Automated extraction of corn leaf points from unorganized terrestrial LiDAR point clouds
Abstract
Keywords: corn leaves, terrestrial LiDAR, cloud points, automatic extraction, crop growth monitoring, phenotyping, difference of normal (DoN), directional ambiguity of the normals
DOI: 10.25165/j.ijabe.20181103.3177
Citation: Su W, Zhang M Z, Liu J M. Automated extraction of corn leaf points from unorganized terrestrial LiDAR point clouds. Int J Agric & Biol Eng, 2018; 11(3): 166–170.
Keywords
Full Text:
PDFReferences
Han W T, Sun Y, Xu T F, Chen, X W, Su K O. Detecting maize leaf water status by using digital RGB images. International Journal of Agricultural & Biological Engineering, 2014; 7(1): 45–53.
Weraduwagel S M, Chen J, Anozie F C, Morales A, Weise S E, Sharkey T D. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana. Frontiers in Plant Science, 2015; 6: 1–21.
Liu Z H, Huang R G, Hu Y M, Fan S D, Feng P H. Generating high spatiotemporal resolution LAI based on MODIS/GF-1 data and combined Kriging-Cressman interpolation. Int J Agric & Biol Eng, 2016; 9(5): 120–131.
Huang J X, Sedano F, Huang Y B, Ma H Y, Li X L, Liang S L, et al. Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation. Agricultural & Forest Meteorology, 2016; 216: 188–202.
Zia S, Sophrer K, Du W Y, Spreer W, Romano G, He X K, Joachim M. Monitoring physiological responses to water stress in two maize varieties by infrared thermography. Int J Agric & Biol Eng, 2011; 4(3): 7–15.
Kahriman F, Demirel K, Inalpulat M, Egesel C O, Genc L. Using leaf based hyperspectral models for monitoring biochemical constituents and plant phenotyping in maize. Journal of Agricultural Science and Technology, 2016; 18: 1705–1718.
Muller-Linow M, Pinto-Espinosa F, Scharr H, Rascher U. The leaf angle distribution of natural plant populations: assessing the canopy with a novel software tool. Plant Methods, 2015; 11: 1–16.
Yang W, Duan L, Chen G, Xiong L, Liu Q. Plant phenomics and high-throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies. Current Opinion in Plant Biology, 2013; 16(2): 180–187.
Lin Y, Hyyppä J. A comprehensive but efficient framework of proposing and validating feature parameters from airborne LiDAR data for tree species classification. International Journal of Applied Earth Observation & Geoinformation, 2016; 46: 45–55.
Huang J X, Sedano F, Huang Y B, Ma H Y, Li X L, Liang S L, et al. Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation. Agricultural & Forest Meteorology, 2016; 216: 188–202.
Huang J X, Tian L Y, Liang S L, Ma H Y, Becker-Reshef I, Su W, et al. Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model. Agricultural & Forest Meteorology, 2015; 204: 106–121.
Huang J X, Ma H Y, Su W, Zhang X D, Huang Y B, Fan J L, et al. Jointly assimilating MODIS LAI and ET products into the SWAP model for winter wheat yield estimation. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2015; 8(8): 4060–4071.
Buckley S J, Kurz T H, Howell J A, Schneider D. Terrestrial LiDAR and hyperspectral data fusion products for geological outcrop analysis. Computers & Geosciences, 2013; 54(4): 249–258.
Zheng G, Moskal L M. Leaf orientation retrieval from terrestrial laser scanning (TLS) data. IEEE Transactions on Geoscience and Remote Sensing, 2012; 50: 3970–3979.
Lin Y. LiDAR: An important tool for next-generation phenotyping technology of high potential for plant phenomics? Computers & Electronics in Agriculture, 2015; 119: 61–73.
Hosoi F, Nakai Y, Omasa K. 3-D voxel-based solid modeling of abroad-leaved tree for accurate volume estimation using portable scanning lidar. ISPRS Journal of Photogrammetry & Remote Sensing, 2013; 82: 41–48.
Li B, Schnabelr R, Klein R, Cheng Z Q, Dang G, Jin S Y. Robust normal estimation for point clouds with sharp features. Computers & Graphics, 2010; 34: 94–106.
Lin Y, Herold M. Tree species classification based on explicit tree structure feature parameters derived from static terrestrial laser scanning data. Agricultural & Forest Meteorology, 2016; 216: 105–114.
Ioannou Y, Taati B, Harrap R, Greenpan M. Difference of normals as a multi-scale operator in unorganized point clouds. Second International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT), Zurich, 2012; pp.501–508.
Das A, Servos J, Waslander S L. Scan registration using segmented region growing NDT. The International Journal of Robotics Research 2014; 33: 1645–1663.
Wani M A, Batchelor B G. Edge-region-based segmentation of range images. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1994; 16: 314–319.
Huang J B, Meng C H. Automatic data segmentation for geometric feature extraction from unorganized 3-D coordinate points. IEEE Transaction on Robotics and Automation, 2001; 17: 268–279.
Besl P J, Jain R C. Segmentation through variable-order surface fitting. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1988; 10: 167–192.
Jiang X Y, Bunke H, Meier U. High-level feature based range image segmentation. Image and Vision Computing, 2000; 18: 817–822.
Köster K, Spann M M. MIR: An approach to robust clustering-application to range image segmentation. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2000; 22: 430–444.
Lavoué G, Dupont F, Baskurt A. A new CAD mesh segmentation method based on curvature tensor analysis. Computer-Aided Design, 2005; 37: 975–987.
Nurunnabi A, Belton D, West G. Robust segmentation for multiple planar surface extraction in laser scanning 3D point cloud data. 21st International Conference on Pattern Recognition (ICPR), Tsukuba, 2012; pp.1367–1370.
Rusu R B. Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments, PHD thesis, Computer Science department, Technische Universitaet Muenchen, Germany, October 2009.
Copyright (c) 2018