Comparison of three regionalization techniques for predicting streamflow in ungaged watersheds in Nebraska, USA using SWAT mode
Abstract
Keywords: SWAT model, watersheds, hydrology, model calibration, parameter regionalization, Nebraska ungaged watersheds
DOI: 10.25165/j.ijabe.20181103.3528
Citation: Van Liew M W, Mittelstet A R. Comparison of three regionalization techniques for predicting streamflow in ungagged watersheds in Nebraska, USA using SWAT model. Int J Agric & Biol Eng, 2018; 11(3): 110–119.
Keywords
Full Text:
PDFReferences
Borah D K Bera M. Watershed-scale hydrologic and nonpoint-source pollution models: review of mathematical bases. Trans ASABE, 2003; 46(6): 1553–1566. doi: 10.13031/2013.15644.
Borah, D K, Yagow G, Saleh A, Barnes P L, Rosenthal W, Krug E C et al. Sediment and nutrient modeling for TMDL development and implementation. Trans ASABE, 2006; 49(4): 967–986. doi: 10.13031/2013.21742.
Mottes, C., Lesueur-Jannoyer M, Le Bail M, Malezieux E. Pesticide transfer models in crop and watershed systems: a review. Agron Sustain Develop, 2014; 34(1): 229–250. doi: 10.1007/s13593-013-0176-3.
Radcliffe, D E, Freer J, Schoumans O. Diffuse phosphorus models in the United States and Europe: Their usages, scales, and uncertainties. J Environ Qual, 2009; 38: 1956–1967. doi: 10.2134/jeq2008.0060.
Bloschl G, Sivapalan M. Scale issues in hydrological modeling: A review. Hydrol Process, 1995; 9: 251–290. doi: 10.1002/hyp.3360090305.
Vandewiele G L, Elias A. Monthly water balance of ungauged catchments obtained by geographical regionalization. J Hydrol, 1995; 170: 277–291. doi: 10.1016/0022-1694(95)02681-E.
Merz R, Bloschl G. Regionalisation of catchment model parameters. JHydrol, 2004; 287: 95–123. doi: j.jhydrol.2003.09.028.
Burn D H, Boorman D B. Estimation of hydrological parameters at ungauged catchments. J Hydrol, 1993; 143: 429–454. doi: 10.1016/0022-1694(93)90203-L
Fernandez W, Vogel R M, Sankarasubramanian A. Regional calibration of a watershed model. Hydrol Sci J, 2000; 45(5): 689–707. doi: 10.1080/02626660009492371.
Heuvelmans G, Muys B, Feyen J. Regionalisation of the parameters of a hydrological model: Comparison of linear regression models with artificial neural nets. J Hydrol, 2006; 319(1-4): 245–265. doi: 10.1016/ j.jhydrol.2005.07.030.
Sellami H, La Jeunesse I, Benabdallah S, Baghdadi N, Vanclooster M. Uncertainty analysis in model parameters regionalization: a case study involving the SWAT model in Mediterranean catchments (Southern France). Hydrol Earth Syst Sci, 2014; 18: 2393–2413. doi: 10.5194/hess-18-2393-2014.
Parajka J R, Merz G, Bioschi G. A comparison of regionalization methods for catchment model parameters. Hydrol Earth Syst Sci, 2005; 2: 509–542. doi: 10.5194/hess-9-157-2005.
Gitau M W, Chaubey I. Regionalization of SWAT model parameters for use in ungaged watersheds. Water, 2010; 2: 849–871. doi: 10.3390/w2040849
Pagliero L, Bouraoui F, Willems P, Diels J. Large scale hydrological simulations using SWAT, protocol development and application in the Danube Basin. J Environ Qual, 2014; 43(1): 145–154. doi: 10.2134/jeq2011.0359.
Daggupati P, Deb D, Srinivasan R, Yeganantham D, Mehta V M, Rosenberg N J. Large-scale fine-resolution hydrological modeling using parameter regionalization in the Missouri River Basin. J Amer Water Resour Assoc, 2016; 52(3): 648–666. doi: 10.1111/1752-1688.12413.
Swain J B, Patra K C. Streamflow estimation in ungauged catchments using regionalization techniques. J Hydrol, 2017; 554: 420–433. doi: 10.1016/j.jhydrol.2017.08.054.
Chen X, Chen X. Simulating the effects of reduced precipitation on ground water and streamflow in the Nebraska Sand Hills. Journal of the American Water Resources Association, 2004; 40: 419–430. doi: 10.1111/j.1752-1688.2004.tb01040.x.
Daggupati P, Deb D, Srinivason R, Yeganantham D, Mehta V M,Rosenberg N J. Large-scale fine-resolution hydrological modeling using parameter regionalization in the Missouri River basin. J Amer Water Resour Assoc, 2016; 52(3): 648–666. doi: 10.1111/ 1752-1688.12413.
Woznicki S A, Nejadhashemi A P, Smith C M. Assessing best management practice implementation strategies under climate change scenarios. Trans ASABE, 2011; 54(1): 171–190. doi: 10.13031/2013.36272.
Van Liew M W, Feng S, Pathak T B. Climate change impacts on streamflow, water quality, and best management practices for the Shell and Logan Creek Watersheds in Nebraska, USA. Int J Agric & Biol Eng, 2012; 5(1): 13–34. doi: 10.3965/j.ijabe.20120501.003.
Arnold J G, Srinivasan R, Muttiah R S, Williams J R. Large area hydrologic modeling and assessment part I: Model development. J Amer Water Resour Assoc, 1998; 34(1): 73–89. doi: 10.1111/j.1752- 1688.1998.tb05961.x.
