces computational overhead
while  maintaining  accuracy[30].  This  design  improves  inference
speed,  making  YOLOv11  more  suitable  for  deployment  on  edge
devices and in resource-constrained environments.
 2.3    Improvement strategies
 2.3.1    Backbone reconstruction using LWGANet

To enhance large-scale tomato leaf disease detection, this study
reconstructs  the  original  YOLOv11  backbone  using  LWGANet,
further  improving  model  lightweighting.  LWGANet  is  a  novel
lightweight backbone network designed to efficiently extract multi-
scale  object  features  with  lower  computational  complexity  and
fewer  parameters[31].  The  core  component  of  LWGANet  is  the

lightweight  group  attention  (LWGA)  module,  which  divides  input
feature  maps into  multiple  submodules  and applies  different  levels
of  attention,  including  gate  point  attention,  regular  local  attention,
sparse  medium-range  attention,  and  sparse  global  attention.  This
design  optimizes  feature  representation,  enabling  precise  feature
extraction across multiple scales within a lightweight computational
framework.  LWGANet  consists  of  four  stages,  each  containing
multiple  LWGA  modules  that  progressively  downsample  feature
maps  to  accommodate  various  object  scales  in  detection.
Additionally,  it  incorporates  a  deep  robust  feature  downsampling
module to preserve details of small targets.

In  this  study,  the  L1-scale  LWGANet  was  selected,  which
includes 1, 2, 4, and 2 LWGA modules across the four stages. This
configuration  captures  both  local  and  global  feature  information
while  balancing  detection  performance  and  computational
efficiency.  Compared  to  the  L0-scale,  it  avoids  excessive
lightweighting that  could degrade performance,  while  compared to
the  L2-scale,  it  prevents  high  computational  cost  and  overfitting.
The L1-scale LWGANet structure is illustrated in Figure 3.
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Figure 3    LWGANet architecture at the L1 scale
 

 2.3.2    Replacing C2PSA with GCSA mechanism
This  study  replaces  the  original  C2PSA  mechanism  in

YOLOv11’s backbone network with the GCSA mechanism, whose
structure  is  shown  in  Figure  4.  GCSA  is  an  innovative  channel
attention  mechanism  designed  to  address  potential  blind  spots  in
multi-scale  architectures[32].  GCSA partitions  deep  feature  channels
into  multiple  groups,  applying  independent  channel  attention
operations  within  each  group.  This  grouped  attention  mechanism
maintains  global  channel  interaction  capabilities  while  optimizing
computational  efficiency,  allowing  the  model  to  adapt  better  to
different  input  data  types  and  improving  generalization.  By
controlling the number of channels in each group to be smaller than
the  spatial  resolution,  GCSA  prevents  spatial  information  leakage
caused  by  channel  interactions,  ensuring  more  precise  target
recognition.  This  mechanism  provides  an  effective  solution  for
complex  object  detection  tasks,  particularly  for  images  with
intricate  backgrounds  and  noise,  significantly  enhancing  detection
accuracy and robustness.
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 2.3.3    Integrating SEAM into the detection head

In  the  detection  head,  this  study  integrates  the  SEAM  into
YOLOv11,  forming  SEAMDetect  to  enhance  the  model’s  target
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feature  perception  and  improve  detection  performance.  The
architecture  of  SEAMDetect  and  SEAM  is  shown  in  Figure  5.
SEAM  combines  depthwise  separable  convolution  and  channel
attention  mechanisms  to  enhance  feature  representation  through
local  feature  extraction  and  channel  weighting[33].  It  first  extracts
local features using depthwise separable convolutions, incorporating
residual  connections  to  enhance  feature  stability.  Then,  global
average  pooling  compresses  feature  maps  into  global  feature
vectors,  and  two  fully  connected  layers  implement  the  channel

attention  mechanism[34].  To  further  improve  feature  distinction,
SEAM  employs  an  exponential  weighting  normalization  strategy,
increasing  the  model’s  tolerance  to  feature  localization  errors[35].
Finally,  element-wise  multiplication  fuses  attention  weights  with
the original feature maps,  effectively enhancing target features.  By
embedding  SEAM  into  the  YOLOv11  detection  head,  this  study
improves  the  model’s  ability  to  focus  on  target  features  while
maintaining  the  efficiency  of  YOLOv11,  leading  to  enhanced
detection performance.
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 2.4    Tomato leaf disease detection model
Since the tomato leaf disease dataset used in this study is large-

scale  and  the  original  YOLOv11  model  has  high  computational
demands,  it  is  unsuitable  for  deployment  in  resource-limited
environments.  To  address  this,  this  study  develops  a  lightweight
YOLO-LGS  model,  optimized  for  multiple  types  of  tomato  leaf
diseases.

