Generation mechanism of NOx and N2O precursors (NH3 and HCN) from aspartic acid pyrolysis: A DFT study
Abstract
Keywords: pyrolysis, aspartic acid (Asp), amino acid, DFT
DOI: 10.3965/j.ijabe.20160905.2559
Citation: Kang P, Qin W, Fu Z Q, Wang T P, Ju L W, Tan Z F. Generation mechanism of NOx and N2O precursors (NH3 and HCN) from aspartic acid pyrolysis: A DFT study. Int J Agric & Biol Eng, 2016; 9(5): 166-176.
Keywords
Full Text:
PDFReferences
Trinnaman J, Clarke A. World energy council: survey of energy resources for biomass. London, UK: Elsevier, 2004.
Tian F J, Wu H W, Yu J L, Lachlan J M, Konstantinidis S, Hayashi J, et al. Formation of NOx precursors during the pyrolysis of coal and biomass. Part VIII. Effects of pressure on the formation of NH3 and HCN during the pyrolysis and gasification of Victorian brown coal in steam. Fuel, 2005; 84(16): 2102–2108.
Tian F J, Yu J L, McKenzie L J, Hayashi J, Li C Z. Formation of NOx precursors during the pyrolysis of coal and biomass. Part IX. Effects of coal ash and externally loaded-Na on fuel-N conversion during the reforming of coal and biomass in steam. Fuel, 2006; 85(10-11): 1411–1417.
Tian F J, Yu J L, McKenzie L J, Hayashi J, Li C Z. Conversion of fuel-N into HCN and NH3 during the pyrolysis and gasification in steam: a comparative study of coal and biomass. Energ. Fuel, 2007; 21(2): 517–521.
Giuntoli J, de Jong W, Verkooijen A H M, Piotrowska P, Zevenhoven M, Hupa M. Combustion characteristics of biomass residues and biowastes: fate of fuel nitrogen. Energ. Fuel, 2010; 24(10): 5309–5319.
Tian Y, Zhang J, Zuo W, Chen L, Cui Y N, Tan T. Nitrogen conversion in relation to NH3 and HCN during microwave pyrolysis of sewage sludge. Environ. Sci. Technol., 2013; 47(7): 3498–3505.
Stubenberger G, Scharler R, Zahirović S, Obernberger I. Experimental investigation of nitrogen species release from different solid biomass fuels as a basis for release models. Fuel, 2008; 87(6): 793–806.
Tian F J, Yu J L, Mckenzie L J, Hayashi J, Li C Z. Conversion of fuel-N into HCN and NH3 during the pyrolysis and gasification in steam: a comparative study of coal and biomass. Energ. Fuel., 2007; 21(2): 517–521.
Darvell L I, Brindley C, Baxter X C, Jones J M, Williams A. Nitrogen in biomass char and its fate during combustion: a model compound approach. Energ. Fuel, 2012; 26(11): 6482–6491.
Yuan S, Zhou Z J, Li J, Wang F C. Nitrogen conversion during rapid pyrolysis of coal and petroleum coke in a high-frequency furnace. Appl. Energ., 2012; 92: 854–859.
Yuan S, Chen X L, Li W F, Liu H F, Wang F C. Nitrogen conversion under rapid pyrolysis of two types of aquatic biomass and corresponding blends with coal. Bioresource Technol., 2011, 102(21): 10124–10130.
Scicchitano P, Carbonara S, Ricci G, Mandurino C, Locorotondo M, Bulzis G, et al. HCN channels and heart rate. Molecules, 2012; 17(4): 4225–4235.
Ren Q Q, Zhao C S. Evolution of fuel-N in gas phase during biomass pyrolysis. Renew. Sust. Energ. Rev., 2015; 50: 408–418.
Becidan M, Skreiberg Ø, Hustad J E. NOx and N2O precursors (NH3 and HCN) in pyrolysis of biomass residues. Energ. Fuel, 2007; 21(2): 1173–1180.
