Innovative circular path harvester for mechanical harvesting of irregular and large-canopy olive trees
Abstract
Keywords: olive tree, olive fruit, canopy shaker, harvester, machinery design
DOI: 10.25165/j.ijabe.20181103.3265
Citation: Rafael R. Sola-Guirado, Gregorio L. Blanco-Roldan, Sergio Castro-Garcia, F.J. Castillo-Ruiz, Jesus A. Gil-Ribes. Innovative circular path harvester for mechanical harvesting of irregular and large-canopy olive trees. Int J Agric & Biol Eng, 2018; 11(3): 86–93.
Keywords
Full Text:
PDFReferences
Gil-Ribes J A, Ferguson L, Castro-Garcia S, Blanco-Rodán G L. How agricultural engineers develop mechanical harvesters: The university perspective. HortTechnology, 2014; 24(3): 270–273.
Sola-Guirado R R, Castro-García S, Blanco-Roldán G L, Jiménez-Jiménez F, Castillo-Ruiz F J, Gil-Ribes J A. Traditional olive tree response to oil olive harvesting technologies. Biosystem Engineering, 2014; 118: 186–193.
Erdoǧan D, Güner M, Dursun E, Gezer İ. Mechanical harvesting of apricots. Biosystems Engineering, 2003; 85(1): 19–28.
He L, Zhou J, Du X, Chen D, Zhang Q, Karkee M. Energy efficacy analysis of a mechanical shaker in sweet cherry harvesting. Biosystems Engineering, 2013; 116(4): 309–315.
Jimenez-Jimenez F, Blanco-Roldan G L, Castillo-Ruiz F J, Castro-Garcia S, Sola-Guirado R, Gil-Ribes J A. Table olives mechanical harvesting with trunk shakers: Orchard adaption and machine improvements. Chemical Engineering Transactions, 2015; 44: 271–276.
Abdel–Fattah H M, Shackel K A, Slaughter D C. Methodology for determining almond shaker displacement and frequency. Applied Engineering in Agriculture, 2003; 19(2): 141.
Ravetti L, Robb S. Continuous mechanical harvesting in modern Australian olive growing systems. Advances in Horticultural Science, 2010; 24(1): 71–77.
Ou Y G, Wegener M, Yang D T, Liu Q T, Zheng D K, Wang M M, et al. Mechanization technology: The key to sugarcane production in China. Int J Agric & Biol Eng, 2013; 6(1): 1–27.
Vossen P. Olive oil: History, production, and characteristics of the world's classic oils. HortScience, 2007; 42(5): 1093–1100.
AEMO, Asociación Española de Municipios del Olivo. Aproximación a los costes de los distintos sistemas del cultivo del olivo. 2012. http://www.aemo.es. (in Spanish). Accessed on [2013-05-22]
Sola-Guirado R R, Ceular-Ortiz D, Gil-Ribes J A. Automated system for real time tree canopy contact with canopy shakers. Computers and Electronics in Agriculture, 2017; 143: 139–148.
IOC. 2012. http://www.internationaloliveoil.org/estaticos/view/ 136-country-profiles/ Accessed on [2016-12-28]
Barranco D, Rallo L. Olive cultivars in Spain. Horttechnology, 2000; 10: 107–110.
Igathinathane C, Pordesimo L O, Columbus E P, Batchelor W D, Methuku S R. Shape identification and particles size distribution from basic shape parameters using ImageJ. Computers and Electronics in Agriculture, 2008; 63(2): 168–182.
Pahl G, Beitz W, Feldhusen J, Grote K H. Engineering design: a systematic approach, 2007; Springer-Verlag, London, UK. 617 p.
Blanco-Roldán G, Castillo-Ruiz F, Sola-Guirado R R, Jiménez-Jiménez F, Castro-García S, Agüera-Vega J, Gil-Ribes J A. Olive harvesting by canopy shaker. In Proceedings of the International Conference of Agricultrual Engineering AgEng, 2014; Zurich, (Switzerland), July 6-10. pp.1–8
Sola-Guirado R R, Jiménez-Jiménez F, Blanco-Roldán G L, Castro-García S, Castillo-Ruiz F J, Gil-Ribes J A. Vibration parameters assessment to develop a continuous lateral canopy shaker for mechanical harvesting of traditional olive trees Spanish Journal Agricultural Research, 2016; 14(2); e0204.
Rosell J R, Sanz R. A review of methods and applications of the geometric characterization of tree crops in agriculture activities. Computers and Electronics in Agriculture, 2011; 81: 124–141.
Castillo-Ruiz F J, Jiménez-Jiménez F, Blanco-Roldán G L, Sola-Guirado R R, Agüera-Vega J, Castro-Garcia S. Analysis of fruit and oil quantity and quality distribution in high-density olive trees in order to improve the mechanical harvesting process. Spanish Journal of Agricultural Research, 2015; 13(2): 1–8.
Pastor M, Humanes-Guillén J. In Poda del olivo moderna Olivicultura
(5th ed.), 2006; pp.77–127, Editorial agrícola española. Madrid, Spain.
Du X Q, Wu C Y, He L Y, Tong J H. Dynamic characteristics of dwarf Chinese hickory trees under impact excitations for mechanical fruit harvesting. Int J Agric & Biol Eng, 2015; 8(1): 17–25.
Ferguson L, Rosa U A, Castro-Garcia S, Lee S M, Guinard J X, Burns J, et al. Mechanical harvesting of California table and oil olives. Advances in Horticultural Science, 2010; 24(1): 53–63.
Burns J K, Buker Iii R S, Roka F M. Mechanical harvesting capacity in sweet orange is increased with an abscission agent. HortTechnology, 2005; 15(4): 758–765.
Roka F M, Ehsani R J, Futch S H, Hyman B R. Citrus mechanical harvesting systems - Continuous canopy shakers. Florida: Food and Economic Resources Department 2014; UF/IFAS Extension.
Ferguson L, Castro Garcia S. Transformation of an Ancient Crop: Preparing California 'Manzanillo' Table Olives for Mechanical Harvesting. HortTechnology, 2014; 24(3): 274–280.
Dias A, Peca J, Pinheiro A. Long-term evaluation of the influence of mechanical pruning on olive growing. Agronomy Journal, 2012; 104(1): 22–25.
Blanco-Roldan G L, Gil-Ribes J A, Kouraba K, Castro-García S. Effects of trunk shaker duration and repetitions on removal efficacy for the harvesting of oil olives. Applied Engineering in Agriculture, 2009; 25(3): 329–334. pp 1–8
Castillo-Ruiz F J, Pérez-Ruiz M, Blanco-Roldán G L, Gil-Ribes J A, Agüera J. Development of a telemetry and yield-mapping system of olive harvester. Sensors, 2015; 15(2): 4001–4018.
Copyright (c) 2018