Development of a high-productivity grafting robot for Solanaceae
Abstract
Keywords: robotic, productivity improvement, simultaneous multi-plant grafting, negative pressure feeding
DOI: 10.25165/j.ijabe.20201301.5209
Citation: Xie Z J, Gu S, Chu Q, Li B, Fan K J, Yang Y L, et al. Development of a high-productivity grafting robot for Solanaceae. Int J Agric & Biol Eng, 2020; 13(1): 82–90.
Keywords
Full Text:
PDFReferences
Lee J M. Cultivation of grafted vegetables I. current status, grafting methods, and benefits. HortScience: a publication of the American Society for Horticultural Science, 1994; 29(4): 235–239.
Lee J M, Kubota C, Tsao S J, Bie Z, Echevarria P H, Morra L, et al. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Horticulturae, 2010; 127(2): 93–105.
Rivard C L, Louws F J. Grafting to manage soilborne diseases in heirloom tomato production. HortScience, 2008; 43(7): 2104–2111.
Oda M. Grafting of vegetables to improve greenhouse production. Extension Bulletin, 1999; 480: 1–11.
Yetisir H, Sari N. Effect of different rootstock on plant growth, yield and quality of watermelon. Australian Journal of Experimental Agriculture, 2003; 43(10): 1269.
Gu S, Jiang L B. Development of domestic and foreign vegetable grafting robot. Northeast Agric. Univ., 2007; 6: 847–851. (in Chinese)
Liu T Y. Current survey of seeding equipment and contrastive analysis of mechanical and artificial. Northwest A&F University, 2013. (in Chinese)
Ito T. Present state of transplant production practices in Japanese horticultural industry. Transpl. Prod. Syst., 2011: 85: 65–82.
Kurata K. Cultivation of grafted vegetables. II. Development of grafting robots in Japan. HortScience, 1994; 29(4): 240–244.
Kondo N, Monta M, Noguchi N. Agri-Robot(II) —Mechanisms and Practice. Tokyo: Conrona Publising Co, Ltd, 2006.
Nishiura Y, Murase H, Honami N, Taira T. Development of a gripper for a plug-in grafting robot system. Acta horticulturae, 1996; 440: 475–480.
Helper Robotech Co., Ltd. https://helpersys.en.ec21.com/. Accessed on [2019-01-03].
Kubota C, Mcclure M A, Kokalis-Burelle N, Bausher M G, Rosskopf E N. Vegetable grafting: history, use, and current technology status in North America. HortScience: a publication of the American Society for Horticultural Science, 2008; 43(6): 1664–1669.
Tian S B, Xu D L. Current status of grafting robot for vegetable. Proc. 2011 Int. Conf. Electron. Mech. Eng. Inf. Technol. EMEIT 2011; 2011(4): 1954–1957.
Huang Y, Kong Q S, Chen F, Bie Z L. The history, current status and future prospects of vegetable grafting in China. Acta Hortic., 2015; 1086: 31–39.
Gu S. Modern production equipment and technology of facility horticulture. Beijing: China Agricultural Publishing House, 2015. (in Chinese)
Zhang L, Wang Z L, Zhang L. Experimental study on an automatic graft robot for fruits and vegetables. Advanced Materials Research, 2011; 186: 79–83.
ISO Group. http://www.iso-group.nl. Accessed on [2019-01-03].
Pekkeriet E J, Van Henten E J. Current developments of high-tech robotic and mechatronic systems in horticulture and challenges for the future. Acta Horticulturae, 2011; 893: 85–94.
Atlantic Man. Group of manufacturers. Grafting robot universale ‘GR 300/3’(Patented). http://tech.atlanticgroup.it/prodotti/grafting-rob. Accessed on [2019-01-03].
Comba L, Gay P, Ricauda Aimonino D. Robot ensembles for grafting herbaceous crops. Biosyst. Eng., 2016; 146: 227–239.
