Improving biomethane yield by strengthening acidification of maize stover in two-phase anaerobic digestion
Abstract
Keywords: alkaline pretreatment, two-phase anaerobic digestion, strengthening acidification, maize stover, reactor, biogas, biomethane production
DOI: 10.25165/j.ijabe.20201304.4654
Citation: Tong H, Zhou B Y, Liu C M, Wachemo A C, Li X J, Zuo X Y. Improving biomethane yield by strengthening acidification of maize stover in two-phase anaerobic digestion. Int J Agric & Biol Eng, 2020; 13(4): 226–231.
Keywords
Full Text:
PDFReferences
National Bureasu of Statistics of the People’s Republic of China, 2016. http://www.stats.gov.cn/.
Zheng M X, Li X J, Li L Q, Yang X J, He Y F. Enhancing anaerobic biogasification of corn stover through wet state NaOH pretreatment. Bioresource Technology, 2009; 100(21): 5140–5145.
Wang G, Gavala H N, Skiadas I V, Ahring B K. Wet explosion of wheat straw and codigestion with swine manure: Effect on the methane productivity. Waste Manag, 2009; 29(11): 2830–2835.
Wang F, Yin H, Li S. China’s renewable energy policy: Commitments and challenges. Energy Policy, 2010; 38(4): 1872–1878.
Li Y Q, Liu C M, Wachemo A C, Yuan H R, Zou D X, Liu Y P, et al. Serial completely stirred tank reactors for improving biogas production and substance degradation during anaerobic digestion of corn stover. Bioresour Technol., 2017; 235: 380–388.
Tsavkelova E A. Biogas production from cellulose-containing substrates: A review. Applied Biochemistry & Microbiology, 2012; 48(5): 421–433.
Deswarte F E I, Clark J H, Wilson A J, Hardy J J E, Marriott R, Chahal S P, et al. Toward an integrated straw-based biorefinery. Biofuels Bioproducts & Biorefining, 2010; 1(4): 245–254.
Smith D P, Mccarty P L. Reduced product formation following perturbation of ethanol- and propionate-fed methanogenic CSTRs. Biotechnology & Bioengineering, 1989; 34(7): 885–895.
Bouallagui H, Torrijos M, Godon J J, Moletta R, Cheikh R B, Touhami Y, et al. Two-phases anaerobic digestion of fruit and vegetable wastes: Bioreactors performance. Biochemical Engineering Journal, 2004; 21(2): 193–197.
Cysneiros D, Banks C J, Heaven S, Karatzas K A. The role of phase separation and feed cycle length in leach beds coupled to methanogenic reactors for digestion of a solid substrate (Part 2): Hydrolysis, acidification and methanogenesis in a two-phase system. Bioresource Technology, 2011; 102(16): 7393–7400.
Grover R, Marwaha S S, Kennedy J F. Methanogenesis of black liquor in a two-stage biphasic reactor system using an immobilized cell system. Journal of Chemical Technology & Biotechnology, 2010; 76(3): 251–256.
Roberts R, Davies W J, Forster C F. Two-stage, thermophilic-mesophilic anaerobic digestion of sewage sludge. Process Safety & Environmental Protection, 1999; 77(2): 93–97.
Grimberg S J, Hilderbrandt D, Kinnunen M, Rogers S. Anaerobic digestion of food waste through the operation of a mesophilic two-phase pilot scale digester - Assessment of variable loadings on system performance. Bioresource Technology, 2015; 178: 226–229.
Demi̇Rer G N, Chen S. Two-phase anaerobic digestion of unscreened dairy manure. Process Biochemistry, 2005; 40(11): 3542–3549.
Massanetnicolau J, Dinsdale R, Guwy A, Shipley G. Use of real time gas production data for more accurate comparison of continuous single-stage and two-stage fermentation. Bioresource Technology, 2013; 129(2): 561–567.
Min L, Ren N Q, Ying C, Zhu W F, Jie D. Conversion regular patterns of acetic acid, propionic acid and butyric acid in UASB reactor. Journal of Enviermental Sciences, 2004; 16(3): 387–391.
Lay J J. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnology & Bioengineering, 2015; 68(3): 269–278.
Cha G C, Noike T. Effect of rapid temperature change and HRT on anaerobic acidogenesis. Water Science & Technology, 1997; 36(6-7): 247–253.
Chen H, Meng H, Nie Z, Zhang M. Polyhydroxyalkanoate production from fermented volatile fatty acids: effect of pH and feeding regimes. Bioresour Technol., 2013; 128(1): 533–538.
Jiang J, Zhang Y, Li K, Wang Q, Gong C, Li M. Volatile fatty acids production from food waste: Effects of pH, temperature, and organic loading rate. Bioresour Technol., 2013; 143(9): 525–530.
Liu X, Dong B, Dai X. Hydrolysis and acidification of dewatered sludge under mesophilic, thermophilic and extreme thermophilic conditions: Effect of pH. Bioresource Technology, 2013; 148(8): 461–466.
Zhou A, Guo Z, Yang C, Kong F, Liu W, Wang A. Volatile fatty acids productivity by anaerobic co-digesting waste activated sludge and corn straw: Effect of feedstock proportion. Journal of Biotechnology, 2013; 168(2): 234–239.
Rajagopal R, Massé D I, Singh G. A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresource Technology, 2013; 143(17): 632–641.
Liu C F, Yuan X Z, Zeng G M, Li W W, Li J. Prediction of methane yield at optimum pH for anaerobic digestion of organic fraction of municipal solid waste. Bioresour Technol., 2008; 99(4): 882–888.
Copyright (c) 2020 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.