Bieger K, Arnold J G, Rathjens H, White M J, Bosch D D, Allen P M, et al. Introduction to SWAT+, a completely restructured version of the soil and water assessment tool. J Amer Water Resour Assoc, 2016; 53(1): 115–130. doi: 10.1111/1752-1688.12482.
Gassman P W, Reyes M R, Green C H, Arnold J G. The Soil and Water Assessment Tool: Historical development, applications, and future research directions. Trans ASABE, 2007; 50(4): 1211–1250. doi: 10.13031/2013.23634.
Mittelstet A R, Storm D E, White M J. Using SWAT to enhance watershed-based plans to meet numeric water quality standards. Sustain Water Qual Ecol, 2016; 7: 5–21. doi: 10.1016/j.swaqe.2016.01.002.
Li Y, Urban M A. Water resource variability and climate change. Water, 2016; 8(8): 348. doi: 10.3390/w8080348.
Mittelstet A R, Storm D E; Stoecker A L. Using SWAT to simulate crop yields and salinity levels in the North Fork River Basin. Int J Agric & Biol Eng, 2015; 8(3): 110–124. doi: 10.3965/j.ijabe.20150803.950.
USDA‐NRCS. Urban hydrology for small watersheds. Technical Release 55. Washington, D.C.: USDA National Resource Conservation Service, 1986. Available at: http://www.hydrocad.net/pdf/ TR-55%20Manual.pdf. Accessed on [2016-01-06].
Hargreaves G L, Hargreaves G H, Riley J P. Agricultural benefits for Senegal River Basin, J Irrig Drain Engr; 1985; 111(2): 113–124. doi: 10.1061/(ASCE)0733-9437(1985)111:2(113).
Arnold J G, Kiniry J R, Srinivasan R, Williams J R, Haney E B, Neitsch, S L. Soil and Water Assessment Tool, Input/Output Documentation Version 2012. Texas Water Resources Institute. TR-439. 654 pp. 2012. Available: http://swat.tamu.edu/documentation/2012-io/. Accessed on [2016-06-24].
Doran J W, Schepers J S, Swanson N P, McCalla T M. Chemical and bacteriological quality of runoff from a central plains pastureland. U.S. EPA Report EPA-IAG-78-D-X0088. 1978. 43 p.
Doran J W, Schepers J S, Swanson, N P. Chemical and bacteriological quality of pasture runoff. J Soil Water Conser 1981; 36(3): 166–171.
USGS. National Elevation Dataset, 2002. U.S Geological Survey, Reston, VA. Available: https://lta.cr.usgs.gov/NED. Accessed on [2016-02-20].
UNL. Land Use Mapping, Nebraska GIS Data, University of Nebraska-Lincoln, School of Natural Resources, Lincoln, NE. 2005. Available at: http://snr.unl.edu/data/geographygis/. Accessed on [2017-09-21].
USDA. State Soil Geographic (STATSGO) database. Misc. Pub. 1492. U.S. Department of Agriculture, Natural Resource Conservation Service, National Soil Survey Center, Lincoln, NE, 1995. 113p. Available at: www.fsl.orst.edu/pnwerc/wrb/metadata/soils/statsgo.pdf. Accessed on [2016-04-18].
Moriasi D N, Arnold J G, Van Liew M W, Bingner L R, Harmel R D, Veith T L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE, 2007; 50(3): 885–900. doi: 10.13031/2013.23153.
Gupta H V, Sorooshian S, Yapo P O. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J Hydraulic Engr, 1999; 4(2): 135–143. doi: 10.1061/(ASCE)1084- 0699(1999)4:2(135).
Nash J E, Sutcliffe J W. River flow forecasting though conceptual models. Part I – A discussion of principles. J Hydrol, 1970; 10(3): 282–290. doi: 10.1016/0022-1694(70)90255-6.
Servat E, Dezetter A. Selection of calibration of objective functions in the context of rainfall-runoff modeling in a Sudanese savannah area. Hydrol Sci J, 1991; 36: 307–330. doi: 10.1080/02626669109492517.
Abbaspour K C. User manual for SWAT-CUP, SWAT calibration and uncertainty analysis programs. Swiss Federal Institute of Aquatic Science and Technology, Eawag. Duebendorf, Switzlerland. 103p. 2013. Available: http://swat.tamu.edu/software/swat-cup/. Accessed on [2015-08-09].
Van Liew M W, Garbrecht J. Hydrologic simulation of the Little Washita River Experimental Watershed Using SWAT. J Amer Water Resour Assoc, 2003; 39(2): 413–426. doi: 10.1111/j.1752-1688.2003.tb04395.x.
Van Liew M W, Veith T L, Bosch D B, Arnold J G. Suitability of SWAT for the Conservation Effects Assessment Project: Comparison on USDA Agricultural Research Watersheds. J. Hydrologic Engineering, 2007; 12(2): 173-189. doi: 10.1061/(ASCE)1084-0699(2007)12:2(173).
Gassman P W, Sadeghi A M, Srinivasan R. Applications of the SWAT model special section: Overview and insights. J Environ Qual, 2014; 43(1): 1–8. doi: 10.2134/jeq2013.11.0466.
Bressiani D A, Gassman P W, Fernandes J G, Garbossa L H P, Srinivasan r, Bonumán B, et al. A review of Soil and Water Assessment Tool (SWAT) applications in Brazil: Challenges and prospects. Int J Agric & Biol Eng, 2015; 8(3): 9–35. doi: 10.3965/j.ijabe.20150803.1765.
Copyright (c) 2018