Maize leaf disease identification using deep transfer convolutional neural networks
Abstract
Keywords: maize leaf disease, deep learning, transfer learning, convolutional neural networks
DOI: 10.25165/j.ijabe.20221505.6658
Citation: Ma Z, Wang Y, Zhang T S, Wang H G, Jia Y J, Gao R, et al. Maize leaf disease identification using deep transfer convolutional neural networks. Int J Agric & Biol Eng, 2022; 15(5): 187–195.
Keywords
Full Text:
PDFReferences
Gao Z, Shao Y, Xuan G, Wang Y, Liu Y, Han X. Real-time hyperspectral imaging for the in-field estimation of strawberry ripeness with deep learning. Artificial Intelligence in Agriculture, 2020; 4: 31–38.
Gao Z, Luo Z, Zhang W, Lv Z, Xu Y. Deep learning application in plant stress imaging: a review. AgriEngineering, 2020; 2(3): 430–446.
Yalcin H, Razavi S. Plant classification using convolutional neural networks. In: 2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics), IEEE, 2016; pp.1–5. doi: 10.1109/agro-geoinformatics.2016.7577698
Fuentes A, Lee J, Lee Y, Yoon S, Park D S. Anomaly detection of plant diseases and insects using convolutional neural networks. 2017. Elsevier In: Conference ISEM 2017 - The International Society for Ecological Modelling Global Conference, Jeju, South Korea, 2017.
Liu J, Wang X. Plant diseases and pests detection based on deep learning: a review. Plant Methods, 2021; 17(1): 1–18.
Hughes D, Salathé M. An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv: Computer Science, 2015; arXiv: 151.08060. doi: 10.48550/ arXiv.1511.08060.
Jaiswal A, Pathak S, Rathore Y K, Janghel R R. Detection of disease from leaf of vegetables and fruits using deep learning technique. Advances in Biomedical Engineering and Technology, Springer, 2021; pp.199–206. doi: 10.1007/978-981-15-6329-4_18.
Sravan V, Swaraj K, Meenakshi K, Kora P. A deep learning based crop disease classification using transfer learning. Materials Today: Proceedings, 2021; In Press. doi: 10.1016/j.matpr.2020.10.846.
Agarwal M, Gupta S K, Biswas K. Development of efficient CNN model for tomato crop disease identification. Sustainable Computing: Informatics and Systems, 2020; 28: 100407. doi: 10.1016/ j.suscom.2020.100407
Liu B, Ding Z, Tian L, He D, Li S, Wang H. Grape leaf disease identification using improved deep convolutional neural networks. Frontiers in Plant Science, 2020; 11: 1082. doi: 10.3389/fpls.2020.01082
Anagnostis A, Asiminari G, Papageorgiou E, Bochtis D. A convolutional neural networks based method for anthracnose infected walnut tree leaves identification. Applied Sciences, 2020; 10(2): 469. doi: 10.3390/app10020469.
Fang T, Chen P, Zhang J, Wang B. Crop leaf disease grade identification based on an improved convolutional neural network. Journal of Electronic Imaging, 2020; 29(1): 013004. doi: https://doi.org/10.1117/ 1.jei.29.1.013004.
Waheed A, Goyal M, Gupta D, Khanna A, Hassanien A E, Pandey H M. An optimized dense convolutional neural network model for disease recognition and classification in corn leaf. Computers and Electronics in Agriculture, 2020; 175: 105456. doi: 10.1016/j.compag.2020.105456.
Wu Y. Identification of maize leaf diseases based on convolutional neural network. Journal of Physics: Conference Series, IOP Publishing, 2021; 1748: 032004. doi: 10.1088/1742-6596/1748/3/032004.
Boulent J, Foucher S, Théau J, St-Charles P-L. Convolutional neural networks for the automatic identification of plant diseases. Frontiers in plant science, 2019; 10: 941. doi: 10.3389/fpls.2019.00941.
Nigam S, Jain R. Plant disease identification using deep learning: A review. Indian Journal of Agricultural Sciences, 2020; 90(2): 249–257.
Pardede H F, Suryawati E, Krisnandi D, Yuwana R S, Zilvan V. Machine learning based plant diseases detection: A review. In: 2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), IEEE, 2020; pp.212–217. doi: 10.1109/icramet51080.2020.9298619.
Barbedo J G A. Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification. Computers and Electronics in Agriculture, 2018; 153: 46–53.
Afifi A, Alhumam A, Abdelwahab A. Convolutional neural network for automatic identification of plant diseases with limited data. Plants, 2021; 10(1): 28. doi: 10.3390/plants10010028.
