Effects of fan speed on spray deposition and drift for targeting air-assisted sprayer in pear orchard
Abstract
Keywords: sprayers, infrared detectors, spray deposition, drift, fruit trees, plant protection
DOI: 10.3965/j.ijabe.20160904.1938
Citation: Qiu W, Zhao S Q, Ding W M, Sun C D, Lu J, Li Y N, et al. Effects of fan speed on spray deposition and drift for targeting air-assisted sprayer in pear orchard. Int J Agric & Biol Eng, 2016; 9(4): 53-62.
Keywords
Full Text:
PDFReferences
Travis J W, Skroch W A, Sutton T B. Effects of travel speed, application volume, and nozzle arrangement on deposition of pesticides in apple trees. Plant Dis., 1987; 71(7): 606–612.
Salyani M. Optimization of deposition efficiency for airblast sprayers. Trans. ASAE, 2000; 2(1): 121–126.
Derksen R C, Krause C R, Fox R D, Brazee R D. Spray delivery to nursery trees by air curtain and axial fan orchard sprayers. J. Environ. Hortic., 2004; 22(1): 17–22.
Gil Y, Sinfortc C. Emission of pesticides to the air during sprayer application: A bibliographic review, Atmos. Environ., 2005; 39(28): 5183–5193.
Derksen R C, Krause C R, Fox R D, Brazee R D, Randy Z. Effect of application variables on spray deposition, coverage, and ground losses in nursery tree applications. J. Environ. Hort., 2006; 24(1): 45–52.
Sumner H R, Herzog G A, Sumner P E, Bader M, Mullinix B G. Chemical application equipment for improved deposition in cotton. J. Cotton Sci., 2000; 4(1): 19–27.
Walklate P J, Cross J V, Richardson G M, Baker D E, Murray R A. A generic method of pesticide dose expression: Application to broadcast spraying of apple trees. Ann. appl. Biol., 2003; 143(1): 11–23.
Walklate P J, Cross J V, Richardson G M, Murray R A, Baker D E. Comparison of different spray volume deposition models using LIDAR measurements of apple orchards. Biosyst. Eng., 2002; 82(3): 253–267.
Gu J B, Zhu H, Ding W M, Jeon H Y. Dropet size distributions of adjuvant-amended sprays from an air-assisted five-port PWM nozzle. Atomization & Sprays, 2011; 21(3): 263–274.
Solanelles F, Escolà A, Planas S, Rosell J R, Camp F, Gràcia F. An electronic control system for pesticide application proportional to the canopy width of tree crops. Biosyst. Eng., 2006; 95(4): 473–481.
Chen Y. Development of an intelligent sprayer to optimize pesticide application in nurseries and orchards. PhD dissertation. Columbus: The Ohio State University, 2010, 203p.
Lloren J, Giles E, Llop J, Escola A. Viable rate dosing in precision viticulture: Use of electronic device to improve application efficiency. Crop prot., 2010; 29(3): 239–248.
Hočevar M, Širok B, Jejčič V, Godeša T, Lešnik M, Stajnko D. Design and testing of an automated system for targeted spraying in orchards. J. Plant Dis. Prot., 2010; 117(2): 71–79.
Zhai C Y, Wang X, Zhao C J, Zou W, Liu D Y, Mao Y J. Orchard tree structure digital test system and its application. Math. Comp. Mod., 2011; 54(3-4): 1145–1150.
Herrington P J, Mapother H R, Stringer A. Spray retention and distribution on apple trees. Pestic. Sci., 1981(5); 12: 515–520.
Holownicki R, Doruchowski G, Godyn A, Swiechowski W. Variation of spray deposit and loss with air-jet directions applied in orchards. J. Agric. Eng. Res., 2000; 77(2): 129–136.
Zhu H, Brazee R D, Reichard D L, Fox R D, Krause C R, Chapple A C. Fluid velocity and shear in elliptic-orifice spray nozzles. Atomization & Sprays, 1995; 5(3): 343–356.
Tanaka T, Yamaguchi J, Takeda Y. Measurement of forest canopy structure with a laser plane range-finding method - development of a measurement system and applications to real forests. Agric. For. Meteorol., 1998; 91(3-4): 149–160.
