Effects of temperature, pH and O2 on the removal of hydrogen sulfide from biogas by external biological desulfurization in a full scale fixed-bed trickling bioreactor (FBTB)
DOI:
https://doi.org/10.25165/ijabe.v6i1.615Keywords:
external biological desulfurization, fixed-bed trickling bioreactor (FBTB), H2S removal efficiency (RE), hydrogen sulfide, biogas, full scale biogas research plantAbstract
Hydrogen sulfide (H2S) is a critical component of biogas formed under anaerobic conditions by sulfur and sulfate reducing bacteria from animal manure and renewable energy crops. H2S causes high corrosion in equipment, has a negative environmental impact, inhibits the biogas formation process and is furthermore odorous and toxic. Although several methods for internal and external desulfurization found their way into practice and had been explored at laboratory scale, no data were available on the performance of such methods in full scale practice, especially for an external fixed-bed trickling bioreactor (FBTB). The effects of temperature, pH and air ratio on H2S removal efficiency (RE) were studied. The study was conducted at a research biogas plant with a given output of 96 m3 biogas per hour, and an H2S concentration ranging between 500 ppm and 600 ppm (1 ppm=1 cm3/m3) on average. The FBTB column has been designed to hold a packing volume of 2.21 m3 at a gas retention time of 84 seconds being loaded at an average of 32.88 g H2S/(m3?h). The highest H2S RE of 98% was found at temperatures between 30References
Europarl and Council. Directive 2009/28/EC of the European Parliament and of the Council. OJ 2009:140/16-140/62.
Statistisches Bundesamt. Erneuerbare Energien in Europa. Wiesbaden. 2011. 7 p.
BMU. Erneuerbare Energien in Zahlen. Berlin: Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit. 2011. 136 p.
German Biogas Association. Biogas Segment Statistics 2011. Freising: German Biogas Association. 2012. http://www.biogas.org/edcom/webfvb.nsf/id/DE_Branchenzahlen/$file/12-06-12_Biogas%20Branchenzahlen%202011_eng.pdf. Accessed on [2012-08-06].
DBFZ. Ausbau der Kapazitäten bei Biogasanlagen übertrifft 2011 die Vorjahre. Leipzig: DBFZ. 2012. http://www.dbfz.de/web/fileadmin/user_upload/Presseinformationen/2012/PM_Biogasanlagen_FINAL.pdf. Accessed on [2012-07-06].
BayLfU. The Bavarian Biogas Handbook: A volume of material. Augsburg: Bayerisches Landesamt für Umwelt. 2007. 90 p.
Kaltschmitt M, Hartmann H, Hofbauer H. Energie aus Biomasse. Berlin/Heidelberg: Springer-Verlag. 2001. 770 p.
Abatzoglou N, Boivin S. A review of biogas purification processes. Biofuel Bioprod Biorefining, 2009, 3(1):42-71.
TLL. Merkblatt - Schwefelgehalte in landwirtschaftlichen Kulturpflanzen und organischen Düngerstoffen. Jena: TLL. 1999. http://www.tll.de/ainfo/pdf/sgeh0699.pdf. Accessed on [2012-08-06].
Preißler D, Drochner U, Lemmer A, Oechsner H, Jungbluth T. Schwefelbildung in Biogasanlagen mittels Eisensalzen. Landtechnik, 2010, 65(2):xxx-xxx.
Buisman CJN, Geraats BG, Ijspeert P, Lettinga G. Optimization of sulphur production in a biotechnological sulphide-removing reactor. Biotechnol Bioeng, 1990, 35(1):50-56.
Busca G, Pistarino C. Technologies for the abatement of sulphide compounds from gaseous streams: A comparative overview. J Loss Prev Process Ind, 2003, 16(5):363-371.
Jones A. Metabolic effects of poisoning. Medicine (GBR), 2012, 40(2):55-58.
Schnell H. Störstoffe im Biogas. In: FNR. Gülzower Fachgespräche. Gülzow: Fachagentur Nachwachsende Rohstoffe. 2003. pp. 46-52.
Beil M, Hoffstede U. Guidelines for the implementation and operation of biogas upgrading systems. Kassel: Fraunhofer IWES. 2010. 29 p.
Shareefdeen Z, Herner B, Wilson S. Biofiltration of nuisance sulfur gaseous odors from a meat rendering plant. J Chem Technol Biotechnol, 2002, 77(12):1296-1299.
Gemmeke B, Rieger C, Weidland P, Schröder J. Biogas-Messprogramm II, 61 Biogasanlagen im Vergleich. Guelzow-Pruezen: Fachagentur Nachwachsende Rohstoffe. 2009. 168 p.
N. Mollekopf, A. Polster, J. Brummack. Verbesserung von Entschwefelungsverfahren in landwirtschaftlichen Biogasanlagen. Dresden: Dresden University of Technology. 2006. 112 p.
Prechtl S, Schneider R, Anzer T, Faulstich M. Mikrobiologische Entschwefelung von Biogas. In: FNR. Gülzower Fachgespräche. Gülzow: Fachagentur Nachwachsende Rohstoffe. 2003. pp. 169-183.
Syed M, Soreanu G, Falletta P, Béland M. Removal of hydrogen sulfide from gas streams using biological processes - A review. Can Biosyst Eng, 2006, 48:2.1-2.14.
Chaiprapat S, Mardthing R, Kantachote D, Karnchanawong S. Removal of hydrogen sulfide by complete aerobic oxidation in acidic biofiltration. Process Biochem, 2011, 46(1):344-352.
van Groenestijn JW, Hesselink PGM. Biotechniques for air pollution control. Biodegradation, 1993, 4(4):283-301.
Pesta G, Ruß W. Die zuverlässige Reinigung von Biogas Verfahren und Lösungsansätze. In: Regierung von Niederbayern. Fachtagung "Innovation in der Biogastechnologie". Deggendorf: Fachhochschule Deggendorf. 2004. pp. 99-124.
Smet E, Lens P, Van Langenhove H. Treatment of waste gases contaminated with odorous sulfur compounds. Crit Rev Environ Sci Technol, 1998, 28(1):89-117.
Gabriel D, Deshusses MA. Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control. Proc Natl Acad Sci USA, 2003, 100(11):6308-6312.
Jin Y, Veiga MC, Kennes C. Effects of pH, CO2, and flow pattern on the autotrophic degradation of hydrogen sulfide in a biotrickling filter. Biotechnol Bioeng, 2005, 92(4):462-471.
Gadre RV. Removal of hydrogen sulfide from biogas by chemoautotrophic fixed-film bioreactor. Biotechnol Bioeng, 1989, 34(3):410-414.
Naegele H-, Lemmer A, Oechsner H, Jungbluth T. Endbericht, Zukunftsoffensive IV, Forschungsprojekt "Biogene Gase - Unterer Lindenhof"; Bioenergieforschungsplattform Baden-Württemberg, AP 3: Intensivmessprogramm BGA, Detaillierte Datenerhebung an der Biogasanlage „Unterer Lindenhof“ – Messungen zur Determination der Einflussgrößen auf den Eigenstrombedarf der Biogasanlage, der Nährstoffverteilung im Fermenter sowie den Emissionen des BHKW’s. 2011.
Downloads
Published
How to Cite
Issue
Section
License
IJABE is an international peer reviewed open access journal, adopting Creative Commons Copyright Notices as follows.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).