Development and test verification of air temperature model for Chinese solar and Spainish Almeria-type greenhouses
Abstract
Keywords: air temperature model, Chinese solar greenhouse, Spanish Almería-type greenhouse, energy balance dynamics, microclimate
DOI: 10.25165/j.ijabe.20171004.2398
Citation: Sanchez-Molina J A, Li M, Rodriguez F, Guzman J L, Wang H, Yang X T. Development and test verification of air temperature model for Chinese solar and Spainish Almeria-type greenhouses. Int J Agric & Biol Eng, 2017; 10(4): 66–76.
Keywords
Full Text:
PDFReferences
Rodriuez F, Berenguel M, Guzman J L, Ramiez-Arias A. Modeling and control of greenhouse crop growth. Springer International Publishing Switzerland, 2015.
Ramiez-Arias A, Rodriuez F, Guzman J L, Berenguel M. Multiobjective hierarchical control architecture for greenhouse crop growth. Automatica, 2012; 48(3): 490–498.
Matysiak B, Nowak J. Carbon dioxide and light effects on photosynthesis, transpiration and ex vitro growth of Homalomena ‘Emerald Gem’ plantlets. SciHortic- Amsterdam, 1994; 57(4): 353–358.
Seginer I, Boulard T, Bailey B J. Neural network models of the greenhouse climate. J Agr Eng Res, 1994; 59: 203–216.
Ramiez-Arias J A. Hierarchical multiobjective control of greenhouse crop production. University of Almeria, 2005. (in Spanish)
Van Straten G. Optimal Control of Greenhouse Cultivation. CRC Press, Boca Raton, FL, USA. 2011, 328.
Vanthoor B H E, Stanghellini C, van Henten E J, de Visser P H B. A methodology for model-based greenhouse design: Part 1, a greenhouse climate model for a broad range of designs and climates. Biosyst Eng, 2011; 110(4): 363–377.
Baille M, Baille L, Laury J C. A simplified model for predicting evapotranspiration rate of nine ornamental species vs. climate factors and leaf area. Sci Hort, 1994; 59: 217–232.
Curry R B. Dynamic simulation of plant growth -Part I. Development of a model. Transation of ASAE, 1971; 14(5): 946–959.
Tong G H, Christopher D M, Li T L, Wang T L. Temperature variations inside Chinese solar greenhouses with external climatic conditions and enclosure materials. 2008; Int J Agric & Biol Eng, 2012; 1(2): 21–26.
Farquhar G D, Caemmerer S, Berry J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 1980; 1: 78–90.
Jolliet O, Bailey B. The effect of climate on tomato transpiration in greenhouses: measurements and models comparison. Agr Forest Meteorol, 1992; 58: 43–62.
Farzaneh-Gord M, Arabkoohsar A, Bayaz M D D, Khoshnevis A B. New method for applying solar energy in greenhouses to reduce fuel consumption. Int J Agric & Biol Eng, 2013; 6(4): 64-75.
Zhang X, Wang H L, Zou Z R, Wang S J. CFD and weighted entropy based simulation and optimisation of Chinese Solar Greenhouse temperature distribution. Biosystems Eng, 2016; 142: 12–26.
Xu F, Li S, Ma C, Zhao S, Han J, Liu Y, et al. Thermal environment of Chinese solar greenhouses: analysis and simulation. Appl Eng Agr, 2013; 29(6): 991–997.
Medrano E, Lorenzo P, Sachez-Guerrero M C, Montero J I. Evaluation and modelling of greenhouse cucumber-crop transpiration under high and low radiation conditions. SciHortic, 2005; 105: 163–175.
Montero J, Anton A, Munoz P, Lorenzo P. Transpiration from geranium grown under high temperatures and low humidities in greenhouses. Agr Forest Meteorol, 2001: 323–332.
Bakker J. Greenhouse climate control: an integrated approach. Wageningen Academic Pub, 1995.
Jacobson B K, Jones P H, Jones J W, Paramore J A. Real-time greenhouse monitoring and control with an expert system. Comput Electron Agr, 1989; 3(4): 273–285.
Kamp P G H, Timmerman G J. Computerized environmental control in greenhouses. A step by step approach. The Netherlands: IPC Plant, 1996.
Bot G P A. Greenhouse climate: from physical process to a dynamic model. Universidad de Wageningen, Holanda, 1983.
Boulard T, Baille A. Modelling of Air Exchange Rate in a Greenhouse Equipped with Continuous Roof Vents. J Agr Eng Res, 1995; 61(1): 37–48.
Frace J, Thornley J M H. Mathematical models in agriculture. London Butterworths, 1984. 620.
Rodriguez F, Guzman J L, Berenguel M, Arahal M R. Adaptive hierarchical control of greenhouse crop production. Int J Adapt Control, 2008; 22: 180–197.
Sanchez-Molina J A, Rodriguez F, Guzman J L, Fernandez M D, Arahal M R. Modelling of tomato crop transpiration dynamics for designing new irrigation controllers. Acta Hortic, 2011; 893: 729–738.
Ji Y H, Jiang Y Q, Li T, Zhang M, Sha S, Li M Z. An improved method for prediction of tomato photosynthetic rate based on WSN in greenhouse. Int J Agric & Biol Eng, 2016; 9(1): 146–152.
Marcelis L F M, Buwalda F, Dieleman J A, Dueck T A, Elings A, de Gelder A, et al. Innovations in crop production: A matter of physiology and technology. Acta Hortic, 2014; 1037: 39–46.
Sanchez-Molina J A, Rodriguez F, Guzman J L, Acien F G, Lopez J C. Strategies for control of temperature by increasing the concentration of CO2 by burning in cultivation under plastic. V Congreso Iberico de AgroIngenieria. Lugo, Spain, 2009.
Kittas C, Boulard T, Papadakis G. Natural ventilation of a greenhouse with ridge and side openings: Sensitivity to temperature and wind effects. Transactions of ASAE, 1997; 40(2): 415–425.
Sanchez-Molina J A, Rodriguez F, Guzman J L, Arahal M R. Virtual sensors for designing irrigation controllers in greenhouses. Sensors-Basel, 2012; 11: 15244–15266.
Ha T, Lee I B, Kwon K S, Hong S W. Computation and field experiment validation of greenhouse energy load using Building Energy Simulation model. Int J Agric & Biol Eng, 2015; 8(6): 116–127.
Wan-Liang W, Qi-Di W. Neural network modelling and intelligence control of the distributed parameter greenhouse climate. 14th IFAC World Congress Beijing, China, 1999; 1: 479–484.
ASAE. Heating, ventilating, and cooling greenhouses (EP406.3). American Society of Agricultural Engineering Standards. Michigan. USA, 1998.
Flores-Velazquez J, Montero J I, Baeza E J, Lopez J C. Mechanical and natural ventilation systems in a greenhouse designed using computational fluid dynamics. Int J Agric & Biol Eng, 2014; 1(7): 1–16.
Seginer I. Some artificial neural network applications to greenhouse environmental control. Comput Electron Agr, 1997; 18: 167–186.
Copyright (c)