The  model  is  specifically  designed  based  on  the  disease
characteristics  and  employs  the  lightweight  LWGANet  to
reconstruct  the  YOLOv11s  backbone  network.  Additionally,  to
enhance feature extraction, the GCSA mechanism replaces C2PSA,
and  SEAM  is  integrated  into  the  detection  head.  These
improvements  enhance  the  model’s  ability  to  recognize  diverse
disease  features,  improve  detection  accuracy,  and  reduce  model
complexity.  The  overall  structure  of  the  YOLO-LGS  model  is
illustrated in Figure 6.
 2.5    Evaluation metrics

This study evaluates the performance of the tomato leaf disease
detection model using the following four key metrics: Precision (P):
The  proportion  of  correctly  predicted  positive  samples  among  all
predicted positive samples.  Recall  (R):  The proportion of  correctly
predicted positive samples among all actual positive samples. Mean
average precision (mAP50):  The mean average precision when the
intersection over union (IoU) threshold is set to 0.5. F1 Score: The
harmonic  mean  of P  and R,  where  a  higher  F1  score  indicates  a
better  detection  network  performance.  The  formulas  for  these  four
metrics are as follows:

Precision =
TP

TP+FP
(1)

Recall =
TP

TP+FN
(2)

mAP50 =
1
m

m∑
i=1

APi (3)

F1 = 2× precision× recall
precision+ recall

(4)

TP
FP

FN
APi

i

where,    denotes  the  number  of  samples  correctly  detected  as
positive  categories,    denotes  the  number  of  samples  incorrectly
detected  as  positive  categories,  and    denotes  the  number  of
samples incorrectly detected as negative categories.   denotes the
average precision of the category   when the IoU is 0.5.

 3    Results

 3.1    Experimental setup
The  hardware  configuration  used  in  this  study  includes  an

Intel(R) Xeon(R) Gold 5318Y CPU @ 2.10 GHz processor and an
NVIDIA A16  GPU.  The  software  environment  consists  of  Python
3.10,  the  PyTorch  2.0.1  framework,  and  CUDA  11.8,  ensuring
efficient network training.

For  training  parameters,  the  study  adopts  the  default  YOLO
network configuration, with input images at a resolution of 256×256
and a training batch size of 200. The initial and final learning rates
are  both  0.01,  allowing  the  network  to  fine-tune  parameters  in  the
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later training stages and avoid overfitting. The momentum is set to
0.937,  which  accelerates  the  gradient  descent  process  while
reducing  oscillations  during  training.  The  weight  decay  is  set  to
0.0005,  effectively  mitigating  overfitting  tendencies  while
maintaining high training efficiency.
 3.2    Performance of the YOLO-LGS model

The  improved  YOLO-LGS  model  was  used  to  detect  and
classify  six  types  of  tomato  leaf  diseases:  bacterial  spot,  early
blight, late blight, leaf mold, septoria leaf spot, and yellow leaf curl
virus.  The  model’s  detection  performance  is  presented  in Table  1.
The results indicate that the overall P is 0.746, R is 0.619, mAP50 is
0.693,  and  F1  score  is  0.677,  with  parameters  and  GFLOPs  at
6.333  MB  and  13.4,  respectively.  It  demonstrates  strong
performance in tomato leaf disease detection.
 
 

Table 1    Detection accuracy of YOLO-LGS for different types
of tomato leaf diseases

Disease types Precision Recall mAP50 F1 score
All 0.746 0.619 0.693 0.677

Late blight 0.663 0.703 0.717 0.682
Early blight 0.833 0.786 0.857 0.809
Leaf mold 0.781 0.729 0.781 0.754

Septoria leaf spot 0.738 0.489 0.575 0.588
Yellow leaf curl virus 0.726 0.497 0.620 0.590