Hansson K M, Samuelsson J, Åmand L E, Tullin C. The temperature’s influence on the selectivity between HNCO and HCN from pyrolysis of 2, 5-diketopiperazine and 2-Pyridone. Fuel, 2003; 82(18): 2163–2172.
Hansson K M, Samuelsson J, Tullin C, Åmand L E. Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds. Combust. Flame, 2004; 137(3): 265–277.
Yuan S, Zhou Z J, Li J, Chen X L, Wang F C. HCN and NH3 released from biomass and soybean cake under rapid pyrolysis. Energ. Fuel, 2010; 24(11): 6166– 6171.
Ren Q Q, Zhao C S. NOx and N2O precursors from biomass pyrolysis: role of cellulose, hemicellulose and lignin. Environ. Sci. Technol., 2013; 47(15): 8955– 8961.
Ren Q Q, Zhao C S, Wu X, Liang C, Chen X P, Shen J Z, et al. Effect of mineral matter on the formation of NOx precursors during biomass pyrolysis. J. Anal. Appl. Pyrol., 2009; 85(1-2): 447–453.
Ren Q Q, Zhao C S. NOx and N2O precursors from biomass pyrolysis: nitrogen transformation from amino acid. Environ. Sci. Technol., 2012; 46(7): 4236–4240.
Ren Q Q, Zhao C S. NOx and N2O precursors (NH3 and HCN) from biomass pyrolysis: interaction between amino acid and mineral matter. Appl. Energ., 2013; 112(4): 170–174.
Perdew J P, Burke K, Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B., 1996; 54(23): 16533–16537.
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996; 77(18): 3865–3868.
Delley B. An all-electron numerical method for solving the local density functional for polyatomic. molecules. J. Chem. Phys., 1990; 92(1): 508–517.
Delley B. From molecules to solids with the DMol3 approach. J. Chem. Phys., 2000; 113(18): 7756–7764.
Delley B. Fast calculation of electrostatics in crystals and large molecules. J. Phys. Chem., 1996; 100(15): 6107–6110.
Kudin K N, Ozbas B, Schniepp H C, Prud’Homme R K, Aksay I A, Car R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano. Lett., 2008; 8(1): 36–41.
Govind N, Petersen M, Fitzgerald G, King-Smith D, Andzelm J. A generalized synchronous transit method for transition state location. Comput. Mater. Sci., 2003; 28(2): 250–258.
Qin W, Wu L N, Zheng Z M, Dong C Q, Yang Y P. Lignin hydrolysis and phosphorylation mechanism during phosphoric acid-acetone pretreatment: a DFT study. Molecules, 2014; 19(12): 21335–21349.
Zhang Y Y, Liu C, Chen X. Unveiling the initial pyrolytic mechanisms of cellulose by DFT study. J. Analyt. Appl. Pyrol., 2015; 113: 621–629.
Wang H F, Liu Z P. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: New transition-state searching method for resolving the complex reaction network. J. Am. Chem. Soc., 2008; 130(33): 10996–11004.
Rad A S, Zardoost M R, Abedini E. First-principles study of terpyrrole as a potential hydrogen cyanide sensor: DFT calculations. J. Mol. Model, 2015; 21: 273.
Deng Z G, Lu X Q, Wen Z Q, Wei S X, Zhu Q, Jin D L, et al. Decomposition mechanism of methylamine to hydrogen cyanide on Pt(III): selectivity of the C-H, N-H and C-N bond scissions. RSC. Adv., 2014; 24(4): 12266– 12274.
Lide D R. CRC Handbook of Chemistry and Physics (67th ed). Boca Raton, FL: CRC, 1983.
Lide D R. CRC Handbook of Chemistry and Physics. New York: Wiley, 1996.
Ren Q Q. Nitrogen transfer mechanism during thermal utilization of agricultural straw. Nanjing: Southeast University, 2011.
Copyright (c)