Static and dynamic evaluations of acoustic positioning system using TDMA and FDMA for robots operating in a greenhouse
Abstract
Keywords: greenhouse robots, positioning system, near-far problem, TDMA, FDMA
DOI: 10.25165/j.ijabe.20221505.6796
Citation: Tsay L W J, Shiigi T, Zhao X Y, Huang Z C, Shiraga K, Suzuki T, et al. Static and dynamic evaluations of acoustic positioning system using TDMA and FDMA for robots operating in a greenhouse. Int J Agric & Biol Eng, 2022; 15(5): 28–33.
Keywords
Full Text:
PDFReferences
Nagasaka Y, Saito H, Tamaki K, Seki M, Kobayashi K, Taniwaki K. An autonomous rice transplanter guided by global positioning system and inertial measurement unit. Journal of Field Robotics, 2009; 26: 537–548.
Zhang Z, Noguchi N, Ishii K, Yang L, Zhang C. Development of a robot combine harvester for wheat and paddy harvesting. IFAC Proceedings Volumes, 2013; 46(4): 45–48.
De Preter A, Anthonis J, De Baerdemaeker J. Development of a robot for harvesting strawberries. IFAC-PapersOnLine, 2018; 51: 14–19.
Lu W, Zeng M, Qin H. Intelligent navigation algorithm of plant phenotype detection robot based on dynamic credibility evaluation. Int J Agric & Biol Eng, 2021; 14(6): 195–206.
Delamare M, Boutteau R, Savatier X, Iriart N. Evaluation of an UWB localization system in Static/Dynamic, Pisa, Italy: 2019; pp.1–7.
Medina C, Segura J, De la Torre Á. Ultrasound indoor positioning system based on a low-power wireless sensor network providing sub-centimeter accuracy. Sensors, 2013; 13(3): 3501–3526.
Mandal A, Lopes C V, Givargis T, Haghighat A, Jurdak R, Baldi P. Beep: 3D indoor positioning using audible sound. In: Second IEEE Consumer Communications and Networking Conference, Las Vegas, USA: IEEE, 2005; pp.348–353. doi: 10.1109/CCNC.2005.1405195.
Deak G, Curran K, Condell J. A survey of active and passive indoor localisation systems. Computer Communications, 2012; 35(16): 1939–1954.
Huang Z C, Tsay L W J, Shiigi T, Zhao X, Nakanishi H, Suzuki T, et al.
A noise tolerant spread spectrum sound-based local positioning system for operating a quadcopter in a greenhouse. Sensors, 2020; 20(7): 1981. doi: 10.3390/s20071981.
Madhani P H, Axelrad P, Krumvieda K, Thomas J. Application of successive interference cancellation to the GPS pseudolite near-far problem. IEEE Transactions on Aerospace and Electronic Systems, 2003; 39: 481–488.
Aguilera T, Alvarez F J, Sanchez A, Albuquerque D F, Vieira J M N, Lopes S I. Characterization of the Near-Far problem in a CDMA-based acoustic localization system. In: 2015 IEEE International Conference on Industrial Technology (ICIT), Seville, Spain: IEEE, 2015; pp.3404–3411. doi: 10.1109/ICIT.2015.7125604.
Huang Z C, Jacky T L W, Zhao X, Fukuda H, Shiigi T, Nakanishi H, et al. Position and orientation measurement system using spread spectrum sound for greenhouse robots. Biosystems Engineering, 2020; 198: 50–62.
Rajendra P, Kondo N, Ninomiya K, Kamata J, Kurita M, Shiigi T, et al. Machine vision algorithm for robots to harvest strawberries in tabletop culture Greenhouses. Engineering in Agriculture, Environment and Food, 2009; 2(1): 24–30.
Widodo S. Wind and doppler shift compensation for spread spectrum sound-based positioning system. PhD dissertation. Kyoto, Japan: Kyoto University, 2013; 84p.
Noise over 8 long hours of work has a new safety formula for you to apply n.d. Available: https://www.linkedin.com/pulse/noise-over-8-long-hours- work-has-new-safety-formula-you-terry-penney. Accessed on [2022-2-27].
Huang Z C, Shiigi T, Tsay L W J, Nakanishi H, Suzuki T, Ogawa Y, et al. A sound-based positioning system with centimeter accuracy for mobile robots in a greenhouse using frequency shift compensation. Computers and Electronics in Agriculture, 2021; 187: 106235. doi: 10.1016/j.compag.2021.106235.
Merriaux P, Dupuis Y, Boutteau R, Vasseur P, Savatier X. A study of vicon system positioning performance. Sensors, 2017; 17(7): 1591. doi: 10.3390/s17071591.
Buckingham M J. Theory of acoustic attenuation, dispersion, and pulse propagation in unconsolidated granular materials including marine sediments. The Journal of the Acoustical Society of America, 1997; 102: 2579–2796.
Yu Y, Zhang K, Liu H, Yang L, Zhang D. Real-time visual localization of the picking points for a ridge-planting strawberry harvesting robot. IEEE Access, 2020; 8: 116556–116568.
Tientadakul R, Nakanishi H, Shiigi T, Huang Z C, Tsay L W J, Kondo N. Indoor navigation system by combining ultrasonic wave TOA and inertial measurement. In: 2020 59th Annual Conference of the Society of Instrument and Control Engineers of Japan, Chiang Mai, Thailand: IEEE, 2020; pp.1690–1695. doi: 10.23919/SICE48898.2020.9240233.
Copyright (c) 2022 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.