Method for segmentation of overlapping fish images in aquaculture
Abstract
Keywords: aquaculture, image processing, overlapping segmentation, corner detection, improved Zhang-Suen algorithm
DOI: 10.25165/j.ijabe.20191206.3217
Citation: Zhou C, Lin K, Xu D M, Liu J T, Zhang S, Sun C H, et al. Method for segmentation of overlapping fish images in aquaculture. Int J Agric & Biol Eng, 2019; 12(6): 135–142.
Keywords
Full Text:
PDFReferences
Zhou C, Xu D, Chen L, Zhang S, Sun C, Yang X, et al. Evaluation of fish feeding intensity in aquaculture using a convolutional neural network and machine vision. Aquaculture, 2019; 507: 457–465.
Mao Y R, He D J, Song H B. Automatic detection of ruminant cows' mouth area during rumination based on machine vision and video analysis technology. International Journal of Agricultural and Biological Engineering, 2019; 12(1): 186–191.
Costa C, Febbi P, Pallottino F, Cecchini M, Figorilli S, Antonucci F, et al. Stereovision system for estimating tractors and agricultural machines transit area under orchards canopy. International Journal of Agricultural and Biological Engineering, 2019; 12(1): 1–5.
Zhou C, Sun C, Lin K, Xu D, Guo Q, Chen L, et al. Handling Water Reflections for Computer Vision in Aquaculture. Transactions of the ASABE, 2018; 61(2): 469–479.
Zhou C, Yang X, Zhang B, Lin K, Xu D, Guo Q, et al. An adaptive image enhancement method for a recirculating aquaculture system. Scientific Reports, 2017; 7(1): 6243.
Atienza-Vanacloig V, Andreu-García G, López-García F, Valiente-González JM, Puig-Pons V. Vision-based discrimination of tuna individuals in grow-out cages through a fish bending model. Computers and Electronics in Agriculture, 2016; 130: 142–150.
Lin K, Zhou C, Xu D M, Guo Q, Yang X T, Sun C H. Three-dimensional location of target fish by monocular infrared imaging sensor based on a L–z correlation model. Infrared Physics & Technology, 2018; 88: 106–113.
Costa C, Loy A, Cataudella S, Davis D, Scardi M. Extracting fish size using dual underwater cameras. Aquacultural Engineering, 2006; 35(3): 218–227.
Li D L, Hao Y F, Duan Y Q. Nonintrusive methods for biomass estimation in aquaculture with emphasis on fish: a review. Reviews in Aquaculture, 2019; https://doi.org/10.1111/raq.12388
Cha B J, Bae B S, Cho S K, Oh J K. A simple method to quantify fish behavior by forming time-lapse images. Aquacultural Engineering, 2012; 51: 15–20.
Saberioon M M, Cisar P. Automated multiple fish tracking in three-dimension using a structured light sensor. Computers and Electronics in Agriculture, 2016; 121: 215–221.
Zhao J, Gu Z, Shi M, Lu H, Li J, Shen M, et al. Spatial behavioral characteristics and statistics-based kinetic energy modeling in special behaviors detection of a shoal of fish in a recirculating aquaculture system. Computers and Electronics in Agriculture, 2016; 127: 271–280.
Zhou C, Xu D, Lin K, Sun C, Yang X. Intelligent feeding control methods in aquaculture with an emphasis on fish: a review. Reviews in Aquaculture, 2018; 10(4): 975–993.
Zion B. The use of computer vision technologies in aquaculture – A review. Computers and Electronics in Agriculture, 2012; 88: 125–132.
Les T, Markiewicz T, Osowski S, Jesiotr M. Automatic reconstruction of overlapped cells in breast cancer FISH images. Expert Systems with Applications, 2019; 137: 335–342.
Wan T, Xu S S, Sang C, Jin Y L, Qin Z C. Accurate segmentation of overlapping cells in cervical cytology with deep convolutional neural networks. Neurocomputing, 2019; 365: 157–170.