Conic System. www.conic-system.com. Accessed on [2019-01-03].
Chen S, Chiu Y C, Chang Y C. Development of a tubing-grafting robotic system for fruit-bearing vegetable seedlings. Appl. Eng. Agric., 2013; 26(4): 707–714.
Chiu Y C, Chen S, Chang Y C. Development of a Circular Grafting Robotic System for Watermelon Seedlings. Appl. Eng. Agric., 2013; 26(6): 1077–1084.
Zhang T Z. Studies on techniques of automatic grafting of vegetables: I. characteristics research on grafted seedlings and selection of mechanical automatic grafting alternatives. Transactions of the CSAE, 1996(6): 26–29. (in Chinese)
Gu S. Development of 2JC-350 automatic grafting machine with cut grafting method for vegetable seedling. Trans-actions of the CSAE, 2006; 22(12): 103–106. (in Chinese)
Gu S, Liu B W, Wang X Y, Yu J C, Yang Y L. Production test of 2JC-500 automatic grafting machine for watermelon. Transactions of the CSAE, 2008; 24(12): 84–88. (in Chinese)
Chu Q, Jiang K, Liu K, Gu S. Experimental study on 2JC-600 automatic grafting machine. Journal of Agricultural Mechanization Research, 2011; 33(1): 183–185, 189. (in Chinese)
Xiang W C, Zhang L, Wu C Y, Li J P. Design of control system to direct insert type automatic grafting machine. Mechanical & Electrical Engineering Magazine, 2009; 26(10): 52-53, 61. (in Chinese)
Tong J H, Ding Y H, Wu C Y. Design and experiment of key mechanism for semi-automatic vegetable grafting machine. J. Agric. Mach., 2018; 10: 65–72. (in Chinese)
Chiu Y C, Chang M Y, Wu G J, Chen C C. Development of an automatic outward-feature properties measurement system for grafted tomato seedlings. Applied Engineering in Agriculture, 2008; 24(1): 101–114.
Chang Y C, Chen S, Chiu Y C, Lin L H, Chang Y S. Growth and union acclimation process of sweet pepper grafted by a tubing-grafting robotic system. Horticulture, Environment and Biotechnology, 2012; 53(2): 93–101.
Tian S B, Ashraf M A, Kondo N, Shiigi T, Momin M A. Optimization of machine vision for tomato grafting robot. Sensor Letters, 2013; 11(6-7): 1190–1194.
Tian S B, Wang Z F, Yang J F, Huang Z C, Wang R L, Wang L P, et al. Development of an automatic visual grading system for grafting seedlings. Advances in Mechanical Engineering, 2017; 9(1): 168781401668626.
Ashraf M A, Kondo N, Tomoo S. Use of machine vision to sort tomato seedlings for grafting robot. Engineering in Agriculture, Environment and Food, 2011; 4(4): 119–125.
Peng Y P, Gu S, Chu Q, Zhang Q, Xu X P, Li B, et al. Design of stock feeding device of grafting robot for Solanaceae. Transactions of the CSAE, 2016; 32(11): 76–82. (in Chinese)
Li B, Gu S, Chu Q, Lü Y J, Hu J S, Xie Z J, et al. Design and experiment on manipulator for transplanting leaf vegetables seedling cultivated by coco-peat. Transactions of the CSAE, 2017; 33(14): 18–24. (in Chinese)
Wang Y, Yu H. Experiment and analysis of impact factors for soil matrix intact rate of manipulator for picking-up plug seedlings. Transactions of the CSAE, 2015; 31(14): 65–71. (in Chinese)
Yang Y L, Liu K, Chu Q, Zhong L X, Jia D D, Gu S. Air suction clamp structure of rootstock cotyledons for inclined inserted grafting machine and its optimized experiment of operation parameters. Transactions of the CSAE, 2014; 30(4): 25–31. (in Chinese)
Copyright (c) 2020 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.