Effects of temperature, pH and O2 on the removal of hydrogen sulfide from biogas by external biological desulfurization in a full scale fixed-bed trickling bioreactor (FBTB)

Authors

  • Hans-Joachim Naegele University of Hohenheim
  • Jonas Lindner University of Hohenheim
  • Wolfgang Merkle University of Hohenheim
  • Andreas Lemmer University of Hohenheim
  • Thomas Jungbluth University of Hohenheim, State Institute for Agricultural Engineering and Bioenergy
  • Claus Bogenrieder Zueblin Umwelttechnik GmbH

DOI:

https://doi.org/10.25165/ijabe.v6i1.615

Keywords:

external biological desulfurization, fixed-bed trickling bioreactor (FBTB), H2S removal efficiency (RE), hydrogen sulfide, biogas, full scale biogas research plant

Abstract

Hydrogen sulfide (H2S) is a critical component of biogas formed under anaerobic conditions by sulfur and sulfate reducing bacteria from animal manure and renewable energy crops. H2S causes high corrosion in equipment, has a negative environmental impact, inhibits the biogas formation process and is furthermore odorous and toxic. Although several methods for internal and external desulfurization found their way into practice and had been explored at laboratory scale, no data were available on the performance of such methods in full scale practice, especially for an external fixed-bed trickling bioreactor (FBTB). The effects of temperature, pH and air ratio on H2S removal efficiency (RE) were studied. The study was conducted at a research biogas plant with a given output of 96 m3 biogas per hour, and an H2S concentration ranging between 500 ppm and 600 ppm (1 ppm=1 cm3/m3) on average. The FBTB column has been designed to hold a packing volume of 2.21 m3 at a gas retention time of 84 seconds being loaded at an average of 32.88 g H2S/(m3?h). The highest H2S RE of 98% was found at temperatures between 30

Author Biographies

Hans-Joachim Naegele, University of Hohenheim

University of Hohenheim, State Insitute for Agricultural Engineering and Bioenergy Garbenstrasse 9 Stuttgart, Baden-W

Jonas Lindner, University of Hohenheim

University of Hohenheim, State Insitute for Agricultural Engineering and Bioenergy Garbenstrasse 9 Stuttgart, Baden-W

Wolfgang Merkle, University of Hohenheim

University of Hohenheim, State Insitute for Agricultural Engineering and Bioenergy Garbenstra?e 9 Stuttgart, Baden-W

Andreas Lemmer, University of Hohenheim

University of Hohenheim, State Insitute for Agricultural Engineering and Bioenergy Garbenstrasse 9 Stuttgart, Baden-W

Thomas Jungbluth, University of Hohenheim, State Institute for Agricultural Engineering and Bioenergy

University of Hohenheim, State Insitute for Agricultural Engineering and Bioenergy Garbenstrasse 9 Stuttgart, Baden-W

Claus Bogenrieder, Zueblin Umwelttechnik GmbH

Zueblin Umwelttechnik GmbH, Umwelttechnik, Otto-D

References

Europarl and Council. Directive 2009/28/EC of the European Parliament and of the Council. OJ 2009:140/16-140/62.

Statistisches Bundesamt. Erneuerbare Energien in Europa. Wiesbaden. 2011. 7 p.

BMU. Erneuerbare Energien in Zahlen. Berlin: Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit. 2011. 136 p.

German Biogas Association. Biogas Segment Statistics 2011. Freising: German Biogas Association. 2012. http://www.biogas.org/edcom/webfvb.nsf/id/DE_Branchenzahlen/$file/12-06-12_Biogas%20Branchenzahlen%202011_eng.pdf. Accessed on [2012-08-06].

DBFZ. Ausbau der Kapazitäten bei Biogasanlagen übertrifft 2011 die Vorjahre. Leipzig: DBFZ. 2012. http://www.dbfz.de/web/fileadmin/user_upload/Presseinformationen/2012/PM_Biogasanlagen_FINAL.pdf. Accessed on [2012-07-06].

BayLfU. The Bavarian Biogas Handbook: A volume of material. Augsburg: Bayerisches Landesamt für Umwelt. 2007. 90 p.

Kaltschmitt M, Hartmann H, Hofbauer H. Energie aus Biomasse. Berlin/Heidelberg: Springer-Verlag. 2001. 770 p.

Abatzoglou N, Boivin S. A review of biogas purification processes. Biofuel Bioprod Biorefining, 2009, 3(1):42-71.

TLL. Merkblatt - Schwefelgehalte in landwirtschaftlichen Kulturpflanzen und organischen Düngerstoffen. Jena: TLL. 1999. http://www.tll.de/ainfo/pdf/sgeh0699.pdf. Accessed on [2012-08-06].

