Integration of optical and SAR remote sensing images for crop-type mapping based on a novel object-oriented feature selection method
Abstract
Keywords: crop-type mapping, synthetic aperture radar (SAR), high-resolution remote sensing, image segmentation, feature subset selection, object-oriented classification
DOI: 10.25165/j.ijabe.20201301.5285
Citation: Cui J T, Zhang X, Wang W S, Shen Y. Integration of optical and SAR remote sensing images for crop-type mapping based on a novel object-oriented feature selection method. Int J Agric & Biol Eng, 2020; 13(1): 178–190.
Keywords
Full Text:
PDFReferences
Mokhtari A, Noory H, Vazifedoust M. Improving crop yield estimation by assimilating LAI and inputting satellite-based surface incoming solar radiation into SWAP model. Agricultural and Forest Meteorology, 2018; 250: 159-170.
Gallego F J, Kussul N, Skakun S, Kravchenko O, Shelestov A, Kussul O. Efficiency assessment of using satellite data for crop area estimation in Ukraine. International Journal of Applied Earth Observation and Geoinformation, 2014; 29: 22-30.
Chen Y L, Song X D, Wang S S, Huang J F, Mansaray L R. Impacts of spatial heterogeneity on crop area mapping in Canada using MODIS data. ISPRS Journal of Photogrammetry and Remote Sensing, 2016; 119: 451-461.
He Y H Z, Wang C L, Chen F, Jia H C, Liang D, Yang A Q. Feature comparison and optimization for 30-m winter wheat mapping based on Landsat-8 and Sentinel-2 data using random forest algorithm. Remote Sensing, 2019:11(5): 535.
Asgarian A, Soffianian A, Pourmanafi S. Crop type mapping in a highly fragmented and heterogeneous agricultural landscape: A case of central Iran using multi-temporal Landsat 8 imagery. Computers and Electronics in Agriculture, 2016; 127: 531-540.
Lessel J, Ceccato P. Creating a basic customizable framework for crop detection using Landsat imagery. International Journal of Remote Sensing, 2016; 37(24): 6097-6107.
Clauss K, Ottinger M, Leinenkugel P, Kuenzer C. Estimating rice production in the Mekong Delta, Vietnam, utilizing time series of Sentinel-1 SAR data. International Journal of Applied Earth Observation and Geoinformation, 2018; 73: 574-585.
Guo J, Wei P L, Liu J, Jin B, Su B F, Zhou Z S. Crop Classification based on differential characteristics of H/alpha scattering parameters for multitemporal quad- and dual-polarization SAR images. IEEE Transactions on Geoscience and Remote Sensing, 2018; 56 (10): 6111-6123.
Panigrahy S, Jain V, Patnaik C, Parihar J S. Identification of Aman rice crop in Bangladesh using temporal C-band SAR - a feasibility study. Journal of the Indian Society of Remote Sensing, 2012; 40 (4): 599-606.
Saich P, Borgeaud M. Interpreting ERS SAR signatures of agricultural crops in Flevoland, 1993-1996. IEEE Transactions on Geoscience and Remote Sensing, 2000; 38(2): 651-657.
Hong G, Wang S S, Li J H, Huang J F. Fully polarimetric Synthetic Aperture Radar (SAR) processing for crop type identification. Photogrammetric Engineering and Remote Sensing, 2015; 81(2): 109-117.
Silva W F, Rudorff B F T, Formaggio A R, Paradella W R, Mura J C, Simulated multipolarized MAPSAR images to distinguish agricultural crops. Scientia Agricola, 2012; 69(3): 201-209.
Li H P, Zhang C, Zhang S Q, Atkinson P M. Full year crop monitoring and separability assessment with fully-polarimetric L-band UAVSAR: A case study in the Sacramento Valley, California. International Journal of Applied Earth Observation and Geoinformation, 2019; 74: 45-56.
McNairn H, Champagne C, Shang J, Holmstrom D, Reichert G. Integration of optical and Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 2009; 64(5): 434-449.
Yang H, Yang G J, Gaulton R, Zhao C J, Li Z H, Taylor J, et al. In-season biomass estimation of oilseed rape (Brassica napus L.) using fully polarimetric SAR imagery. Precision Agriculture, 2019; 20(3): 630-648.
Uppala D, Kothapalli R V, Poloju S, Mullapudi S, Dadhwal V K. Rice Crop discrimination using single date RISAT1 hybrid (RH, RV) polarimetric data. Photogrammetric Engineering and Remote Sensing, 2015; 81(7): 557-563.
Cable J W, Kovacs J M, Jiao X F, Shang J L. Agricultural monitoring in northeastern Ontario, Canada, using multi-temporal polarimetric RADARSAT-2 data. Remote Sensing, 2014; 6(3): 2343-2371.
Engelbrecht J, Kemp J, Inggs M. The phenology of an agricultural region as expressed by polarimetric decomposition and vegetation indices. In 2013 IEEE International Geoscience and Remote Sensing Symposium, 2013; pp.3339-3342.
