Comparison of growth, hydrocarbon accumulation and metabolites of Botryococcus braunii between attached cultivation and aqueous-suspension cultivation
Abstract
Keywords: Botryococcus braunii, attached cultivation, aqueous-suspension cultivation
DOI: 10.3965/j.ijabe.20171001.3008
Citation: Cheng P F, Wang Y, Yang Q Y, Liu T Z. Comparison of growth, hydrocarbon accumulation and metabolites of Botryococcus braunii between attached cultivation and aqueous-suspension cultivation. Int J Agric & Biol Eng, 2017; 10(1): 134–141.
Full Text:
PDFReferences
Mascarelli A L. Gold rush for algae. Nature, 2009; 461: 460–461.
Takeshita T. Competitiveness, role, and impact of microalgal biodiesel in the global energy future. Appl. Energy., 2011; 88: 3481–3491.
Clarens A F, Resurreccion E P, White M A, Colosi L M. Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ. Sci. Technol., 2010; 44: 1813–1819.
Chisti Y. Biodiesel from microalgae. Biotechnol. Adv., 2007; 25: 294–306.
Mata T M, Martins A A, Caetano N S. Microalgae for biodiesel production and other applications: A review. Renew Sust. Energy Rev., 2010; 14 (1): 217–232.
Sostaric M, Klinar D, Bricelj M, Golob J, Berovic M, Likozar B. Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris. New Biotechnol, 2012; 29: 325–331.
Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J., 2008; 54: 621–639.
Metzger P, Largeau C. Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl. Microbiol. Biotechnol., 2005; 66: 486–496.
Banerjee A, Sharma R, Chisti Y, Banerjee U C. Botryococcus braumii: a renewable source of hydrocarbons and other chemicals. Crit. Rev. Biotechnol., 2002; 22: 245–279.
Hillen L W, Pollard G, Wake L V, White N. Hydrocracking of the oils of Botryococcus braunii to transport fuels. Biotechnol. Bioeng., 1982; 24: 193–205.
Grima E M, Belarbi E H, Fernández F A, Medina A R, Chisti Y. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol. Adv., 2003; 20: 491–515.
Ruangsomboon S. Effect of light, nutrient, cultivation time and salinity on lipid production of newly isolated strain of the green microalga, Botryococcus braunii KMITL 2. Bioresour. Technol., 2012: 109: 261–265.
Baba M, Kikuta F, Suzuki I, Watanabe M, Shiraiwa Y. Wavelength specificity of growth, photosynthesis, and hydrocarbon production in the oil producing green alga Botryococcu braunii. Bioresour. Technol., 2012; 109: 266–270.
Jorquera O, Kiperstok A, Sales A, Embirucu M, Ghiraridi L. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour. Technol, 2010; 101: 1406–1413.
Uduman N, Qi Y, Danquah M K, Forde G M, Hoadley A. Dewatering of microalgal cultures: a major bottleneck to algaebased fuels. J Renew Sustain Energy, 2010; 2: 012701.
Mallick N. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: A review. Biometals, 2002; 15: 377–390.
Nowack E, Podola B, Melkonian M. The 96-well twin-layer system: a novel approach in the cultivation of microalgae. Protist, 2005; 156 (2): 239–251.
Shi J, Podola B, Melkonian M. Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J. Appl. Phycol., 2007; 19: 417–423.
Liu T, Wang J, Hu Q, Cheng P, Ji B, Liu J, et al. Attached cultivation technology of microalgae for cost-affordable biomass feedstock production. Bioresour. Technol., 2013; 127: 216–222.
Largeau C, Caradevall E, Berkaloff C, Dhamliencourt P. Sites of accumulation and composition of hydrocarbons in Botryococcus braunii. Phytochemistry, 1980; 19 (6): 1043–1051.
Cheng P F, Wang J F, Liu T Z. Effects of nitrogen source and nitrogen supply model on the growth and hydrocarbon accumulation of immobilized biofilm cultivation of B. braunii. Bioresour. Technol., 2014; 166: 527–533.
Sawayama S, Minowa T, Dota Y, Yokayama S. Growth of hydrocarbon rich microalga Botryococcus braunii in secondarily treated sewage. Appl. Microbiol. Biotechnol., 1992; 38: 135–138.
Cheng P F, Ji B, Gao L L, Zhang W, Wang J F, Liu T Z. The growth, lipid and hydrocarbon production of Botryococcus braunii with attached cultivation. Bioresour. Technol., 2013; 138: 95–100.
Singh Y, Kumar H D. Lipid and hydrocarbon production by Botryococcus spp. under nitrogen limitation and anaerobiosis. World J. Microbiol. Biotechnol., 1992; 8: 121–124.
Dayananda C, Sarada R, Bhattacharya S, Ravishankar G A. Effect of media and culture conditions on growth and hydrocarbon production by Botryococcus braunii. Process Biochem., 2005; 40: 3125–3131.
Bligh E G, Dyer W J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 1959; 37 (8): 911–917.
Hodge J E, Hofreiter B T. Determination of reducing sugars and carbohydrates. In: Whistler, R., Wolfrom, M. (Eds.), Methods Carbohydrate Chemistry. Academic Press, New York, 1962; pp. 380–394.
Zor T, Selinger Z. Linearization of the Bradford protein assay increases its sensitivity: the oretical and experimental studies. Anal. Biochem, 1996; 236: 302–308.
Grifiths M, Harrison S. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol, 2009; 21 (5): 493–507.
Petkov G, Garcia G. Which are fatty acids of the green alga Chlorella. Biochemical Systematics and Ecology, 2007; 35: 281–285.
Li Y, Chen Y, Chen P, Min M, Zhou W, Martinez B, et al. Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology, 2011; 102: 5138–5144.
Casadevall E, Dif D, Largeau C, Gudin C, Chaumont D, Desanti O. Studies on batch and continuous cultures of Botryococcus braunii: Hydrocarbon production in relation to physiological state, cell ultrastructure, and phosphate nutrition. Biotechnology and Bioengineering, 1985; 27(3): 286–295.
Ji C, Wang J, Zhang W, Liu J, Wang H, Gao L, et al. An applicable nitrogen supply strategy for attached cultivation of Aucutodesmus obliquus. J. Appl. Phycol., 2014; 26: 173–180.
Lehr F, Posten C. Closed photo-bioreactors as tools for biofuel production. Current Opinion in Biotechnology, 2009; 20(3): 280–285.
Walker R H, Brodie J, Russell S, Irvine L M, Orfanidis S. Biodiversity of coralline algae in the northeastern atlantic including coralline caespitosa sp. NOV. (corallinoideae, rhodophyta). Journal of Phycology, 2009; 45(1): 287–297.
Ozkan A, Kinney K, Katz L, Berberoglu H. Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresour. Technol., 2012; 114: 542–548.
Copyright (c)