Visual tracking for underwater sea cucumber via correlation filters
Abstract
Keywords: visual tracking, correlation filters, kernelized correlation filters, sea cucumber, scale estimation, underwater
DOI: 10.25165/j.ijabe.20231603.4503
Citation: Wei H L, Kong X Z, Zhai X Y, Tong Q, Pang G B. Visual tracking for underwater sea cucumber via correlation filters. Int J Agric & Biol Eng, 2023; 16(3): 16(3): 247–253.
Keywords
Full Text:
PDFReferences
Henriques J F, Caseiro R, Martins P, Batista J. High-speed tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014; 37(3): 583-596.
Babenko B, Yang M H, Belongie S. Robust object tracking with online multiple instance learning. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011; 33(8):1619-1632.
Helmut G. Real-time tracking via on-line boosting. In: Proc. of British Machine Vision Conference, 2006; pp.47-56.
Hare S, Saffari A, Torr P H S. Struck: Structured output tracking with kernels. In: IEEE International Conference on Computer Vision. Barcelona, Spain: IEEE, 2012; pp.263-270. doi: 10.1109/ICCV.20211.6126251.
Yao R, Shi Q, Shen C, Zhang Y, van den Hengel A. Robust tracking with weighted online structured learning. Computer Vision – ECCV 2012. Springer, 2012; pp.158-172. doi: 10.1007/978-3-642-33712-3_12.
Bolme D S, Beveridge J R, Draper B A, Lui Y M. Visual object tracking using adaptive correlation filters. In: 2010 IEEE Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE, 2010; pp.2544-2550. doi: 10.1109/CVPR.2010.5539960.
Henriques J, Rui C, Martins P, Batista J. Exploiting the circulant structure of tracking-by-detection with kernels. In: European Conference on Computer Vision-ECCV 2012. Springer-Verlag, 2012; pp.702-715. doi: 10.1007/978-3-642-33765-9_50.
Liu T, Wang G, Yang Q. Real-time part-based visual tracking via adaptive correlation filters. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA: IEEE, 2015; pp.4902-4912. doi: 10.1109/CVPR.2015.7299124.
Yao R, Xia S X, Shen F M, Zhou Y, Niu Q. Exploiting spatial structure from parts for adaptive kernelized correlation filter tracker. IEEE Signal Processing Letters, 2016; 23(5): 658-662.
Li Y, Zhang Y F, Xu Y L, Wang J B, Miao Z . Robust scale adaptive kernel correlation filter tracker with hierarchical convolutional features. IEEE Signal Processing Letters, 2016; 23(8): 1136-1140.
Ma C, Xu Y, Ni B B, Yang X K. When correlation filters meet convolutional neural networks for visual tracking. IEEE Signal Processing Letters, 2016; 23(10): 1454-1458.
Mei X, Ling H. Robust visual tracking and vehicle classification via sparse representation. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011; 33(11): 2259-2272.
Li H X, Shen C H, Shi Q F. Real-time visual tracking using compressive sensing. In: 2011 IEEE Computer Vision and Pattern Recognition. Colorado Springs, CO, USA: IEEE, 2011; pp.1305-1312. doi: 10.1109/CVPR.2011.5995483.
Wang S, Lu H, Yang F, Yang M H. Superpixel tracking. In: 2011 International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011; pp.1323-1330. doi: 10.1109/ICCV.2011.6126385.
Ross D A, Lim J W, Lin R S, Yang M H. Incremental learning for robust visual tracking. International Journal of Computer Vision, 2008; 77(1-3):125-141.
Wu Y, Lim J W, Yang M H. Online object tracking: A benchmark. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA: IEEE, 2013; pp.2411-2418. doi: 10.1109/CVPR.2013.312.
Xia R L, Chen Y T, Ren B B. Improved anti-occlusion object tracking algorithm using Unscented Rauch-Tung-Striebel smoother and kernel correlation filter. Journal of King Saud University-Computer and Information Sciences, 2022; 34(8): 6008-6018. doi: 10.1016/j.jksuci.2022.02.004.
Danelljan M, Häger G, Khan F. Accurate scale estimation for robust visual tracking. In: British Machine Vision Conference. 2014; 65p.
Zhang K, Zhang L, Liu Q, Zhang D, Yang M H. Fast visual tracking via dense spatio-temporal context learning. In: Computer Vision – ECCV 2014. Cham: Springer, 2014; pp.127-141. doi: 10.1007/978-3-319-10602-1_9.
Guo D Q, Zhang G X, Neri F, Peng S, Yang Q, Liu P. An adaptive kernelized correlation filters with multiple features in the tracking application. Journal of Visual Communication and Image Representation, 2022, 84: 103484. doi: 10.1016/j.jvcir.2022.103484.
Yan P M, Yao S B, Zhu Q Y, Zhang T, Cui W N. Real-time detection and tracking of infrared small targets based on grid fast density peaks searching and improved KCF. Infrared Physics & Technology, 2022; 123: 104181. doi: 10.1016/j.infrared.2022.104181.
Du F, Wang W L, Zhang Z. Target tracking algorithm for pedestrians movement based on kernel-correlation filtering. Enterprise Information Systems, 2022; 16(10-11): 1500-1514. doi: 10.1080/17517575.2020.1755457.
Copyright (c) 2023 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.