Reduction of environmental pollution by using RTK-navigation in
Abstract
Keywords: precision farming, RTK technology, ecological footprint, environmental pollution, tillage
DOI: 10.25165/j.ijabe.20191205.4932
Citation: Kelc D, Stajnko D, Berk P, Rakun J, Vindiš P, Lakota M. Reduction of environmental pollution by using RTK-navigation in soil cultivation. Int J Agric & Biol Eng, 2019; 12(5): 173–178.
Keywords
Full Text:
PDFReferences
Shamshiri R R, Weltzien C, Hameed I A, Yule I J, Grift T E, Balasundram S K, et al. Research and development in agricultural robotics: A perspective of digital farming. Int J Agric & Biol Eng, 2018; 11(4): 1–14.
Bechara A, Vigneaultb C. Agricultural robots for field operations. Part 2: Operations and systems. Biosystems Engineering, 2017; 153: 110–128.
RTK Farming. Available online: http://www.rtkfarming.co.uk/. Accessed on [2018-06-07]
Slaughter D C, Giles D K, Downey D. Autonomous robotic weed control systems. Computers and Electronics in Agriculture, 2008; 61(1): 63–78.
Monaco T J, Grayson A S, Sanders D C. Influence of four weed species on the growth, yield, and quality of direct-seeded tomatoes (Lycopersicon esculentum). Weed Science, 1981; 29(4): 394–397.
Jin X, Li Q W, Zhao K X, Zhao B, He Z T, Qiu Z M. Development and test of an electric precision seeder for small-size vegetable seeds. Int J Agric & Biol Eng, 2019; 12(2): 75–81.
Kviz Z, Kroulik M, Chyba J. Soil damage reduction and more environmental friendly agriculture by using advanced machinery traffic. Agronomy Research, 2014; 12(1): 121–128.
Lopotz H. Precision farming. rehnen sich die investitionen? Available online: https://www.landwirtschaftskammer.de/duesse/rueckblick/pdf/ 2013-06-19-rentabilitaet-pf.pdf. Accessed on [2018-03-20]
Landerl G. Untersuchungen zum Nutzen und zu Genauigkeiten von GPS-gestützten Parallelfahrsystemen (Lenkhilfe, Lenkas-sistent und Lenkautomat) bei Traktoren. Wien, Universität für Bodenkultur. Available online: file:///C:/Users/damijan/Downloads/fulltext_7467.pdf, 2009. Accessed on [2018-05-21]
Holpp M, Anken T, Sauter M, Kroulik M, Hensel O. Nutzen automatischer Lenksysteme, Forschungsanstalt Agroscope Reckenholz-Tänikon. Available online: https://www.bioaktuell.ch/fileadmin/documents/ba/ Pflanzenbau/Praezisionslandwirtschaft/ART-Bericht-756-d-2012_Holpp-et-al_Nutzen-Lenksysteme.pdf. Accessed on [2018-05-24]
Reckleben Y. Vorzüge und Schwachstellen von Lenksystemen in der Landwirtschaft. Available online: https://www.landwirtschaft.sachsen.de/ landwirtschaft/download/Vorzuege_und_Schwachstellen_von_Lenksystemen_in_der_LW.pdf. Accessed on [2018-06-04]
Zhang X, Liu D, Fan C, Du J, Meng F, Fang J. A novel and smart automatic light-seeking flowerpot for monitoring flower growth environment. Int J Agric & Biol Eng, 2018; 11(2): 184–189.
Gao Z R, Ni J, Zhu Y, Jiang Q, Cao W X. Water-efficient sensing method for soil profiling in the paddy field. Int J Agric & Biol Eng, 2018; 11(4): 207–216.
Li J B, Zhu R G, Chen B Q. Image detection and verification of visual navigation route during cotton field management period. Int J Agric & Biol Eng, 2018; 11(6): 159–165.
Stajnko D, Narodoslawsky M, Lakota M. Ecological Footprints and CO2 Emissions of Tomato Production in Slovenia. Pol. J. Environ. Stud., 2016; 25(3): 1243.
Review of the activities of the environment and spatial planning ministry. Available online: http://www.mop.gov.si/fileadmin/mop.gov.si/pageuploads/ publikacije/en/pregled_dela_06_en.pdf, 2016. Accessed on [2018-08-13]
GPS Visualizer: Do it yourself mapping. Available online: http://www.gpsvisualizer.com/, 2002. Accessed on [2018-07-28]
Chivenge P P, Murwirra H K, Gillerc K E, Mapfumod P, Sixb J. Long-term impact of reduced tillage and residue management on soil carbon stabilization: Implications for conservation agriculture on contrasting soils. Soil and Tillage Research, 2007; 94(2): 337.
Kettl K H. SPI on Web. Available online: http://spionweb.tugraz.at/ SPIonWeb_Stepbystep_eng.pdf/, 2013. Accessed on [2018-06-13]
Brückner M. Ein Erfahrungsbericht der Seydaland. Available online: https://www.landwirtschaft.sachsen.de/landwirtschaft/download/Vortrag_Betrieb_Seydaland_Agrar_GmbH_2010.pdf, 2010. Accessed on [2018-07-21]
Bravo G, Lopez D, Vasquez M, Iriarte A. Carbon Footprint Assessment of Sweet Cherry Production: Hotspots and Improvement Options. Pol. J. Environ. Stud., 2017; 26(2): 559–566.
Gan Y, Liang C, Chai Q, Lemke R L, Campbell C A, Zentner R P. Improving farming practices reduce the carbon footprint of spring wheat production. Nat. Commun, 2017; 5: 5012.
Zhang D, Shen J, Zhang F, Li Y, Zhang W. Carbon footprint of grain production in China. Scientific Reports, 2017; 7: 4126.
Chang L, Herb C, Qiang C, Yantai G. Farming tactics to reduce the carbon footprint of crop cultivation in semiarid areas. A review. Agronomy for Sustainable Development, Springer Verlag/EDP Sciences/INRA, 2016; 36: 69.
Copyright (c) 2019 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.