Zaman Q U, Salyani M. Effects of foliage density and ground speed on ultrasonic measurement of citrus tree volume. Appl. Eng. Agric., 2004; 20(2): 173–178.
Jeon H Y, Zhu H, Derksen R, Ozkan E, Krause C. Evaluation of ultrasonic sensor for variable-rate spray applications. Comput. Electron. Agric., 2011; 75(1): 213–221.
Li L, Li H, He X K, Andreas H. Development and experiment of automatic detection device for infrared target. Transaction of the CSAE, 2012; 28(12): 159–163. (in Chinese with English abstract)
Holterman H J, vande Zande J C, Porskamp H A J, Huijsmans J F M. Modelling spray drift from boom sprayers. Comput. Electron. Agric., 1997; 19(1): 1–22.
Miller P C H, Butler Ellis, M.C. Effects of formulation on spray nozzle performance for applications from ground-based boom sprayers. Crop Prot., 2000; 19(8): 609–615.
Delele M A, De Moor A, Sonck B, Ramon H, Nicolai B M, Verboven P. Modelling and validation of the air flow generated by a cross flow air sprayer as affected by travel speed and fan speed. Biosyst. Eng., 2005; 92(2): 165–174.
Dai F F. Selection and calculation of the blowing rate of air-assisted sprayers. Plant Prot., 2008; 34(6): 124–127. (in Chinese with English abstract)
Qiu W. Ding W W, Wang X. C, Gong Y, Zhang X X, Lv X L. 3WZ-700 self-propelled air-blowing orchard sprayer. Transaction of the CSAE, 2012; 43(4): 26–30, 44. (in Chinese with English abstract)
ISO, International Organization for Standardization. ISO 22866: 2005. Equipment for Crop Protection- Methods for field measurement of spray drift. Geneva, Switzerland.
Fox R D, Brazee R D, Svensson S A, Reichard D L. Air jet velocities from a cross-flow fan sprayer. T. ASAE, 1992; 35(5): 1381–1384.
Svensson S A, Brazee R D, Fox RD, Williams K A. Air jet velocities in and beyond apple trees from a tow-fan cross-flow sprayer. Trans. ASAE, 2003; 46(2): 611–621.
Song S R, Hong T S, Sun D Z, Zhu Y Q, Luo C Y. Effect of fan power supply frequency on deposition of air-assisted sprayer. Transaction of the CSAE, 2011; 27(1): 153–159. (in Chinese with English abstract)
He X K, Yan K R, Chu J Y, Wang J, Zeng A J. Design and testing of the automatic target detecting, electrostatic, air assisted, orchard sprayer. Transaction of the CSAE, 2003; 19(6): 78–80. (in Chinese with English abstract)
Brown D L, Giles D K, Oliver M N, Klassend P. Targeted spray technology to reduce pesticide in runoff from dormant orchards. Crop Prot., 2008; 27(3-5): 545–552.
Derksen R C, Gray R L. Deposition and air speed patterns of air-carrier apple orchard sprayers. Trans. ASAE, 1995; 38(1): 5–11.
Cross J V, Walklate P J, Murray R A, Richardson G M. Spray deposits and losses in different sized apple trees from an axial fan orchard sprayer: 2. Effects of spray quality. Crop Prot., 2001; 20(4): 333–343.
Walklate P J, Cross J V. Regulated dose adjustment of commercial orchard spraying products. Crop Prot. 2013; 54(12): 65–73.
Walklate P J, Cross J V, Pergher G. Support system for efficient dosage of orchard and vineyard spraying products. Comput. Electron. Agri., 2011; 75(2): 355–362.
Cross J V, Walklate P J, Murray R A, Richardson G M. Spray deposits and losses in different sized apple trees from an axial fan orchard sprayer: 3. Effects of air volumetric flow rate. Crop Prot., 2003; 22(2): 381–394.
Randall J M. The relationships between air volume and pressure on spray distribution in fruit trees. J. agric. Eng. Res., 1971; 16(1): 1–31.
Giles D K. Independent control of liquid flow rate and spray droplet size from hydraulic atomizers. Atomization & Sprays, 1997; 7(2): 161–181.
Sidahmed M M, Brown R B. Simulation of spray dispersal and deposition from a forestry air blast sprayer – Part 1: Air jet model. T. ASAE, 2001; 44(1): 5–10.
Copyright (c)