Influences of nozzle parameters and low-pressure on jet breakup and droplet characteristics
Abstract
Keywords: nozzle, high-speed camera, jet breakup length, droplet diameter, fitting formula
DOI: 10.3965/j.ijabe.20160904.2103
Citation: Jiang Y, Chen C, Li H, Xiang Q J. Influences of nozzle parameters and low-pressure on jet breakup and droplet characteristics. Int J Agric & Biol Eng, 2016; 9(4): 22-32.
Keywords
Full Text:
PDFReferences
Varga C M, Lasheras J C, Hopfinger E J. Initial breakup of a small-diameter liquid jet by a high-speed gas stream. Journal of Fluid Mechanics, 2003; 497: 405–434.
Kalinichenko V A, Wongwises S. The effect of viscoelasticity on breaking standing waves. Procedia IUTAM, 2013, 8: 144–152.
Li G R, Ge Y F, Zheng Y, Xue X Q. Effects of nozzle parameters on rotating conical abrasive jet and experiments. Journal of Drainage and Irrigation Machinery Engineering, 2013; 31(9): 794–799. (in Chinese)
Jiang Y, Li H, Xiang Q J, Chen C. Experimental study on breakup length and range of free jet for the non-circle jet nozzle. Journal of Irrigation and Drainage, 2014; 33(4): 149–153. (in Chinese)
Rayleigh L. On the instability of jets. Proceeding of the London Mathematical Society, 1897; 10(4): 351–371.
Rayleigh L. On the capillary phenomenon of jets. Proceeding of the London Mathematical Society, 1897; 10(1): 4–13.
Weber C. Zum zerfall eines flüssigkeitsstrahles. Zamm Journal of Applied Mathematics & Mechanics Zeitschrift Für Angewandte Mathematik Und Mechanik, 2006; 11(2): 136–154.
Tayeb R, Sakib M N, Ali M. Both experimental and numerical investigation on breakup length of cylindrical falling jet. Procedia Engineering, 2013; 56(2): 462–467.
Wan Y X, Huang Y, Zhu Y. Experiment on the breakup process of free round liquid jet. Journal of Aerospace Power, 2008; 23(2): 208–214. (in Chinese)
Zhou S M, Jin B S, Sun Z A. Sheet breakup length of nozzle with large flow volume and lower pressure. Journal of Combustion Science and Technology, 2007; 13(6): 539–542. (in Chinese)
Zhao X, Zhang B Z, Lai W, Lu X J. Effect factors of needle shape nozzle’s spray characteristics. Light Industry Machinery, 2004; 4: 22–24. (in Chinese)
Yan H J, Xiao J W, Li W Y, Li Y C, Hou Y S. Droplet size distributions of low-pressure damping sprinklers used in center-pivot irrigation systems. Journal of Hydraulic Engineering, 2014; 45(4): 467–473.
Xu H, Gong S H, Jia R Q, Liu X A. Study on droplet size distribution of ZY sprinkler head. Journal of Hydraulic Engineering, 2010; 41(12): 1416–1422. (in Chinese)
Bai G, Yan H J, Wang M. Measuring sprinkler droplet size with modified flour methodology. Journal of agricultural machinery, 2011; 42(4): 76–80. (in Chinese)
Xu H, Gong S H, Liu X A, Qi Y. Simulation and experimental study on the droplet simulated motion of double-nozzle impact sprinkler. Journal of Hydraulic Engineering, 2012; 43(4): 480–486. (in Chinese)
King B A, Winward T W, Bjomeberg D L. Laser precipitation monitor for measurement of drop size and velocity of moving spray-plate sprinklers. Applied Engineering in Agriculture, 2010; 26(2): 263–271.
Burguete J, Playán E, Montero J, Zapata N. Improving drop size and velocity estimates of an optical disdrometer: Implications for sprinkler irrigation simulation. Transactions of the ASABE, 2007; 50(6): 2103–2116.
Bautista-Capetillo C, Robles O, Salinas H, Playán E. A particle tracking velocimetry technique for drop characterization in agricultural sprinklers. Irrigation Science, 2014; 32(6): 437–447.
Sayyadi H, Nazemi A H, Sadraddini A A, Delirhasannia R. Characterising droplets and precipitation profiles of a fixed spray-plate sprinkler. Biosystems Engineering, 2014; 119(1): 13–24.
Salvador R, Bautista-Capetillo C, Burguete J, Zapata N. A photographic method for drop characterization in agricultural sprinklers. Irrigation Science, 2009; 27(4): 307–317.
King B A, Winward T W, Bjirneberg D L. Laser precipitation monitor for measurement of drop size and velocity of spray-plate sprinklers. Applied Engineering in Agriculture, 2010; 26(2): 263–271.
Mohammad M A, Mohammad H. Estimation and control of droplet size and frequency in projected spray mode of a gas metal arc welding (GMAW) process. ISA Transactions, 2011; 50(3): 409–418.
Yangsoo S, Chongyoup K. Spreading of inkjet droplet of non-Newtonian fluid on solid surface with controlled contact angle at low Weber and Reynolds numbers. Journal of Non-Newtonian Fluid Mechanics, 2009; 162(1-3): 78–87.
Bautista C, Zavala M, Playán E. Kinetic energy in sprinkler irrigation: different sources of drop diameter and velocity. Irrigation Science, 2012; 30(1): 29–41.
Copyright (c)