Superpixel-based segmentation algorithm for mature citrus
Abstract
Keywords: superpixel, image segmentation, BPNN, variable illumination, mature citrus
DOI: 10.25165/j.ijabe.20201304.5607
Citation: Yang Q H, Chen Y Q, Xun Y, Bao G J. Superpixel-based segmentation algorithm for mature citrus. Int J Agric & Biol Eng, 2020; 13(4): 166–171.
Keywords
Full Text:
PDFReferences
Zhang S B, Bao G J, Yang Q H, Chen L. Study on mechanical properties of citrus bases on robotic harvesting. Journal of Zhejiang University of Technology, 2012; 40(3): 340–344.
Sanders K F. Orange harvesting systems review. Biosystems Engineering, 2005; 90(2): 115–125.
Gongal A, Amatya S, Karkee M, Zhang Q, Lewis K. Sensors and systems for fruit detection and localization: A review. Computers and Electronics in Agriculture, 2015; 116: 8–19.
Fathallah, Fadi A. Musculoskeletal disorders in labor-intensive agriculture. Applied Ergonomics, 2010; 41(6): 738–743.
Li P L, Lee S H, Hsu H Y. Review on fruit harvesting method for potential use of automatic fruit harvesting systems. International Conference on Power Electronics and Engineering Application, 2011; 23: 351–366.
Feng Q C, Cheng W, Zhou J J, Wang X. Design of structured-light vision system for tomato harvesting robot. Int J Agric & Biol Eng, 2014; 7(2): 19–26.
Sun G X, Li Y B, Wang X C, Hu G Y, Wang X, Zhang Y. Image segmentation algorithm for greenhouse cucumber canopy under various natural lighting conditions. Int J Agric & Biol Eng, 2016; 9(3): 130–138.
Zhang Y J, Deng L, Li M Z. Estimation of citrus yield based on imageprocessing. Transactions of the CSAM, 2009; 40(9): 97–99. (in Chinese)
Cai J R, Zhou X J, Li Y L, F J. Recognition of mature oranges in natural scene based on machine vision. Transactions of the CSAE, 2008; 24(1): 175–178. (in Chinese)
Li Y, Yang C H, Hu Y C, Zhang H, Yang Y. Overlapping citrus target recognition and localization method based on convex shell and distance transformation. Modern Manufacturing Engineering, 2018; (9): 82–87. (in Chinese)
Zhao D A, Liu X Y, Chen Y, Ji W, Jia W K, Hu C L. Image recognition at night for apple picking robot. Transactions of the CSAM, 2015; 46(3): 15–22. (in Chinese).
Lu J, Sang N. Detecting citrus fruits and occlusion recovery under natural illumination conditions. Computers and Electronics in Agriculture, 2005; 110:121–130.
Lü Q, Cai J R, Liu B, Deng L, Zhang Y J. Identification of fruit and branch in natural scenes for citrus harvesting robot using machine vision and support vector machine. Int J Agric & Biol Eng, 2014; 7(2): 115–121.
Lin G C, Tang Y C, Zou X J, Li J H, Xiong J T. In-field citrus detection and localization based on RGB-D image analysis. Biosystems Engineering, 2019; 186: 34–44.
Liu T H, Ehsani R, Toudeshki A, Zou X J, Wang H J. Detection of citrus fruit and tree trunks in natural environments using a multi-elliptical boundary model. Computers in Industry, 2018; 99: 9–16.
Zhuang J J, Luo S M, Hou C J, Tang Y, He Y, Xue X Y. Detection of orchard citrus fruits using a monocular machine vision-based method for automatic fruit picking applications. Computers and Electronics in Agricultures, 2018; 152: 64–73.
Bansal R, Lee W S, Satish S. Green citrus detection using fast Fourier transform (FFT) leakage. Precision Agriculture, 2013; 14(1): 59–70.
Sengupta S, Lee W S. Identification and determination of the number of immature green citrus fruit in a canopy under different ambient light conditions. Biosystems Engineering, 2014; 117: 51–61.
Wang C L, Lee W S, Zou X J, Choi D, Gan H, Diamond J. Detection and counting of immature green citrus fruit based on the local binary patterns (LBP) feature using illumination-normalized images. Precision Agriculture, 2018; 19(6): 1062–1083.
Lu J, Lee W S, Gan H, Hu X W. Immature citrus fruit detection based on local binary pattern feature and hierarchical contour analysis. Biosystems Engineering, 2018; 171: 78–90.
Song X Y, Zhou L L, Li Z G, Chen J, Zeng L, Yan B. Review on superpixel methods in image segmentation. Journal of Image and Graphics, 2015; 20(5): 599–608.
Yang F, Lu H C, Yang M H. Robust superpixel tracking. IEEE Transaction on Image Process, 2014; 23(4): 1639–1651.
Jiang J J, Ma J Y, Chen C, Wang Z Y, Cai Z H, Wang L Z. SuperPCA: A superpixelwise PCA approach for unsupervised feature extraction of hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 2018; 56(8): 4581–4593.
Zhou J, Zhu J R, Wang M J. Pear orchard scene segmentation based on conditional random fields. Transactions of the CSAM, 2015; 46(2): 8–13. (in Chinese)
Xu W Y, Tian G Z, Ji C Y, Zhang B, Jiang S J, Zhang C. FSLIC superpixel segmentation algorithm for apple image in natural scene. Transactions of the CSAM, 2016; 47(9): 1–10, 28. (in Chinese)
Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012; 34(11): 2274–2282.
Liu M Y, Tuzel O, Ramalingam S, Chellappa R. Entropy rate superpixel segmentation. IEEE International Conference on Computer Vision and Pattern Recognition, 2011; pp.2097–2104.
Yang Q H, Luo S L, Chang C, Xun Y, Bao G J. Segmentation algorithm for Hangzhou white chrysanthemums based on least squares support vector machine. Int J Agric & Biol Eng, 2019; 12(4): 127–134.
Gao D Q. On structures of supervised linear basis function feedforward three-layered neural networks. Chinese J. Computers, 1998; 21(1): 80–86. (in Chinese)
Sun Y P, Liu M, Wu C. Intelligent prediction algorithm of trim beam number in colored textile manufacturing process. Control Engineering of China, 2005; 12(6): 523–526. (in Chinese)
Shen X L, Zhang J S. Research of intrusion detection based on the BP networks and the improved PSO algorithm. Computer Engineering & Science, 2010; 32(6): 34–36, 73. (in Chinese)
Copyright (c) 2020 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.