Comparison of three regionalization techniques for predicting streamflow in ungaged watersheds in Nebraska, USA using SWAT mode

Michael W. Van Liew, Aaron R. Mittelstet

Abstract


This study compared three approaches, regional averaging, nearest neighbor, and donor techniques, to regionalize parameters in the Soil and Water Assessment Tool (SWAT) on eleven watersheds located in the Dissected Plains, Plains, and Rolling Hills Landforms in the eastern portion of the State of Nebraska, USA. Within the Rolling Hills Landform, three watersheds were randomly selected as calibration watersheds while two were randomly selected as validation watersheds. Two watersheds were randomly selected as calibration watersheds while one was randomly selected as a validation watershed within each of the Dissected Plains and Plains Landforms. The seven calibration watersheds were used to provide the necessary calibrated parameter sets to execute each of the regional approaches, while the four validation watersheds were used to assess the impact of applying each of these approaches to an uncalibrated watershed. Percent Bias (PBIAS) and the Nash Sutcliffe Coefficient of Efficiency (NSE) were used to assess model performance. Test results of this study show that all three methods performed poorly, since the majority of watersheds among each method tested exhibited PBIAS values greater than ±25% and/or NSE values less than 0.50, which were considered to be unsatisfactory in terms of model performance. The average regionalization, nearest neighbor and donor methods resulted in only four (two calibration and two validation), zero and one satisfactory set of simulated watershed results, respectively. The findings from this study indicate that although each watershed was successfully calibrated with NSE values ranging from 0.51 to 0.84, none of the three regionalization methods provided suitable calibration data sets to define parameter values for performing satisfactory simulations on ungaged watersheds across the eastern Nebraska landscape.
Keywords: SWAT model, watersheds, hydrology, model calibration, parameter regionalization, Nebraska ungaged watersheds
DOI: 10.25165/j.ijabe.20181103.3528

Citation: Van Liew M W, Mittelstet A R. Comparison of three regionalization techniques for predicting streamflow in ungagged watersheds in Nebraska, USA using SWAT model. Int J Agric & Biol Eng, 2018; 11(3): 110–119.

Keywords


SWAT model, watersheds, hydrology, model calibration, parameter regionalization, Nebraska ungaged watersheds

Full Text:

PDF

References


Borah D K Bera M. Watershed-scale hydrologic and nonpoint-source pollution models: review of mathematical bases. Trans ASABE, 2003; 46(6): 1553–1566. doi: 10.13031/2013.15644.

Borah, D K, Yagow G, Saleh A, Barnes P L, Rosenthal W, Krug E C et al. Sediment and nutrient modeling for TMDL development and implementation. Trans ASABE, 2006; 49(4): 967–986. doi: 10.13031/2013.21742.

Mottes, C., Lesueur-Jannoyer M, Le Bail M, Malezieux E. Pesticide transfer models in crop and watershed systems: a review. Agron Sustain Develop, 2014; 34(1): 229–250. doi: 10.1007/s13593-013-0176-3.

Radcliffe, D E, Freer J, Schoumans O. Diffuse phosphorus models in the United States and Europe: Their usages, scales, and uncertainties. J Environ Qual, 2009; 38: 1956–1967. doi: 10.2134/jeq2008.0060.

Bloschl G, Sivapalan M. Scale issues in hydrological modeling: A review. Hydrol Process, 1995; 9: 251–290. doi: 10.1002/hyp.3360090305.

Vandewiele G L, Elias A. Monthly water balance of ungauged catchments obtained by geographical regionalization. J Hydrol, 1995; 170: 277–291. doi: 10.1016/0022-1694(95)02681-E.

Merz R, Bloschl G. Regionalisation of catchment model parameters. JHydrol, 2004; 287: 95–123. doi: j.jhydrol.2003.09.028.

Burn D H, Boorman D B. Estimation of hydrological parameters at ungauged catchments. J Hydrol, 1993; 143: 429–454. doi: 10.1016/0022-1694(93)90203-L

Fernandez W, Vogel R M, Sankarasubramanian A. Regional calibration of a watershed model. Hydrol Sci J, 2000; 45(5): 689–707. doi: 10.1080/02626660009492371.

Heuvelmans G, Muys B, Feyen J. Regionalisation of the parameters of a hydrological model: Comparison of linear regression models with artificial neural nets. J Hydrol, 2006; 319(1-4): 245–265. doi: 10.1016/ j.jhydrol.2005.07.030.

