Influence of cellulose crystal plane on cellulose hydrolysis
Abstract
Keywords: biomass, degree of polymerization, crystal plane, hydrolysis
DOI: 10.3965/j.ijabe.20160904.2368
Citation: Li W Z, Lu W Y, Li M H, Wu H, Pan G Q. Influence of cellulose crystal plane on cellulose hydrolysis. Int J Agric & Biol Eng, 2016; 9(4): 151-158.
Keywords
Full Text:
PDFReferences
Scarlat N, Dallemand J F, Monforti-Ferrario F, Banja M, Motola V. Renewable energy policy framework and bioenergy contribution in the European Union–An overview from National Renewable Energy Action Plans and Progress Reports. Renewable and Sustainable Energy Reviews, 2015; 51: 969–985.
Mao G, Liu X, Du H, Zuo J, Wang L. Way forward for alternative energy research: A bibliometric analysis during 1994–2013. Renewable and Sustainable Energy Reviews, 2015; 48: 276–286.
Chen W H, Peng J, Bi X T. A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews, 2015; 44: 847–866.
Sawatdeenarunat C, Surendra K C, Takara D, Oechsner H, Khanal S K. Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities. Bioresource Technology, 2015; 178: 178–186.
Liu B, Ba C, Jin M, Zhang Z. Effective conversion of carbohydrates into biofuel precursor 5-hydroxymethylfurfural (HMF) over Cr-incorporated mesoporous zirconium phosphate. Industrial Crops and Products, 2015; 76: 781–786.
Xu Z P, Li W Z, Du Z J, Wu H, Jameel H, Chang H M, et al. Conversion of corn stalk into furfural using a novel heterogeneous strong acid catalyst in γ-valerolactone. Bioresource Technology, 2015; 198: 764–771.
El-Zawawy W K, Ibrahim M M, Abdel-Fattah Y R, Soliman N A, Mahmoud M M. Acid and enzyme hydrolysis to convert pretreated lignocellulosic materials into glucose for ethanol production. Carbohydrate Polymers, 2011; 84(3): 865–871.
Zhao X, Zhang L, Liu D. Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioproducts and Biorefining, 2012; 6(4): 465–482.
Vancov T, McIntosh S. Mild acid pretreatment and enzyme saccharification of Sorghum bicolor straw. Applied Energy, 2012; 92: 421–428.
Chaudhary G, Singh L K, Ghosh S. Alkaline pretreatment methods followed by acid hydrolysis of Saccharum spontaneum for bioethanol production. Bioresource Technology, 2012; 124: 111–118.
Chen Y, Stevens M A, Zhu Y, Holmes J, Xu H. Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnology for Biofuels, 2013; 6(1): 1.
Qiu Z, Aita G M, Walker M S. Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse. Bioresource Technology, 2012; 117: 251–256.
Jin M, Gunawan C, Balan V, Dale B E. Consolidated bioprocessing (CBP) of AFEX™‐pretreated corn stover for ethanol production using Clostridium phytofermentans at a high solids loading. Biotechnology and Bioengineering, 2012; 109(8): 1929–1936.
Torget R W, Kim J S, Lee, Y Y. Fundamental aspects of dilute acid hydrolysis/fractionation kinetics of hardwood carbohydrates. 1. Cellulose hydrolysis. Industrial & Engineering Chemistry Research, 2000; 39(8): 2817–2825.
Lenihan P, Orozco A, O’neill E, Ahmad M N M, Rooney D W, Walker G M. Dilute acid hydrolysis of lignocellulosic biomass. Chemical Engineering Journal, 2010; 156(2): 395–403.
Chheda J N, Román-Leshkov Y, Dumesic J A. Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono-and poly-saccharides. Green Chemistry, 2007; 9(4): 342–350.
Luterbacher J S, Alonso D M, Dumesic J A. Targeted chemical upgrading of lignocellulosic biomass to platform molecules. Green Chemistry, 2014; 16(12): 4816–4838.
Huber G W, Chheda J N, Barrett C J, Dumesic J A. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science, 2005; 308(5727): 1446–1450.
Karimi K, Kheradmandinia S, Taherzadeh M J. Conversion of rice straw to sugars by dilute-acid hydrolysis. Biomass and Bioenergy, 2006; 30(3): 247–253.
Gírio F M, Fonseca C, Carvalheiro F, Duarte L C, Marques S, Bogel-Łukasik R. Hemicelluloses for fuel ethanol: a review. Bioresource Technology, 2010; 101(13): 4775–4800.
Dutta S, De S, Saha B, Alam M I. Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels. Catalysis Science & Technology, 2012; 2(10): 2025–2036.
Arioli T, Peng L, Betzner A S, Burn J, Wittke W, Herth W. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science, 1998; 279(5351): 717–720.
Habibi Y, Lucia L A, Rojas O J. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemical Reviews, 2010; 110(6): 3479–3500.
Jarvis M. Chemistry: cellulose stacks up. Nature, 2003; 426(6967): 611–612.
Medronho B, Lindman B. Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Advances in Colloid and Interface Science, 2015; 222: 502–508.
Jasiukaitytė-Grojzdek E, Kunaver M, Poljanšek I. Influence of cellulose polymerization degree and crystallinity on kinetics of cellulose degradation. BioResources, 2012; 7(3): 3008–3027.
Henrique M A, Neto W P F, Silvério H A, Martins D F, Gurgel L V A, da Silva Barud H. Kinetic study of the thermal decomposition of cellulose nanocrystals with different polymorphs, cellulose I and II, extracted from different sources and using different types of acids. Industrial Crops and Products, 2015; 76: 128–140.
Jeong M J, Lee S, Kang K Y, Potthast A. Changes in the structure of cellulose aerogels with depolymerization. Journal of the Korean Physical Society, 2015; 67(4): 742–745.
Ding H Z, Wang Z D. On the degradation evolution equations of cellulose. Cellulose, 2008; 15(2): 205–224.
Wang Y, Deng Y. The kinetics of cellulose dissolution in sodium hydroxide solution at low temperatures. Biotechnology and Bioengineering, 2009; 102(5): 1398–1405.
Calvini P. The influence of levelling-off degree of polymerisation on the kinetics of cellulose degradation. Cellulose, 2005; 12(4): 445–447.
Isogai T, Yanagisawa M, Isogai A. Degrees of polymerization (DP) and DP distribution of dilute acid-hydrolyzed products of alkali-treated native and regenerated celluloses. Cellulose, 2008; 15(6): 815–823.
O'sullivan A C. Cellulose: the structure slowly unravels. Cellulose, 1997; 4(3): 173–207.
Mukherjee R R, Woods H J. Mercerization of Jute. Nature, 1950; 818–819.
Liu Y, Hu H. X-ray diffraction study of bamboo fibers treated with NaOH. Fibers and Polymers, 2008; 9(6): 735–739.
Kuss H M. Applications of microwave digestion technique for elemental analyses. Fresenius' Journal of Analytical Chemistry, 1992; 343(9-10): 788–793.
Segal L G J M A, Creely J J, Martin A E, Conrad C M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 1959; 29(10): 786–794.
Einfeldt L, Günther W, Klemm D, Heublein B. Peracetylated cellulose: end group modification and structural analysis by means of 1H-NMR spectroscopy. Cellulose, 2005; 12(1): 15–24.
Eichhorn S J, Dufresne A, Aranguren M, Marcovich N E, Capadona J R, Rowan S J. Review: current international research into cellulose nanofibres and nanocomposites. Journal of Materials Science, 2010; 45(1): 1–33.
Copyright (c)