Indoor smart farming by inducing artificial climate for high value-added crops in optimal duration
Abstract
Keywords: indoor smart farming, artificial climate, high value-added crops, optimal duration, light spectrum, image processing
DOI: 10.25165/j.ijabe.20231603.6863
Citation: Rehman A, Razzaq A, Altaf A, Qadri S, Hussain A, Nawaz A, et al. Indoor smart farming by inducing artificial climate for high values crops in optimal duration. Int J Agric & Biol Eng, 2023; 16(3): 240–246.
Keywords
Full Text:
PDFReferences
Ali S, Liu Y, Ishaq M, Shah T, Abdullah, Ilyas A, et al. Climate change and its impact on the yield of major food crops: Evidence from Pakistan. Foods, 2017; 6(6): 39. doi: 10.3390/foods6060039.
Farooq G M, Ofosu Y. Population, labour force and employment: concepts, trends and policy issues. International Labour Organization, 1992.
Abbouda S K, Almuhanna E A, Al-Amri A M. Effect of using double layers of polyethylene cover with air gap on control environment inside greenhouses. Dallas: ASABE, 2012; 42044. doi: 10.13031/2013.42044.
Baseca C C, Sendra S, Lloret J, Tomas J. A smart decision system for digital farming. Agronomy, 2019; 9(5): 216. doi: 10.3390/agronomy9050216.
Fukuda N. Plant growth and physiological responses to light conditions. In: Plant factory using artificial light, Elsevier, 2019; pp.71-77.
Ghosh S, Watson Am Gonzalez-Navarro O E, Ramirez-Gonzalez R H, Yanes L, Mendoza-Suarez M, et al. Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nature Protocols, 2018; 13(12): 2944-2963.
Mohammadi B, Ranjbar F, Ajabshirchi Y. Exergoeconomic analysis and multi-objective optimization of a semi-solar greenhouse with experimental validation. Applied Thermal Engineering, 2020; 164: 114563. doi: 10.1016/j.applthermaleng.2019.114563.
Mukherji S V, Sinha R, Basak S, Kar S P. Smart Agriculture using Internet of Things and MQTT Protocol. In: 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad: IEEE, 2019; pp.14-16. doi: 10.1109/COMITCon.2019.8862233.
Ruan J H, Wang Y X, Chan F T S, Hu X P, Zhao M J, Zhu F W, et al., A life cycle framework of green IoT-based agriculture and its finance, operation, and management issues. IEEE Communications Magazine, 2019; 57(3): 90-96.
Patricio D I, Rieder R. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Computers and Electronics in Agriculture, 2018; 153(1): 69-81.
Shahzadi R< Ferzund J, Tausif M, Suryani M A, et al. Internet of things based expert system for smart agriculture. International Journal of Advanced Computer Science and Applications, 2016; 7(9): 070947. doi: 10.14569/IJACSA.2016.070947.
PPrathibha S R, Hongal A, Jyothi M P. IoT based monitoring system in smart agriculture. In: 2017 International Conference on Recent Advances in Electronics and Communication Technology (ICRAECT), Bangalore: IEEE, 2017; pp.81-84. doi: 10.1109/ICRAECT.2017.52.
Worldometer. Available: https://www.worldometers.info/world-population/pakistan-population/. Accessed on [2020-07-23].
Huang H K, Zhou Y J, Huang R D, Wu H J, Sun Y J, Huang G S, et al. Optimum insulation thicknesses and energy conservation of building thermal insulation materials in Chinese zone of humid subtropical climate. Sustainable Cities and Society, 2020; 52: 101840. doi: 10.1016/j.scs.2019/101840.
Kim R-W, Lee I-B, Yeo U-H, Lee S-Y. Evaluation of various national greenhouse design standards for wind loading. Biosystems Engineering, 2019; 188: 136-154.
Ghani S, Bakochristou F, Elbialy, E M A A, Gamaledin S M A, Rashwan M M, Abdelhalim A M, et al. Design challenges of agricultural greenhouses in hot and arid environments-A review. Engineering in Agriculture, Environment and Food, 2019; 12(1): 48-70.
Esmaeli H, Roshandel R. Optimal design for solar greenhouses based on climate conditions. Renewable Energy, 2020; 145: 1255-1265.
Rehman A U, Razzaq A, Rehman T U, Rehman A U, Farooq M, et al. Design and development of smart greenhouse for arid climate. in First iiScience International Conference, International Society for Optics and Photonics, 2020;1156104 /10.1117/12.2574354
De Keyser E, Dhooghe E, Christiaens A, Van Labeke M-C. LED light quality intensifies leaf pigmentation in ornamental pot plants. Scientia Horticulturae, 2019; 253: 270-275.
Kaiser E, Weerheim K, Schipper R, Dieleman J A. Partial replacement of red and blue by green light increases biomass and yield in tomato. Scientia Horticulturae, 2019; 249: 271-279.
Ouzounis T, Rosenqvist E, Ottosen C-O. Spectral effects of artificial light on plant physiology and secondary metabolism: A review. HortScience, 2015; 50(8): 1128-1135.
Yang Q R, Pan J Q, Shen G A, Guo B L. Yellow light promotes the growth and accumulation of bioactive flavonoids in Epimedium pseudowushanense. Journal of Photochemistry and Photobiology B: Biology, 2019; 197: 111550. doi: 10.1016/j.photobiol.2019.111550.
Hatou K, Sugiyama T, Hashimoto Y, Matsuura H, et al. Range image analysis for the greenhouse automation in intelligent plant factory. IFAC Proceedings Volumes, 1996; 29(1): 962-967.
Hber R, Bakker M, Balmann A, Berger T, Bithell M, et al. Representation of decision-making in European agricultural agent-based models. Agricultural Systems, 2018; 167: 143-160.
Steven P. Potentiometers. [US1886439A], 1955.
Harun A N, Mohamed N, Ahmad R, Rahim A R A, Ani N N, et al. Improved Internet of Things (IoT) monitoring system for growth optimization of Brassica chinensis. Computers and Electronics in Agriculture, 2019; 164: 104836. doi: 10.1016/j.compag.2019.05.045.
Poorter H, Niinemets U, Ntagkas N, Siebenkas A, Maenpaa M, Matsubara S, et al. A meta‐analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. New Phytologist Foundation, 2019; 223(3): 1073-1105.
Praveen Kumar D, Amgoth T, Annavarapu C S R. Machine learning algorithms for wireless sensor networks: A survey. Information Fusion, 2019; 49: 1-25.
Quy V K, Hau N V, Anh D V, Quy N M, Ban N T, Lanza S, et al. IoT-enabled smart agriculture: Architecture, applications, and challenges. Applied Sciences, 2022; 12(7): 3396. doi: 10.3390/app12073396.
Modarelli G C, Paradiso R, Arena C, De Pascale S, Van Labeke M-C. High light intensity from blue-red LEDs enhance photosynthetic performance, plant growth, and optical properties of red lettuce in controlled environment. Horticulturae, 2022; 8(2): 114. doi: 10.3390/horticulturae8020114.
Chiocchio I, Barbaresi A, Barbanti L, Mandrone M, Poli F, Torreggiani D, et al. Effects of LED supplemental lighting on the growth and metabolomic profile of Taxus baccata cultivated in a smart greenhouse. PLoS ONE, 2022; 17(7): e0266777. doi: 10.1371/journal.pone.0266777.
Copyright (c) 2023 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.