Sellami H, La Jeunesse I, Benabdallah S, Baghdadi N, Vanclooster M. Uncertainty analysis in model parameters regionalization: a case study involving the SWAT model in Mediterranean catchments (Southern France). Hydrol Earth Syst Sci, 2014; 18: 2393–2413. doi: 10.5194/hess-18-2393-2014.

Parajka J R, Merz G, Bioschi G. A comparison of regionalization methods for catchment model parameters. Hydrol Earth Syst Sci, 2005; 2: 509–542. doi: 10.5194/hess-9-157-2005.

Gitau M W, Chaubey I. Regionalization of SWAT model parameters for use in ungaged watersheds. Water, 2010; 2: 849–871. doi: 10.3390/w2040849

Pagliero L, Bouraoui F, Willems P, Diels J. Large scale hydrological simulations using SWAT, protocol development and application in the Danube Basin. J Environ Qual, 2014; 43(1): 145–154. doi: 10.2134/jeq2011.0359.

Daggupati P, Deb D, Srinivasan R, Yeganantham D, Mehta V M, Rosenberg N J. Large-scale fine-resolution hydrological modeling using parameter regionalization in the Missouri River Basin. J Amer Water Resour Assoc, 2016; 52(3): 648–666. doi: 10.1111/1752-1688.12413.

Swain J B, Patra K C. Streamflow estimation in ungauged catchments using regionalization techniques. J Hydrol, 2017; 554: 420–433. doi: 10.1016/j.jhydrol.2017.08.054.

Chen X, Chen X. Simulating the effects of reduced precipitation on ground water and streamflow in the Nebraska Sand Hills. Journal of the American Water Resources Association, 2004; 40: 419–430. doi: 10.1111/j.1752-1688.2004.tb01040.x.

Daggupati P, Deb D, Srinivason R, Yeganantham D, Mehta V M,Rosenberg N J. Large-scale fine-resolution hydrological modeling using parameter regionalization in the Missouri River basin. J Amer Water Resour Assoc, 2016; 52(3): 648–666. doi: 10.1111/ 1752-1688.12413.

Woznicki S A, Nejadhashemi A P, Smith C M. Assessing best management practice implementation strategies under climate change scenarios. Trans ASABE, 2011; 54(1): 171–190. doi: 10.13031/2013.36272.

Van Liew M W, Feng S, Pathak T B. Climate change impacts on streamflow, water quality, and best management practices for the Shell and Logan Creek Watersheds in Nebraska, USA. Int J Agric & Biol Eng, 2012; 5(1): 13–34. doi: 10.3965/j.ijabe.20120501.003.

Arnold J G, Srinivasan R, Muttiah R S, Williams J R. Large area hydrologic modeling and assessment part I: Model development. J Amer Water Resour Assoc, 1998; 34(1): 73–89. doi: 10.1111/j.1752- 1688.1998.tb05961.x.

Bieger K, Arnold J G, Rathjens H, White M J, Bosch D D, Allen P M, et al. Introduction to SWAT+, a completely restructured version of the soil and water assessment tool. J Amer Water Resour Assoc, 2016; 53(1): 115–130. doi: 10.1111/1752-1688.12482.

Gassman P W, Reyes M R, Green C H, Arnold J G. The Soil and Water Assessment Tool: Historical development, applications, and future research directions. Trans ASABE, 2007; 50(4): 1211–1250. doi: 10.13031/2013.23634.

Mittelstet A R, Storm D E, White M J. Using SWAT to enhance watershed-based plans to meet numeric water quality standards. Sustain Water Qual Ecol, 2016; 7: 5–21. doi: 10.1016/j.swaqe.2016.01.002.

Li Y, Urban M A. Water resource variability and climate change. Water, 2016; 8(8): 348. doi: 10.3390/w8080348.

Mittelstet A R, Storm D E; Stoecker A L. Using SWAT to simulate crop yields and salinity levels in the North Fork River Basin. Int J Agric & Biol Eng, 2015; 8(3): 110–124. doi: 10.3965/j.ijabe.20150803.950.

