Visual tracking for underwater sea cucumber via correlation filters

Honglei Wei, Xiangzhi Kong, Xianyi Zhai, Qiang Tong, Guibing Pang

Abstract


One of the essential techniques for using underwater robots to fish sea cucumbers is that the robots must track sea cucumbers using computer vision technology. Tracking underwater targets is a challenging task due to suspension, water absorption, and light scattering. This study proposed a simple but effective algorithm for sea cucumber tracking based on Kernelized Correlation Filters (KCF) framework. This method tracked the head and tail of the sea cucumber respectively and calculated the scale change according to the distance between the head and tail. The KCF method was improved on three strategies. First of all, the target was searched at the predicted position to improve accuracy. Secondly, an adaptive learning rate updating method based on the detection score of each frame was proposed. Finally, the adaptive size of the histogram of the oriented gradient (HOG) feature was used to balance the accuracy and efficiency. Experimental results showed that the algorithm had good tracking performance.
Keywords: visual tracking, correlation filters, kernelized correlation filters, sea cucumber, scale estimation, underwater
DOI: 10.25165/j.ijabe.20231603.4503

Citation: Wei H L, Kong X Z, Zhai X Y, Tong Q, Pang G B. Visual tracking for underwater sea cucumber via correlation filters. Int J Agric & Biol Eng, 2023; 16(3): 16(3): 247–253.

Keywords


visual tracking, correlation filters, kernelized correlation filters, sea cucumber, scale estimation, underwater

Full Text:

PDF

References


Henriques J F, Caseiro R, Martins P, Batista J. High-speed tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014; 37(3): 583-596.

Babenko B, Yang M H, Belongie S. Robust object tracking with online multiple instance learning. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011; 33(8):1619-1632.

Helmut G. Real-time tracking via on-line boosting. In: Proc. of British Machine Vision Conference, 2006; pp.47-56.

Hare S, Saffari A, Torr P H S. Struck: Structured output tracking with kernels. In: IEEE International Conference on Computer Vision. Barcelona, Spain: IEEE, 2012; pp.263-270. doi: 10.1109/ICCV.20211.6126251.

Yao R, Shi Q, Shen C, Zhang Y, van den Hengel A. Robust tracking with weighted online structured learning. Computer Vision – ECCV 2012. Springer, 2012; pp.158-172. doi: 10.1007/978-3-642-33712-3_12.

Bolme D S, Beveridge J R, Draper B A, Lui Y M. Visual object tracking using adaptive correlation filters. In: 2010 IEEE Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE, 2010; pp.2544-2550. doi: 10.1109/CVPR.2010.5539960.

Henriques J, Rui C, Martins P, Batista J. Exploiting the circulant structure of tracking-by-detection with kernels. In: European Conference on Computer Vision-ECCV 2012. Springer-Verlag, 2012; pp.702-715. doi: 10.1007/978-3-642-33765-9_50.

Liu T, Wang G, Yang Q. Real-time part-based visual tracking via adaptive correlation filters. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA: IEEE, 2015; pp.4902-4912. doi: 10.1109/CVPR.2015.7299124.

Yao R, Xia S X, Shen F M, Zhou Y, Niu Q. Exploiting spatial structure from parts for adaptive kernelized correlation filter tracker. IEEE Signal Processing Letters, 2016; 23(5): 658-662.

Li Y, Zhang Y F, Xu Y L, Wang J B, Miao Z . Robust scale adaptive kernel correlation filter tracker with hierarchical convolutional features. IEEE Signal Processing Letters, 2016; 23(8): 1136-1140.

Ma C, Xu Y, Ni B B, Yang X K. When correlation filters meet convolutional neural networks for visual tracking. IEEE Signal Processing Letters, 2016; 23(10): 1454-1458.

Mei X, Ling H. Robust visual tracking and vehicle classification via sparse representation. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011; 33(11): 2259-2272.

Li H X, Shen C H, Shi Q F. Real-time visual tracking using compressive sensing. In: 2011 IEEE Computer Vision and Pattern Recognition. Colorado Springs, CO, USA: IEEE, 2011; pp.1305-1312. doi: 10.1109/CVPR.2011.5995483.

Wang S, Lu H, Yang F, Yang M H. Superpixel tracking. In: 2011 International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011; pp.1323-1330. doi: 10.1109/ICCV.2011.6126385.

Ross D A, Lim J W, Lin R S, Yang M H. Incremental learning for robust visual tracking. International Journal of Computer Vision, 2008; 77(1-3):125-141.

Wu Y, Lim J W, Yang M H. Online object tracking: A benchmark. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA: IEEE, 2013; pp.2411-2418. doi: 10.1109/CVPR.2013.312.

Xia R L, Chen Y T, Ren B B. Improved anti-occlusion object tracking algorithm using Unscented Rauch-Tung-Striebel smoother and kernel correlation filter. Journal of King Saud University-Computer and Information Sciences, 2022; 34(8): 6008-6018. doi: 10.1016/j.jksuci.2022.02.004.

Danelljan M, Häger G, Khan F. Accurate scale estimation for robust visual tracking. In: British Machine Vision Conference. 2014; 65p.

Zhang K, Zhang L, Liu Q, Zhang D, Yang M H. Fast visual tracking via dense spatio-temporal context learning. In: Computer Vision – ECCV 2014. Cham: Springer, 2014; pp.127-141. doi: 10.1007/978-3-319-10602-1_9.

Guo D Q, Zhang G X, Neri F, Peng S, Yang Q, Liu P. An adaptive kernelized correlation filters with multiple features in the tracking application. Journal of Visual Communication and Image Representation, 2022, 84: 103484. doi: 10.1016/j.jvcir.2022.103484.

Yan P M, Yao S B, Zhu Q Y, Zhang T, Cui W N. Real-time detection and tracking of infrared small targets based on grid fast density peaks searching and improved KCF. Infrared Physics & Technology, 2022; 123: 104181. doi: 10.1016/j.infrared.2022.104181.

Du F, Wang W L, Zhang Z. Target tracking algorithm for pedestrians movement based on kernel-correlation filtering. Enterprise Information Systems, 2022; 16(10-11): 1500-1514. doi: 10.1080/17517575.2020.1755457.




Copyright (c) 2023 International Journal of Agricultural and Biological Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

2023-2026 Copyright IJABE Editing and Publishing Office