Xu Y, Zhao B, Zhai Y, Chen Q, Zhou Y. Maize diseases identification method based on multi-scale convolutional global pooling neural network. IEEE Access, 2021; 9: 27959–27970.
Chen J, Chen J, Zhang D, Sun Y, Nanehkaran Y A. Using deep transfer learning for image-based plant disease identification. Computers and Electronics in Agriculture, 2020; 173: 105393. doi: 10.1016/ j.compag.2020.105393.
Yin H, Gu Y H, Park C-J, Park J-H, Yoo S J. Transfer learning-based search model for hot pepper diseases and pests. Agriculture, 2020; 10(10): 439. doi: 10.3390/agriculture10100439.
Chen J, Zhang D, Suzauddola M, Nanehkaran Y A, Sun Y. Identification of plant disease images via a squeeze‐and‐excitation MobileNet model and twice transfer learning. IET Image Processing, 2021; 15(5): 1115–1127.
Chen J, Zhang D, Nanehkaran Y. Identifying plant diseases using deep transfer learning and enhanced lightweight network. Multimedia Tools and Applications, 2020; 79(41): 31497–31515.
Atila Ü, Uçar M, Akyol K, Uçar E. Plant leaf disease classification using efficientnet deep learning model. Ecological Informatics, 2021; 61: 101182. doi: 10.1016/j.ecoinf.2020.101182.
Mohanty S P, Hughes D P, Salathé M. Using deep learning for image-based plant disease detection. Frontiers in Plant Science, 2016; 7: 1419. doi: 10.3389/fpls.2016.01419.
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv: Computer Science, 2014; arXiv: 1409.1556. doi: 10.48550/arXiv.1409.1556.
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas: IEEE, 2016; 770–778. doi: 10.1109/cvpr.2016.90.
Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas: IEEE, 2016; 2818–2826. doi: 10.1109/cvpr.2016.308.
Szegedy C, Ioffe S, Vanhoucke V, Alemi A. Inception-v4, inception-resnet and the impact of residual connections on learning. Proceedings of the AAAI Conference on Artificial Intelligence; 2017; pp.4278–4284.
Huang G, Liu Z, Van Der Maaten L, Weinberger K Q. Densely connected convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017; pp.2261–2269. doi: 10.1109/CVPR.2017.243.
Chollet F. Xception: Deep learning with depthwise separable convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017; pp.1800–1807. doi: 10.1109/cvpr.2017.195.
Howard A G, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications, arXiv: Computer Science, 2017; arXiv: 1704.04861. doi: 10.48550/arXiv.1704.04861.
Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C. Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City: IEEE, 2018; pp.4510–4520. doi: 10.1109/cvpr.2018.00474.
Zhang X, Zhou X, Lin M, Sun J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018. doi: 10.1109/cvpr.2018.00716.
Hinton G E, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov R R. Improving neural networks by preventing co-adaptation of feature detectors. arXiv: Computer Science, 2012; arXiv: 1207.0580. doi: 10.48550/arXiv.1207.0580.
Ferentinos K P. Deep learning models for plant disease detection and diagnosis. Computers and Electronics in Agriculture, 2018; 145: 311–318.
Sethy P K, Barpanda N K, Rath A K, Behera S K. Deep feature based rice leaf disease identification using support vector machine. Computers and Electronics in Agriculture, 2020; 175: 105527. doi: 10.1016/ j.compag.2020.105527.
Ahmad I, Hamid M, Yousaf S, Shah S T, Ahmad M O. Optimizing pretrained convolutional neural networks for tomato leaf disease detection. Complexity, 2020; 2020: 8812019. doi: 10.1155/2020/8812019.
Chen J, Zhang D, Zeb A, Nanehkaran Y A. Identification of rice plant diseases using lightweight attention networks. Expert Systems with Applications, 2021; 169: 114514. doi: 10.1016/j.eswa.2020.114514.
Too E C, Yujian L, Njuki S, Yingchun L. A comparative study of fine-tuning deep learning models for plant disease identification. Computers and Electronics in Agriculture, 2019; 161: 272–279.
Barbedo J G A. Plant disease identification from individual lesions and spots using deep learning. Biosystems Engineering, 2019; 180: 96–107.
Chen J, Wang W, Zhang D, Zeb A, Nanehkaran Y A. Attention embedded lightweight network for maize disease recognition. Plant Pathology, 2021; 70(3): 630–642.
Singh P, Verma A, Alex J S R. Disease and pest infection detection in coconut tree through deep learning techniques. Computers and Electronics in Agriculture, 2021; 182: 105986. doi: 10.1016/ j.compag.2021.105986.
Copyright (c) 2022 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.