Modeling for mung bean variety classification using visible and near-infrared hyperspectral imaging
Abstract
Keywords: visible and near-infrared hyperspectral imaging, mung bean, classification, modeling, wavelength selection
DOI: 10.25165/j.ijabe.20181101.2655
Citation: Xie C Q, He Y. Modeling for mung bean variety classification using visible and near-infrared hyperspectral imaging. Int J Agric & Biol Eng, 2018; 11(1): 187–191.
Keywords
Full Text:
PDFReferences
Zhang X, Shang P, Qin F, Zhou Q, Gao B, Huang H, et al. Chemical composition and antioxidative and anti-inflammatory properties of ten commercial mung bean samples. LWT-Food Science and Technology, 2013; 54(1): 171–178.
Huang X Y, Cai J R, Xu B J. Kinetic changes of nutrients and antioxidant capacities of germinated soybean (Glycine max L.) and mung bean (Vigna radiata L.) with germination time. Food Chemistry, 2014; 143: 268–276.
Dahiya P K, Linnemann A R, Nout M J R, van Boekel M A J S, Grewal R B. Nutrient composition of selected newly bred and established mung bean varieties. LWT-Food Science and Technology, 2013; 54(1): 249–256.
Tantasawat P, Trongchuen J, Prajongjai T, Seehalak W, Jittayasothorn Y. Variety identification and comparative analysis of genetic diversity in yardlong bean (Vigna unguiculata spp. sesquipedalis) using morphological characters, SSR and ISSR analysis. Scientia Horticulturae, 2010; 124(2): 204–216.
Sun J, Jiang S Y, Mao H P, Wu X H, Li Q L. Classification of black beans using visible and near infrared hyperspectral imaging. International Journal of Food Properties, 2016; 19(8): 1687–1695.
Tao F F, Peng Y K, Li Y Y. Feature extraction method of hyperspectral scattering images for prediction of total viable count in pork meat. Int J Agric & Biol Eng, 2015; 8(4): 95–105.
Liu Y L, Lyu Q, He S L, Yi S L, Liu X F, Xie R J, et al. Prediction of nitrogen and phosphorous contents in citrus leaves based on hyperspectral imaging. Int J Agric & Biol Eng, 2015; 8(2): 80–88.
Xie C Q, He Y, Li X L, Liu F, Du P P, Feng L. Study of detection of SPAD value in tomato leaves stressed by grey mold based on hyperspectral technique. Spectroscopy and Spectral Analysis, 2012; 32(12): 3324–3328.
Xie C Q, Li X L, Nie P C, He Y. Application of time series hyperspectral imaging (TS-HSI) for determining water content within tea leaves during drying. Transactions of the ASABE, 2013; 56(6): 1431–1440.
Kong W W, Zhang C, Liu F, Nie P C, He Y. Rice seed cultivar identification using near-infrared hyperspectral imaging and multivariate data analysis. Sensors, 2013; 13(7): 8916–8927.
Kim I, Xu C Z, Kim M S. Poultry skin tumor detection in hyperspectral images using radial basis probabilistic neural network. Advances in Neural Networks-ISNN, 2006; 3973: 770–776.
Serranti S, Cesare D, Marini F, Bonifazi G. Classification of oat and groat kernels using NIR hyperspectral imaging. Talanta, 2013; 103: 276–284.
Kamruzzaman M, Elmasry G, Sun D W, Allen P. Application of NIR hyperspectral imaging for discrimination of lamb muscles. Journal of Food Engineering, 2011; 104(3): 332–340.
ElMasry G, Iqbal A, Sun D W, Allen P, Ward P. Quality classification of cooked, sliced turkey hams using NIR hyperspectral imaging system. Journal of Food Engineering, 2011; 103(3): 333–344.
Barbin D F, ElMasry G, Sun D W. Non-destructive assessment of microbial contamination in porcine meat using NIR hyperspectral imaging. Food Science & Emerging Technologies, 2013; 18: 226–236.
Wei X, Liu F, Qiu Z J, Shao Y N, He Y. Ripeness classification of astringent persimmon using hyperspectral imaging technique. Food and Bioprocess Technology, 2014; 7(5): 1371–1380.
Deng W, Huang Y B, Zhao C J, Wang X. Identification of seedling cabbages and weeds using hyperspectral imaging. Int J Agric & Biol Eng, 2015; 8(5): 65–72.
Li X L, Xie C Q, He Y, Qiu Z J, Zhang Y C. Characterizing the moisture content of tea with diffuse reflectance spectroscopy using wavelet transform and multivariate analysis. Sensors, 2012; 12(7): 9847–9861.
Pal M. Extreme-learning-machine-based land cover classification. International Journal of Remote Sensing, 2009; 30(14): 3835–3841.
Ouyang Q, Chen Q S, Zhao J W, Lin T. Determination of amino acid nitrogen in soy sauce using near infrared spectroscopy combined with characteristic variables selection and extreme learning machine. Food and Bioprocess Technology, 2013; 6(9): 2486–2493.
Zhu Q Y, Qin A K, Suganthan P N, Huang G B. Evolutionary extreme learning machine. Pattern Recognition, 2005; 38(10): 1759–1763.
Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: Theory and applications. Neurocomputing, 2006; 70(1): 489–501.
Riovanto R, Cynkar W U, Berzaghi P, Cozzolino D. Discrimination between Shiraz wines from different Australian regions: The role of spectroscopy and chemometrics. Journal of Agricultural and Food Chemistry, 2011; 59(18): 10356–10360.
ElMasry G, Sun D W, Allen P. Near-infrared hyperspectral imaging for predicting colour, pH and tenderness of fresh beef. Journal of Food Engineering, 2012; 110(1): 127–140.
Barbin D F, ElMasry G, Sun D W, Allen P. Predicting quality and sensory attributes of pork using near-infrared hyperspectral imaging. Analytica Chimica Acta, 2012; 719: 30–42.
Xie C Q, Li X L, Shao Y N, He Y. Color measurement of tea leaves at different drying periods using hyperspectral imaging technique. Plos One, 2014; 9(12): e113422.
Amsterdam W H. Iterative algorithms for gram-schmidt orthogonalization. Computing, 1989; 41(4): 335–348.
Copyright (c)