USDA‐NRCS. Urban hydrology for small watersheds. Technical Release 55. Washington, D.C.: USDA National Resource Conservation Service, 1986. Available at: http://www.hydrocad.net/pdf/ TR-55%20Manual.pdf. Accessed on [2016-01-06].

Hargreaves G L, Hargreaves G H, Riley J P. Agricultural benefits for Senegal River Basin, J Irrig Drain Engr; 1985; 111(2): 113–124. doi: 10.1061/(ASCE)0733-9437(1985)111:2(113).

Arnold J G, Kiniry J R, Srinivasan R, Williams J R, Haney E B, Neitsch, S L. Soil and Water Assessment Tool, Input/Output Documentation Version 2012. Texas Water Resources Institute. TR-439. 654 pp. 2012. Available: http://swat.tamu.edu/documentation/2012-io/. Accessed on [2016-06-24].

Doran J W, Schepers J S, Swanson N P, McCalla T M. Chemical and bacteriological quality of runoff from a central plains pastureland. U.S. EPA Report EPA-IAG-78-D-X0088. 1978. 43 p.

Doran J W, Schepers J S, Swanson, N P. Chemical and bacteriological quality of pasture runoff. J Soil Water Conser 1981; 36(3): 166–171.

USGS. National Elevation Dataset, 2002. U.S Geological Survey, Reston, VA. Available: https://lta.cr.usgs.gov/NED. Accessed on [2016-02-20].

UNL. Land Use Mapping, Nebraska GIS Data, University of Nebraska-Lincoln, School of Natural Resources, Lincoln, NE. 2005. Available at: http://snr.unl.edu/data/geographygis/. Accessed on [2017-09-21].

USDA. State Soil Geographic (STATSGO) database. Misc. Pub. 1492. U.S. Department of Agriculture, Natural Resource Conservation Service, National Soil Survey Center, Lincoln, NE, 1995. 113p. Available at: www.fsl.orst.edu/pnwerc/wrb/metadata/soils/statsgo.pdf. Accessed on [2016-04-18].

Moriasi D N, Arnold J G, Van Liew M W, Bingner L R, Harmel R D, Veith T L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE, 2007; 50(3): 885–900. doi: 10.13031/2013.23153.

Gupta H V, Sorooshian S, Yapo P O. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J Hydraulic Engr, 1999; 4(2): 135–143. doi: 10.1061/(ASCE)1084- 0699(1999)4:2(135).

Nash J E, Sutcliffe J W. River flow forecasting though conceptual models. Part I – A discussion of principles. J Hydrol, 1970; 10(3): 282–290. doi: 10.1016/0022-1694(70)90255-6.

Servat E, Dezetter A. Selection of calibration of objective functions in the context of rainfall-runoff modeling in a Sudanese savannah area. Hydrol Sci J, 1991; 36: 307–330. doi: 10.1080/02626669109492517.

Abbaspour K C. User manual for SWAT-CUP, SWAT calibration and uncertainty analysis programs. Swiss Federal Institute of Aquatic Science and Technology, Eawag. Duebendorf, Switzlerland. 103p. 2013. Available: http://swat.tamu.edu/software/swat-cup/. Accessed on [2015-08-09].

Van Liew M W, Garbrecht J. Hydrologic simulation of the Little Washita River Experimental Watershed Using SWAT. J Amer Water Resour Assoc, 2003; 39(2): 413–426. doi: 10.1111/j.1752-1688.2003.tb04395.x.

Van Liew M W, Veith T L, Bosch D B, Arnold J G. Suitability of SWAT for the Conservation Effects Assessment Project: Comparison on USDA Agricultural Research Watersheds. J. Hydrologic Engineering, 2007; 12(2): 173-189. doi: 10.1061/(ASCE)1084-0699(2007)12:2(173).

Gassman P W, Sadeghi A M, Srinivasan R. Applications of the SWAT model special section: Overview and insights. J Environ Qual, 2014; 43(1): 1–8. doi: 10.2134/jeq2013.11.0466.

Bressiani D A, Gassman P W, Fernandes J G, Garbossa L H P, Srinivasan r, Bonumán B, et al. A review of Soil and Water Assessment Tool (SWAT) applications in Brazil: Challenges and prospects. Int J Agric & Biol Eng, 2015; 8(3): 9–35. doi: 10.3965/j.ijabe.20150803.1765.




Copyright (c) 2018



2023-2026 Copyright IJABE Editing and Publishing Office