Ye H J, Liu C Q, Niu P Y. Cucumber appearance quality detection under complex background based on image processing. International Journal of Agricultural and Biological Engineering, 2018; 11(4): 193–199.
Hamuda E, Mc Ginley B, Glavin M, Jones E. Automatic crop detection under field conditions using the HSV colour space and morphological operations. Computers and Electronics in Agriculture, 2017; 133: 97–107.
Yang W, Wang S, Zhao X, Zhang J, Feng J. Greenness identification based on HSV decision tree. Information Processing in Agriculture, 2015; 2(3): 149–160.
Tan S, Ma X, Mai Z, Qi L, Wang Y. Segmentation and counting algorithm for touching hybrid rice grains. Computers and Electronics in Agriculture, 2019; 162: 493–504.
Wang Z, Wang K, Yang F, Pan S, Han Y. Image segmentation of overlapping leaves based on Chan–Vese model and Sobel operator. Information Processing in Agriculture, 2018; 5(1): 1–10.
Tripathi M K, Maktedar D D. A role of computer vision in fruits and vegetables among various horticulture products of agriculture fields: A survey. Information Processing in Agriculture, 2019.
Li J B, Zhang R Y, Li J B, Wang Z L, Zhang H L, Zhan B S, et al. Detection of early decayed oranges based on multispectral principal component image combining both bi-dimensional empirical mode decomposition and watershed segmentation method. Postharvest Biology and Technology, 2019; 158: 11.
El-Faki M S, Song Y Q, Zhang N Q, El-Shafie H A, Xin P. Automated detection of parasitized Cadra cautella eggs by Trichogramma bourarachae using machine vision. Int J Agric & Biol Eng, 2018; 11(3): 94–101.
Holmgren J, Lindberg E. Tree crown segmentation based on a tree crown density model derived from Airborne Laser Scanning. Remote Sensing Letters, 2019; 10(12): 1143–1152.
Chen L, Yang X, Sun C, Wang Y, Xu D, Zhou C. Feed intake prediction model for group fish using the MEA-BP neural network in intensive aquaculture. Information Processing in Agriculture, 2019. (in press).
Zhou C, Zhang B, Lin K, Xu D, Chen C, Yang X, et al. Near-infrared imaging to quantify the feeding behavior of fish in aquaculture. Computers and Electronics in Agriculture, 2017; 135: 233–241.
Liu Z, Li X, Fan L, Lu H, Liu L, Liu Y. Measuring feeding activity of fish in RAS using computer vision. Aquacultural Engineering, 2014; 60: 20–27.
Pautsina A, Císař P, Štys D, Terjesen B F, Espmark Å M O. Infrared reflection system for indoor 3D tracking of fish. Aquacultural Engineering, 2015; 69: 7–17.
Moreda G P, Muñoz M A, Ruiz-Altisent M, Perdigones A. Shape determination of horticultural produce using two-dimensional computer vision – A review. Journal of Food Engineering, 2012; 108(2): 245–261.
Zhang Q, Shaojie Chen M E, Li B. A visual navigation algorithm for paddy field weeding robot based on image understanding. Computers and Electronics in Agriculture, 2017; 143: 66–78.
Lin X Y, Zhu C, Liu Y P, Zhang Q. Robust corner detection using altitude to chord ratio accumulation. Multimedia Tools and Applications, 2019; 78(1): 177–195.
Gu X D, Yu D H, Zhang L M. Image thinning using pulse coupled neural network. Pattern Recognition Letters, 2004; 25(9): 1075–1084.
Liu Z, Cheng F, Zhang W. A novel segmentation algorithm for clustered flexional agricultural products based on image analysis. Computers and Electronics in Agriculture, 2016; 126: 44–54.
Copyright (c) 2019
This work is licensed under a Creative Commons Attribution 4.0 International License.