Bacterial spot 0.735 0.510 0.605 0.602
 

Figure  7  presents  the  confusion  matrix  of  the  YOLO-LGS
model’s  detection  results.  Overall,  the  model  exhibits  excellent

classification  performance,  although  detection  accuracy  varies
across  different  disease  categories  due  to  differences  in  disease
characteristics.  The  model  performs  particularly  well  in  detecting
early  blight,  with  a  correct  identification  rate  of  0.820.  The
distinctive concentric ring patterns on infected leaves make it easier
for  the  model  to  capture  features,  leading  to  high  detection
accuracy.  The  recognition  rates  for  late  blight  and  leaf  mold  are
0.750  and  0.770,  respectively,  indicating  strong  performance.
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However, the model struggles with diseases characterized by small,
dense  brown  spots,  such  as  bacterial  spot  and  septoria  leaf  spot,
achieving  an  accuracy  of  only  0.550.  The  high  false  positive  and
false negative rates are likely due to the similarity of these diseases’
visual symptoms, increasing the likelihood of misclassification. The
correct  detection  rate  for  yellow  leaf  curl  virus  is  0.540.  This
disease causes leaf yellowing and curling, but its characteristics are
less  distinct,  making  it  more  challenging  for  the  model  to  identify

accurately.
 3.3    Ablation study

To  evaluate  the  contributions  of  LWGANet,  GCSA,  and
SEAMDetect,  an  ablation  study  was  conducted  to  examine  their
effects  on  model  performance  and  verify  the  effectiveness  of  the
YOLO-LGS model. The results of the ablation experiments in terms
of  accuracy  and  computational  complexity  are  summarized  in
Table 2.

 
 

Table 2    Results of the ablation study
Model LWGANet GCSA SEAMDetect Precision Recall mAP50 F1 score Parameter/M GFLOPs
1 - - - 0.738 0.621 0.688 0.674 9.415 21.3
2 √ - - 0.714 0.605 0.670 0.655 6.258 13.1
3 - √ - 0.742 0.644 0.701 0.690 11.320 37.9
4 - - √ 0.740 0.628 0.690 0.679 11.414 38.5
5 √ √ - 0.735 0.616 0.686 0.670 6.297 13.2
6 √ - √ 0.729 0.607 0.676 0.667 6.293 13.3
7 √ √ √ 0.746 0.619 0.693 0.677 6.333 13.4

 

Replacing YOLOv11s’ original  backbone with  LWGANet  did
not significantly improve accuracy; however, it reduced the model’s
parameter size by 33.536% and GFLOPs by 38.498%, highlighting
LWGANet’s  advantage  in  computational  efficiency  without
substantially  affecting  precision.  Introducing  GCSA  or
SEAMDetect  independently  resulted  in  improved  mAP50  (0.701,
0.690) and F1 score (0.690, 0.679), respectively, though at the cost
of increased parameters and computational load. Combining GCSA
with LWGANet led to a 2.389% increase in mAP50 and a 2.290%
increase  in  F1  score,  confirming  the  effectiveness  of  GCSA  in
improving model accuracy. When LWGANet and SEAMDetect are
used  together,  the  model  achieves P  and  F1  scores  of  0.729  and
0.667,  respectively,  with  only  a  slight  increase  in  parameters  and
GFLOPs.  The  final  YOLO-LGS  model  successfully  balances
accuracy and computational complexity. These results indicate that
while  LWGANet  primarily  contributes  to  model  lightweighting,
GCSA and  SEAMDetect  significantly  enhance  detection  accuracy,
albeit at the expense of additional computational resources.

 4    Discussion
 4.1    Comparison  of  detection  performance  across  different
models

To  validate  the  effectiveness  of  the  YOLO-LGS  model,  its
performance was compared with other YOLO series models in the
tomato  leaf  disease  detection  task.  Table  3  presents  the  detection
accuracy  and  model  sizes  of  different  models,  while  Figure  8
illustrates their actual detection performance.
 
 

Table 3    Comparative experimental results of different models
Model Precision Recall mAP50 F1 score Parameter/M GFLOPs

YOLOv8s 0.726 0.626 0.682 0.672 11.128 28.4

YOLOv9s 0.695 0.578 0.633 0.631 7.169 26.7

YOLOv10s 0.697 0.592 0.655 0.640 8.040 24.5

YOLOv11s 0.738 0.621 0.688 0.674 9.415 21.3

YOLO-LGS 0.746 0.619 0.693 0.677 6.333 13.4
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Figure 8    Comparative detection performance of different models
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The  results  indicate  that  YOLO-LGS  achieves  a  high  balance
between  accuracy  and  computational  efficiency.  YOLO-LGS
achieves an mAP50 of 0.693, outperforming YOLOv8s, YOLOv9s,
YOLOv10s,  and  YOLOv11s  by  1.613%,  9.479%,  5.802%,  and
0.727%,  respectively.  The  F1  score  of  YOLO-LGS  (0.677)  is
slightly higher than YOLOv8s (0.672) and YOLOv11s (0.674) and
is  significantly  better  than  YOLOv9s  (0.631)  and  YOLOv10s
(0.640).  YOLO-LGS  exhibits  the  lowest  computational  cost,
reducing the parameter count by 43.092%, 11.671%, 21.232%, and
32.739%  and  GFLOPs  by  52.817%,  49.813%,  45.306%,  and
37.089%, respectively, compared to other YOLO models.

