Reduction of environmental pollution by using RTK-navigation in

Damijan Kelc, Denis Stajnko, Peter Berk, Jurij Rakun, Peter Vindiš, Miran Lakota

Abstract


The concept of precision farming is wide, and it represents the efficiency which is achieved with the help of precision. For the navigation of field machines, the RTK (Real Time Kinematic) navigation is needed. In order to verify the positive effects in practice, RTK navigation system equipped with Fentd 828 was applied to test the width of overlap, and fuel and time that could be saved compared with manual driving. The experiment was conducted on two areas of land size of 172 m × 58 m with two working machines width 3 m and 6 m. Results indicated that 15.7% of the time and 8.66% of the fuel were saved on a working machine of 3 meters width, and 12.6% of the time and 8.28% of the fuel were saved on a working machine of 6 m width. The width of the overlap represent 10% of the working width of the machine, and with the method of turning, which RTK navigation allows, additional time was saved. Ecological footprint, CO2 emissions and global warming potential (GWP) was estimated under different guiding systems. The largest footprint was related to manual tillage with 3 m width working machine, while estimation on CO2 (kg) emissions and GWP obtained the same result. The use of precision agriculture technologies allows better planning and analyzing of working procedures. The air, water and soil pollution are less intensive.
Keywords: precision farming, RTK technology, ecological footprint, environmental pollution, tillage
DOI: 10.25165/j.ijabe.20191205.4932

Citation: Kelc D, Stajnko D, Berk P, Rakun J, Vindiš P, Lakota M. Reduction of environmental pollution by using RTK-navigation in soil cultivation. Int J Agric & Biol Eng, 2019; 12(5): 173–178.

Keywords


precision farming, RTK technology, ecological footprint, environmental pollution, tillage

Full Text:

PDF

References


Shamshiri R R, Weltzien C, Hameed I A, Yule I J, Grift T E, Balasundram S K, et al. Research and development in agricultural robotics: A perspective of digital farming. Int J Agric & Biol Eng, 2018; 11(4): 1–14.

Bechara A, Vigneaultb C. Agricultural robots for field operations. Part 2: Operations and systems. Biosystems Engineering, 2017; 153: 110–128.

RTK Farming. Available online: http://www.rtkfarming.co.uk/. Accessed on [2018-06-07]

Slaughter D C, Giles D K, Downey D. Autonomous robotic weed control systems. Computers and Electronics in Agriculture, 2008; 61(1): 63–78.

Monaco T J, Grayson A S, Sanders D C. Influence of four weed species on the growth, yield, and quality of direct-seeded tomatoes (Lycopersicon esculentum). Weed Science, 1981; 29(4): 394–397.

Jin X, Li Q W, Zhao K X, Zhao B, He Z T, Qiu Z M. Development and test of an electric precision seeder for small-size vegetable seeds. Int J Agric & Biol Eng, 2019; 12(2): 75–81.

Kviz Z, Kroulik M, Chyba J. Soil damage reduction and more environmental friendly agriculture by using advanced machinery traffic. Agronomy Research, 2014; 12(1): 121–128.

Lopotz H. Precision farming. rehnen sich die investitionen? Available online: https://www.landwirtschaftskammer.de/duesse/rueckblick/pdf/ 2013-06-19-rentabilitaet-pf.pdf. Accessed on [2018-03-20]

Landerl G. Untersuchungen zum Nutzen und zu Genauigkeiten von GPS-gestützten Parallelfahrsystemen (Lenkhilfe, Lenkas-sistent und Lenkautomat) bei Traktoren. Wien, Universität für Bodenkultur. Available online: file:///C:/Users/damijan/Downloads/fulltext_7467.pdf, 2009. Accessed on [2018-05-21]

Holpp M, Anken T, Sauter M, Kroulik M, Hensel O. Nutzen automatischer Lenksysteme, Forschungsanstalt Agroscope Reckenholz-Tänikon. Available online: https://www.bioaktuell.ch/fileadmin/documents/ba/ Pflanzenbau/Praezisionslandwirtschaft/ART-Bericht-756-d-2012_Holpp-et-al_Nutzen-Lenksysteme.pdf. Accessed on [2018-05-24]

Reckleben Y. Vorzüge und Schwachstellen von Lenksystemen in der Landwirtschaft. Available online: https://www.landwirtschaft.sachsen.de/ landwirtschaft/download/Vorzuege_und_Schwachstellen_von_Lenksystemen_in_der_LW.pdf. Accessed on [2018-06-04]

Zhang X, Liu D, Fan C, Du J, Meng F, Fang J. A novel and smart automatic light-seeking flowerpot for monitoring flower growth environment. Int J Agric & Biol Eng, 2018; 11(2): 184–189.

Gao Z R, Ni J, Zhu Y, Jiang Q, Cao W X. Water-efficient sensing method for soil profiling in the paddy field. Int J Agric & Biol Eng, 2018; 11(4): 207–216.

Li J B, Zhu R G, Chen B Q. Image detection and verification of visual navigation route during cotton field management period. Int J Agric & Biol Eng, 2018; 11(6): 159–165.

Stajnko D, Narodoslawsky M, Lakota M. Ecological Footprints and CO2 Emissions of Tomato Production in Slovenia. Pol. J. Environ. Stud., 2016; 25(3): 1243.

Review of the activities of the environment and spatial planning ministry. Available online: http://www.mop.gov.si/fileadmin/mop.gov.si/pageuploads/ publikacije/en/pregled_dela_06_en.pdf, 2016. Accessed on [2018-08-13]

GPS Visualizer: Do it yourself mapping. Available online: http://www.gpsvisualizer.com/, 2002. Accessed on [2018-07-28]

Chivenge P P, Murwirra H K, Gillerc K E, Mapfumod P, Sixb J. Long-term impact of reduced tillage and residue management on soil carbon stabilization: Implications for conservation agriculture on contrasting soils. Soil and Tillage Research, 2007; 94(2): 337.

Kettl K H. SPI on Web. Available online: http://spionweb.tugraz.at/ SPIonWeb_Stepbystep_eng.pdf/, 2013. Accessed on [2018-06-13]

Brückner M. Ein Erfahrungsbericht der Seydaland. Available online: https://www.landwirtschaft.sachsen.de/landwirtschaft/download/Vortrag_Betrieb_Seydaland_Agrar_GmbH_2010.pdf, 2010. Accessed on [2018-07-21]

Bravo G, Lopez D, Vasquez M, Iriarte A. Carbon Footprint Assessment of Sweet Cherry Production: Hotspots and Improvement Options. Pol. J. Environ. Stud., 2017; 26(2): 559–566.

Gan Y, Liang C, Chai Q, Lemke R L, Campbell C A, Zentner R P. Improving farming practices reduce the carbon footprint of spring wheat production. Nat. Commun, 2017; 5: 5012.

Zhang D, Shen J, Zhang F, Li Y, Zhang W. Carbon footprint of grain production in China. Scientific Reports, 2017; 7: 4126.

Chang L, Herb C, Qiang C, Yantai G. Farming tactics to reduce the carbon footprint of crop cultivation in semiarid areas. A review. Agronomy for Sustainable Development, Springer Verlag/EDP Sciences/INRA, 2016; 36: 69.




Copyright (c) 2019 International Journal of Agricultural and Biological Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

2023-2026 Copyright IJABE Editing and Publishing Office