Effects of Conservation Agriculture on Land and Water Productivity in Yellow River Basin, China
DOI:
https://doi.org/10.25165/ijabe.v3i2.212Keywords:
tillage, mulch, incorporation, residues, CERES, DSSATAbstract
In the dryland regions of North China, water is the limiting factor for rainfed crop production. Conservation agriculture (featuring reduced or zero tillage, mulching, crop rotations and cover crops) has been proposed to improve soil and water conservation and enhance yields in these areas. Conservation agriculture systems typically result in increased crop water availability and agro-ecosystem productivity, and reduced soil erosion. To evaluate the potential of conservation agriculture to improve soil water balance and agricultural productivity, the DSSAT crop model was calibrated using the data of a field experiment in Shouyang County in the semi-arid northeastern part of the Yellow River Basin. The average annual precipitation at the site is 472 mm, 75% of which falls during the growing season. The site had a maize-fallow-maize rotation. data from two crop seasons (2005 and 2006) and four treatments for calibration and analysis were used. The treatments were: conventional tillage (CT), no-till with straw mulching (NTSM), all-straw incorporated (ASRT) and one-third residue left on the surface with no-till (RRT). The calibration results gave satisfactory agreement between field observed and model predicted values for crop yield for all treatments except RRT treatment, and for soil water content of different layers in the 150 cm soil profile for all treatments. The difference between observed and predicted values was in the range of 3%-25% for maize yield and RMSE was in the range of 0.03-0.06 cm3/cm3 for soil water content measured periodically each cropping season. While these results are encouraging, more rigorous calibration and independent model evaluation are warranted prior to making recommendations based on model simulations. Medium-term simulations (1995-2004) were conducted for three of the treatments using the calibrated model. The NTSM and ASRT treatments had similar or higher yields (by up to 36%), higher crop water productivity by up to 28% and reduced runoff of up to 93% or 43 mm compared to CT treatment.
Keywords: tillage, conservative agriculture, soil and water conservation, mulch, residues, CERES model, DSSAT model
DOI: 10.3965/j.issn.1934-6344.2010.02.005-017
Citation: Vinay Nangia, Mobin-ud-Din Ahmad, Du Jiantao, Yan Changrong, Gerrit Hoogenboom, Mei Xurong, et al. Effects of Conservation Agriculture on Land and Water Productivity in Yellow River Basin, China. Int J Agric & Biol Eng, 2010; 3(2): 5
Downloads
Published
How to Cite
Issue
Section
License
IJABE is an international peer reviewed open access journal, adopting Creative Commons Copyright Notices as follows.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).