Haldar D, Patnaik C. Synergistic use of multi-temporal Radarsat SAR and AWiFS data for Rabi rice identification. Journal of the Indian Society of Remote Sensing, 2010; 38(1): 153-160.
Jiao X F, Kovacs J M, Shang J L, McNairn H, Walters D, Ma B L, et al. Object-oriented crop mapping and monitoring using multi-temporal polarimetric RADARSAT-2 data. ISPRS Journal of Photogrammetry and Remote Sensing, 2014; 96: 38-46.
Forkuor G, Conrad C, Thiel M, Ullmann T, Zoungrana E. Integration of optical and Synthetic Aperture Radar imagery for improving crop mapping in northwestern Benin, west Africa. Remote Sensing, 2014; 6(7): 6472-6499.
Ameline M, Fieuzal R, Betbeder J, Berthoumieu J F, Baup F. Estimation of corn yield by assimilating SAR and optical time series into a simplified agro-meteorological Model: from diagnostic to forecast. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018; 11(12): 4747-4760.
Lu L Z, Tao Y, Di L P. Object-based plastic-mulched landcover extraction using integrated Sentinel-1 and Sentinel-2 data. Remote Sensing, 2018; 10(11): 1820.
Steinhausen M J, Wagner P D, Narasimhan B, Waske B. Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions. International Journal of Applied Earth Observation and Geoinformation, 2018; 73: 595-604.
De Alban J D T, Connette G M, Oswald P, Webb E L. Combined Landsat and L-band SAR data improves land cover classification and change detection in dynamic tropical landscapes. Remote Sensing, 2018; 10(2): 306
Zhang J X, Yang J H, Zhao Z, Li H T, Zhang Y H. Block-regression based fusion of optical and SAR imagery for feature enhancement. International Journal of Remote Sensing, 2010; 31(9): 2325-2345.
Hong G, Zhang Y, Mercer B. A wavelet and IHS integration method to fuse high resolution SAR with moderate resolution multispectral images. Photogrammetric Engineering and Remote Sensing, 2009; 75(10): 1213-1223.
Rajah P, Odindi J, Mutanga O. Feature level image fusion of optical imagery and Synthetic Aperture Radar (SAR) for invasive alien plant species detection and mapping. Remote Sensing Applications: Society and Environment, 2018; 10: 198-208.
Deledalle C A, Denis L, Tabti S, Tupin F. MuLoG, or how to apply Gaussian denoisers to multi-channel SAR speckle reduction? Ieee Transactions on Image Processing, 2017; 26(9): 4389-4403.
Prudente V H R, da Silva B B, Johann J A, Mercante E, Oldoni L V. Comparative assessment between per-pixel and object-oriented for mapping land cover and use. Engenharia Agricola, 2017; 37(5): 1015-1027.
Frery A C, Correia A H, Freitas C D. Classifying multifrequency fully polarimetric imagery with multiple sources of statistical evidence and contextual information. IEEE Transactions on Geoscience and Remote Sensing, 2007; 45(10): 3098-3109.
Boudaren M E Y, An L, Pieczynski W. Unsupervised segmentation of SAR images using Gaussian mixture-hidden evidential Markov fields. IEEE Geoscience and Remote Sensing Letters, 2016; 13(12): 1865-1869.
Huang S Q, Huang W Z, Zhang T. A new SAR image segmentation algorithm for the detection of target and shadow regions. Scientific Reports, 2016, 6.
Wu Q, Zhong R F, Zhao W J, Song K, Du L M. Land-cover classification using GF-2 images and airborne Lidar data based on Random Forest. International Journal of Remote Sensing, 2019; 40(5-6): 2410-2426.
Zhang M M, Chen F, Tian B S. Glacial lake detection from GaoFen-2 multispectral imagery using an integrated nonlocal active contour approach: a case study of the Altai Mountains, northern Xinjiang province. Water, 2018; 10(4): 455.
Wang Z H, Yang X M, Liu Y M, Lu C. Extraction of coastal raft cultivation area with heterogeneous water background by thresholding object-based visually salient NDVI from high spatial resolution imagery. Remote Sensing Letters, 2018; 9(9): 839-846.
Vermote E F, Tanre D, Deuze J L, Herman M, Morcrette J J. Second simulation of the satellite signal in the solar spectrum, 6S: an overview. Ieee Transactions on Geoscience and Remote Sensing ,1997; 35(3): 675-686.
Lee J S, Grunes M R, de Grandi G. Polarimetric SAR speckle filtering and its implication for classification. IEEE Transactions on Geoscience and Remote Sensing, 1999; 37(5): 2363-2373.
McCoy R M. Field methods in remote sensing; Guilford Press: New York City, NY, USA, 2005.
Woodcock C E, Strahler A H. The factor of scale in remote-sensing. Remote Sensing of Environment, 1987; 21(3): 311-332.