Preißler D, Drochner U, Lemmer A, Oechsner H, Jungbluth T. Schwefelbildung in Biogasanlagen mittels Eisensalzen. Landtechnik, 2010, 65(2):xxx-xxx.

Buisman CJN, Geraats BG, Ijspeert P, Lettinga G. Optimization of sulphur production in a biotechnological sulphide-removing reactor. Biotechnol Bioeng, 1990, 35(1):50-56.

Busca G, Pistarino C. Technologies for the abatement of sulphide compounds from gaseous streams: A comparative overview. J Loss Prev Process Ind, 2003, 16(5):363-371.

Jones A. Metabolic effects of poisoning. Medicine (GBR), 2012, 40(2):55-58.

Schnell H. Störstoffe im Biogas. In: FNR. Gülzower Fachgespräche. Gülzow: Fachagentur Nachwachsende Rohstoffe. 2003. pp. 46-52.

Beil M, Hoffstede U. Guidelines for the implementation and operation of biogas upgrading systems. Kassel: Fraunhofer IWES. 2010. 29 p.

Shareefdeen Z, Herner B, Wilson S. Biofiltration of nuisance sulfur gaseous odors from a meat rendering plant. J Chem Technol Biotechnol, 2002, 77(12):1296-1299.

Gemmeke B, Rieger C, Weidland P, Schröder J. Biogas-Messprogramm II, 61 Biogasanlagen im Vergleich. Guelzow-Pruezen: Fachagentur Nachwachsende Rohstoffe. 2009. 168 p.

N. Mollekopf, A. Polster, J. Brummack. Verbesserung von Entschwefelungsverfahren in landwirtschaftlichen Biogasanlagen. Dresden: Dresden University of Technology. 2006. 112 p.

Prechtl S, Schneider R, Anzer T, Faulstich M. Mikrobiologische Entschwefelung von Biogas. In: FNR. Gülzower Fachgespräche. Gülzow: Fachagentur Nachwachsende Rohstoffe. 2003. pp. 169-183.

Syed M, Soreanu G, Falletta P, Béland M. Removal of hydrogen sulfide from gas streams using biological processes - A review. Can Biosyst Eng, 2006, 48:2.1-2.14.

Chaiprapat S, Mardthing R, Kantachote D, Karnchanawong S. Removal of hydrogen sulfide by complete aerobic oxidation in acidic biofiltration. Process Biochem, 2011, 46(1):344-352.

van Groenestijn JW, Hesselink PGM. Biotechniques for air pollution control. Biodegradation, 1993, 4(4):283-301.

Pesta G, Ruß W. Die zuverlässige Reinigung von Biogas Verfahren und Lösungsansätze. In: Regierung von Niederbayern. Fachtagung "Innovation in der Biogastechnologie". Deggendorf: Fachhochschule Deggendorf. 2004. pp. 99-124.

Smet E, Lens P, Van Langenhove H. Treatment of waste gases contaminated with odorous sulfur compounds. Crit Rev Environ Sci Technol, 1998, 28(1):89-117.

Gabriel D, Deshusses MA. Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control. Proc Natl Acad Sci USA, 2003, 100(11):6308-6312.

Jin Y, Veiga MC, Kennes C. Effects of pH, CO2, and flow pattern on the autotrophic degradation of hydrogen sulfide in a biotrickling filter. Biotechnol Bioeng, 2005, 92(4):462-471.

Gadre RV. Removal of hydrogen sulfide from biogas by chemoautotrophic fixed-film bioreactor. Biotechnol Bioeng, 1989, 34(3):410-414.

Naegele H-, Lemmer A, Oechsner H, Jungbluth T. Endbericht, Zukunftsoffensive IV, Forschungsprojekt "Biogene Gase - Unterer Lindenhof"; Bioenergieforschungsplattform Baden-Württemberg, AP 3: Intensivmessprogramm BGA, Detaillierte Datenerhebung an der Biogasanlage „Unterer Lindenhof“ – Messungen zur Determination der Einflussgrößen auf den Eigenstrombedarf der Biogasanlage, der Nährstoffverteilung im Fermenter sowie den Emissionen des BHKW’s. 2011.

Downloads

Published

2013-03-19

How to Cite

Naegele, H.-J., Lindner, J., Merkle, W., Lemmer, A., Jungbluth, T., & Bogenrieder, C. (2013). Effects of temperature, pH and O2 on the removal of hydrogen sulfide from biogas by external biological desulfurization in a full scale fixed-bed trickling bioreactor (FBTB). International Journal of Agricultural and Biological Engineering, 6(1), 69–81. https://doi.org/10.25165/ijabe.v6i1.615

Issue

Section

Renewable Energy and Material Systems