Rapid diagnosis of nitrogen nutrition status in rice based on static scanning and extraction of leaf and sheath characteristics
Abstract
Keywords: N deficiency, static scanning, leaf sheath, support vector machine (SVM), identification
DOI: 10.3965/j.ijabe.20171003.1860
Citation: Chen L S, Sun Y Y, Wang K. Rapid diagnosis of nitrogen nutrition status in rice based on static scanning and extraction of leaf and sheath characteristics. Int J Agric & Biol Eng, 2017; 10(3): 158–164.
Keywords
Full Text:
PDFReferences
Shibayama M, Akiyama T. Seasonal visible, near-infrared and mid-infrared spectra of rice canopies in relation to LAI and above-ground dry phytomass. Remote Sens Environ, 1989; 27(2): 119–127.
Shibayama M, Akiyama T. Estimating grain yield of maturing rice canopies using high spectral resolution reflectance measurements. Remote Sens Environt, 1991; 36(1): 45–53.
Lin F F, Ding X D, Fu Z P, Deng J S, Shen Z Q. Application of mutual information to variable selection in diagnosis of phosphorus nutrition in rice. Spectrosc Spect Anal, 2009; 9: 2467–2470.
Shibayama M, Takahashi W, Morinaga S, Akiyama T. Canopy water deficit detection in paddy rice using a high resolution field spectroradiometer. Remote Sens Environ, 1993; 45(2): 117–126.
Jia L L, Fan M S, Zhang F S, Chen X P, Lyu S H, Sun Y M. Nitrogen status diagnosis of rice by using a digital camera. Spectrosc Spect Anal, 2009; 29(8): 2176–2179.
McCauley A, Jones C, Jacobsen J. Plant nutrient functions and deficiency and toxicity symptoms. Nutrient management module, 2009; (9): 1–16.
Shi Y Y, Deng J S, Chen L S, Zhang D Y, Ding X D, Wang K. Leaf characteristics extraction of rice under potassium stress based on static scan and spectral segmentation technique. Spectrosc Spect Anal, 2009; 29(7): 1745–1748.
Chen L S, Zhang S J, Wang K, Shen Z Q, Deng J S. Identifying of rice phosphorus stress based on machine vision technology. Life Sci J, 2013; 10(2): 2655–2663.
Chen L S, Wang K. Diagnosing of rice nitrogen stress based on static scanning technology and image information extraction. J Soil Sci Plant Nut, 2014; 14(2): 382–393.
Yang X, Zhang J J, Guo D D, Xiong X, Chang L Y, Niu Q L, et al. Measuring and evaluating anthocyanin in lettuce leaf based on color information. IFAC-PapersOnLine, 2016; 49(16): 96–99.
Rangel B M S, Fernandez M A A, Murillo J C. KNN-based image segmentation for grapevine potassium deficiency diagnosis. 2016 International Conference on Electronics, Communications and Computers, 2016. DOI: 10.1109/ Conielecomp.2016.7438551.
Li W M. Crop symptoms under nutrition stress. Qinghai Agro-Technology Extension, 2012; 2: 44–45.
Armstrong D L. Nutrient deficiency symptoms in rice. Better Crops International 16, 2002; Special Supplement: 23–25.
Weston J, Mukherjee S, Chapelle O, Pontil M, Poggio T, Vapnik V. Feature selection for SVMs. Nips, 2000; 12: 68–674.
Fung G M, Mangasarian O L. A feature selection Newton method for support vector machine classification. Comput Optim Appl, 2004; 28(2): 185–202.
Li G Z, Wang M, Zeng H J. An introduction to support vector machines and other kernel based learning methods. Bejing: Publishing House of Electronics Industry Press, 2004.
Fung G M, Mangasarian O L. A feature selection newton method for support vector machine classification. Comput Optim Appl, 2004; 2(28): 185–202.
Copyright (c)