Woodcock C E, Strahler A H, Jupp D L B. The use of variograms in remote sensing: I. Scene models and simulated images. Remote Sensing of Environment, 1988; 25(3): 323-348.
Canisius F, Shang J L, Liu J G, Huang X D, Ma B L, Jiao X F, et al. Tracking crop phenological development using multi-temporal polarimetric Radarsat-2 data. Remote Sensing of Environment ,2018; 210: 508-518.
Cloude S R, Pottier E. A review of target decomposition theorems in radar polarimetry. IEEE Transactions on Geoscience and Remote Sensing, 1996; 34(2): 498-518.
Freeman A, Durden S L. A three-component scattering model for polarimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing, 1998; 36(3): 963-973
Vanzyl J J. Application of Cloude's target decomposition theorem to polarimetric imaging radar data. Proc. SPIE, 1993; 184: 184–191.
Krogager E. New decomposition of the radar target scattering matrix. Electronics Letters, 1990; 26(18): 1525-1527.
Lee J S, Pottier E. Polarimetric radar imaging from basics to applications. Boca Raton: CRC Press Taylor and Francis Group, 2009; pp.214–215.
Barnes R M. Roll-invariant decompositions for the polarization covariance matrix. In Proceedings of Polarimetry Technology Workshop, Huntsville, AL, 1998; pp.371-389.
Holm W A, Barnes R M. On radar polarization mixed target state decomposition techniques. In Proceedings of the IEEE National Radar Conference, Ann Arbor, MI, USA, 20–21 April 1988; pp.249–254.
Yamaguchi Y, Moriyama T, Ishido M, Yamada H. Four-component scattering model for polarimetric SAR image decomposition. IEEE Transactions on Geoscience and Remote Sensing, 2005; 43(8): 1699-1706.
Huynen J R. Phenomenological theory of radar targets. PhD Dissertation, Tech. Univ. Delft, Delft, The Netherlands, 1970.
Neumann M, Ferro-Famil L, Pottier E. A general model based polarimetric decomposition scheme for vegetated areas. In Proceedings of the 4th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry (ESRIN), Frascati, Italy, 26–30 January, 2009.
Cloude S R, Pottier E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Transactions on Geoscience and Remote Sensing, 1997; 35(1): 68-78.
Shaban M A, Dikshit O. Improvement of classification in urban areas by the use of textural features: the case study of Lucknow city, Uttar Pradesh. International Journal of Remote Sensing, 2001; 22(4): 565-593.
Feldens P. Sensitivity of texture parameters to acoustic incidence angle in multibeam backscatter. Ieee Geoscience and Remote Sensing Letters, 2017; 14(12): 2215-2219.
Li C R, Guan X Y, Yang P H, Huang Y Y, Huang W, Chen H F. CDF space covariance matrix of Gabor wavelet with convolutional neural network for texture recognition. IEEE Access, 2019; 7: 30693-30701.
Chen M, Strobl J. Multispectral textured image segmentation using a multi-resolution fuzzy Markov random field model on variable scales in the wavelet domain. International Journal of Remote Sensing, 2013; 34(13): 4550-4569.
Robnik-Šikonja M, Kononenko I. Theoretical and empirical analysis of Relief F and RRelief F. Machine Learning, 2003; 53(1): 23-69.
Peng H C, Long F H, Ding C. Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005; 27(8): 1226-1238.
Chen X, Gu Y F. Class-specific feature selection with local geometric structure and discriminative information based on sparse similar samples. Ieee Geoscience and Remote Sensing Letters, 2015; 12(7): 1392-1396.
Kim K J, Ahn H. A corporate credit rating model using multi-class support vector machines with an ordinal pairwise partitioning approach. Computers & Operations Research, 2012; 39(8): 1800-1811.
Roli F, Fumera G. Support vector machines for remote-sensing image classification. In Image and Signal Processing for Remote Sensing Vi, Serpico S B, Ed. 2001; Vol. 4170, pp.160-166.
Moller M, Lymburner L, Volk M. The comparison index: A tool for assessing the accuracy of image segmentation. International Journal of Applied Earth Observation and Geoinformation, 2007; 9(3): 311-321.
Keerthi S S, Lin C J. Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Computation, 2003; 15(7): 1667-1689.
Congalton R G. Accuracy assessment and validation of remotely sensed and other spatial information. International Journal of Wildland Fire, 2001; 10(3-4): 321-328.
Skakun S, Kussul N, Shelestov A Y, Lavreniuk M, Kussul O. Efficiency assessment of multitemporal C-band Radarsat-2 intensity and Landsat-8 surface reflectance satellite imagery for crop classification in Ukraine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016; 9(8): 3712-3719.
Liu J, Ji S, Ye J. SLEP: Sparse learning with efficient projections. Tempe, AZ, USA: Arizona State Univ., 2009.
Copyright (c) 2020 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.