Distance-based separability criterion of ROI in classification of farmland hyper-spectral images
Abstract
Keywords: distance-based separability criterion, near-infrared hyper-spectral image, ROI, farmland image classification
DOI: 10.25165/j.ijabe.20171005.2264
Citation: Tang J L, Miao R H, Zhang Z Y, Xin J, Wang D. Distance-based separability criterion of ROI in classification of farmland hyper-spectral images. Int J Agric & Biol Eng, 2017; 10(5): 177–185.
Keywords
Full Text:
PDFReferences
Zhu J, Wang Y, Yu H, Xu H. Mobile robot autonomous perceiving slope terrain under unknown environment. Chinese Journal of Scientific Instrument, 2010; 31(8): 1916–1920. (in Chinese)
Zhang R B, Yi L L, Gu H W. Environment perception for AUV in uncertain ocean environment. Journal of Computer Research and Development, 2013; 50(9): 1981–1991.
Dan J J, Peng Y K, Wang W, Li Y Y, Wu J H, Zhang L L. Simultaneous detection of external and internal quality parameters of apples using hyperspectral technology. Transactions of the CSAM, 2011; 42(3): 140–144. (in Chinese)
Wang C. Study on compression algorithm of hyper-spectral image. Master’s thesis. Nanjing University of Science and Technology, 2014.
ElMasry G, Wang N, Vigneault C. Detecting chilling injury in red delicious apple using hyper-spectral imaging and neutral networks. Postharvest Biology and Technology, 2009; 52: 1–8.
Cai J R, Wang J H, Huang X Y, Chen Q S. Detection of rust in citrus with hyperspectral imaging technology. OPTO-Electronic Engineering, 2009; 36(6): 26–30.
Cheng G S, Guo J X, Atimu R, Kang Y, Shi Z. The size detection of apple using hyperspectral imaging technology. Journal of Agricultural Mechanization Research, 2012; 34(6): 108–112.
Ghamisi P, Benediktsson J, Ulfarsson M. Spectralcspatial classification of hyperspectral images based on hidden markov random fields. IEEE Transactions on Geoscience and Remote Sensing, 2013; 52(5): 2565–2574.
Liao W Z, Pizurica A, Scheunders P, Philips W, Pi Y. Semisupervised local discriminant analysis for feature extraction in hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing, 2012; 51(1): 184–198.
Tarabalka Y, Fauvel M, Chanussot J, Benediktsson J A. SVM and MRF-based method for accurate classification of hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing, 2010; 7(4): 736–740.
Tarabalka Y, Chanussot J, Benediktsson J A. Benediktsson. Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recognition, 2010;
(7): 2367–2379.
Luo G, Chen G, Tian L, Qin K, Qian S E. Minimum noise fraction versus principal component analysis as a preprocessing step for hyperspectral imagery denoising. Canadian Journal of Remote Sensing, 2016; 42(2): 106–116.
Dong L F. Research on hyper-spectral preprocessing. Master’s thesis. Changan University, 2007.
Boardman J, Kruse F. Automated spectral analysis: a geological example using AVIRIS data, north grapevine mountains, Nevada. Surgical Endoscopy, 1994; 1(1): 407–418.
Si B L. An image retrieval method based on regions of interest. Master’s thesis. Institute of Computing Technology, Chinese Academy of Sciences, 2002.
Zhou J L., Khawaja M A, Li Z D, Sun J J, Wang Y, Chen F. Making machine learning useable by revealing internal states update: A transparent approach. International Journal of Computational Science and Engineering, 2016; 4(13): 378–389.
Brendel B, Teuffenbach M Von, Noël P B, Pfeiffer F, Koehler T. Penalized maximum likelihood reconstruction for X-ray differential phase-contrast tomography. Medical Physics, 2016; 43(1): 188–194.
Varma M K S, Rao N K K, Raju K K, Varma G P S. Pixel-based classification using support vector machine classifier. International Conference on Advanced Computing. IEEE, 2016.
Liu H P, An H J. Maximum likelihood in identifying Huhhot greening tree species. Journal of Northeast Forestry University, 2014; 42(7): 157–160.
Zhang H Y, Peng Y K, Wang W, Zhao S W, Liu Q Q. Rapid nondestructive detection of water content in fresh pork based on spectroscopy technique combined with support vector machine. Spectroscopy and Spectral Analysis, 2012; 32(10): 2794–2798.
Li W, Hu B, Wang M W. Discrimination of varieties of borneol using terahertz spectra based on principal component analysis and support vector machine. Spectroscopy and Spectral Analysis, 2014; 34(12): 3235–3240.
Ma X, Zhang Y, Wang Y. Performance evaluation of kernel functions based on grid search for support vector regression. International Conference on Cybernetics and Intelligent Systems, 2015; pp.283–288.
Liu Z, Zuo M J, Zhao X, Xu H. An analytical approach to fast parameter selection of Gaussian RBF Kernel for support vector machine. Journal of Information Science & Engineering, 2015; 31(2): 691–710.
Wong T T. Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognition, 2015; 48(9): 2839–2846.
Copyright (c)