These  results  confirm  that  YOLO-LGS  is  a  highly  efficient
tomato leaf disease detection model, outperforming other models in
key metrics while maintaining a lightweight structure. Its optimized
architecture  makes  it  suitable  for  deployment  in  resource-
constrained environments.
 4.2    Impact of data augmentation on model performance

Before  training  the  detection  network,  this  study  applied  data
augmentation  techniques  to  the  tomato  leaf  disease  dataset,
including  random  light  intensity  adjustments,  flipping,  masking,
rotation,  and  noise  addition.  To  evaluate  the  impact  of  data

augmentation  techniques  on  model  performance,  this  study  trained
the  models  both  with  and  without  data  augmentation.  Table  4
presents  the  training  results  of  different  models  on  the  non-
augmented dataset,  while Figure  9  illustrates  the  changes  in P and
mAP50 metrics  before and after  data  augmentation.  Applying data
augmentation  significantly  improved  model  accuracy  while  having
minimal  impact  on  model  size.  After  applying  data  augmentation,
YOLOv8s  achieved  a  mAP50  and  F1  score  improvement  of
50.220%  and  40.000%,  respectively.  YOLOv11s  saw  mAP50  and
F1  score  improvements  of  50.218%  and  40.125%,  respectively.
YOLO-LGS improved  by  43.776% in  mAP50  and  34.059% in  F1
score.
  

Table 4    Detection performance of different models on the
non-augmented dataset

Model Precision Recall mAP50 F1 score Parameter/M GFLOPs
YOLOv8s 0.500 0.461 0.454 0.480 11.128 28.4
YOLOv9s 0.539 0.455 0.464 0.493 7.169 26.7
YOLOv10s 0.513 0.442 0.445 0.475 8.040 24.5
YOLOv11s 0.499 0.465 0.458 0.481 9.415 21.3
YOLO-LGS 0.540 0.470 0.484 0.503 6.333 13.4
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Figure 9    Precision and mAP50 comparison before and after data augmentation
 

These  results  indicate  that  data  augmentation  significantly
enhances  model  generalization  and  robustness  by  exposing  the
network  to  diverse  variations  and  noise  during  training,  thereby
improving real-world performance[36,37]. Additionally, it helps reduce
overfitting to training data,  improving the model’s performance on
test data.

 5    Conclusions
To  enhance  tomato  leaf  disease  detection  accuracy,  this  study

proposes a lightweight detection model, YOLO-LGS, optimized for
six disease types: bacterial spot, early blight, late blight, leaf mold,
septoria  leaf  spot,  and  yellow leaf  curl  virus.  Before  training,  data
augmentation  techniques  were  applied  to  enrich  the  dataset,
effectively  increasing  sample  diversity  and  improving  training
accuracy.  The  study  builds  upon  YOLOv11s,  incorporating:
LWGANet  to  reconstruct  the  backbone  network,  significantly
reducing  computational  complexity;  GCSA  to  replace  C2PSA,
improving  feature  extraction;  SEAM  in  the  detection  head,
enhancing  target  feature  representation.  The  YOLO-LGS  model
achieves an mAP50 of 0.693 and an F1 score of 0.677,  surpassing
YOLOv8s,  YOLOv9s,  YOLOv10s,  and  YOLOv11s  in  accuracy
while maintaining the smallest model size (6.333 M, 13.4 GFLOPs).

These findings confirm the effectiveness of LWGANet, GCSA,
and  SEAM,  making  YOLO-LGS  a  high-performance,  lightweight
solution  for  tomato  leaf  disease  detection  in  resource-limited
environments. In the future, the model architecture will continue to

be  optimized,  and  comprehensive  evaluations  of  its  performance
across  diverse  datasets  will  be  conducted.  This  will  enhance  its
detection  capabilities  in  complex  and  dynamic  environments,
thereby improving its applicability in real-world scenarios.
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