Extraction of straight field roads between farmlands based on agricultural vehicle-mounted LiDAR
Abstract
Keywords: road extraction, straight field road, autonomous agricultural vehicle, LiDAR, farmland
DOI: 10.25165/j.ijabe.20221505.6933
Citation: Yang L L, Xu Y Y, Liang Y J, Qin J, Li Y B, Wang X X, et al. Extraction of straight field roads between farmlands based on agricultural vehicle-mounted LiDAR. Int J Agric & Biol Eng, 2022; 15(5): 155–162.
Keywords
Full Text:
PDFReferences
Liu X T, Li X L, Xu L J, Chen H, Zhang C S, Sun M Y, et al. Current status and development prospects of agricultural vehicle autonomous driving technology. Agriculture Vehicle Technology Extension, 2020; 12: 22–24. (in Chinese)
Feng X B, He P J, Zhang H X, Yin W Q, Qian Y, Cao P, et al. Rice seeds identification based on back propagation neural network model. Int J Agric & Biol Eng, 2019; 12(6): 122–128.
Zhao X K, Li H, Zhu Q B, Huang M, Guo Y, Qin J W. Automatic sweet pepper detection based on point cloud images using subtractive clustering. Int J Agric & Biol Eng, 2020; 13(3): 154–160.
Wang G J, Wu J, He R, Yang S. A point cloud-based robust road curb detection and tracking method. IEEE Access, 2019; 7: 24611–24625.
Ji C Y, Shen Z Y, Gu B X, Tian G Z, Zhang J. Obstacle detection based on point clouds in application of agricultural navigation. Transactions of the CSAE, 2015, 31(7): 173–179.
Yao L J, Hu D, Zhao C, Yang Z D, Zhang Z. Wireless positioning and path tracking for a mobile platform in greenhouse. Int J Agric & Biol Eng, 2021; 14(1): 216–223.
He Y, Jiang H, Fang H, Wang Y, Liu Y F. Research progress of intelligent obstacle detection methods of vehicles and their application on agriculture. Transactions of the CSAE, 2018, 34(9): 21–32.
Lyu Y C, Bai L, Huang X M. Real-time road segmentation using LiDAR data processing on an FPGA. In: 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence: IEEE, 2018; pp.1–5. doi: 10.1109/ISCAS.2018.8351244.
Paigwar A, Erkent Ö, González D S, Laugier C. GndNet: Fast ground plane estimation and point cloud sgmentation for autonomous vehicles. In: 2020 IROS 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020; pp.2150–2156. doi: 10.1109/IROS45743.2020.9340979.
Gao B, Xu A R, Pan Y C, Zhao X J, Yao W, Zhao H J. Off-road drivable area extraction using 3D LiDAR data. 2019 IEEE Intelligent Vehicles Symposium (IV), 2019; pp.1505–1511. doi: 10.1109/IVS.2019.8814143.
Caltagirone L, Scheidegger S, Svensson L, Wahde M. Fast LiDAR-based road detection using fully convolutional neural networks. 2017 IEEE Intelligent Vehicles Symposium (IV), 2017; pp.1019–1024. doi: 10.1109/IVS.2017.7995848.
Wang J, Kong B, Wang C, Yang J. An approach of real-time road boundary detection based on HDL-64E lidar. Journal of Hefei University of Technology (Natural Science), 2018, 41(8): 1029–1034. (in Chinese)
Lu X W. Real-time detection and tracking of mine road boundary lines. Master dissertation. Beijing: University of Chinese Academy of Sciences (School of Artificial Intelligence), 2020; 66p. (in Chinese)
Tang J L, Lu X W, Ai Y F, Tian B, Chen L. Road detection for autonomous truck in mine environment. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), 2019; pp.839–845. doi: 10.1109/ITSC.2019.8917022.
Lu X W, Ai Y F, Tian B. Real-time mine road boundary detection and tracking for autonomous truck. Sensors, 2020; 20(4): 1121. doi: 10.3390/s20041121.
Chen J H. A study of methods for road extraction from airborne LiDAR data. Engineering of Surveying and Mapping, 2020; 29(3): 51–55.
Byun J, Na K, Seo B, Roh M. Drivable road detection with 3D point cloud based on the MRF for intelligent vehicle. Field and Service Robotics, Springer Tracts in Advanced Robotics, 2015; pp.49–60.
Reina G, Milella A, Rouveure R, Nielsen M, Worst R, Blas M R. Ambient awareness for agricultural robotic vehicles. Biosystems Engineering, 2016; 146: 114–132.
Goga S, Nedevschi S. An approach for segmenting 3D LIDAR data using multi-volume grid structures. In: 2017 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP), 2017; pp.309–315. doi: 10.1109/ICCP.2017.8117022.
Zhang Y H, Wang J, Wang X N, Dolan J M. Road-segmentation-based curb detection method for self-driving via a 3D-LiDAR sensor. IEEE Transactions on Intelligent Transportation Systems, 2018; 19(12): 3981–3991.
Zhu Z, Liu J L. Graph-based ground segmentation of 3D LIDAR in rough area. In: 2014 IEEE International Conference on Technologies for Practical Robot Applications (TePRA), 2014; pp.1–5. doi: 10.1109/TePRA.2014.6869157.
Cheng Z Y, Ren G Q, Zhang Y. Ground segmentation from 3D point cloud using features of scanning line segments. Opto-Electronic Engineering, 2019; 46(7): 180268. doi: 10.12086/OEE.2019.180268.
Yan M, Cai Y F, Chen M. A new accessible area detection algorithm in unstructured environment. Computer & Digital Engineering, 2019; 47(7): 1652–1661.
Horváth E, Pozna C, Unger M. Real-time LiDAR-based urban road and sidewalk detection for autonomous vehicles. Sensors, 2022; 22(1): 194. doi: 10.3390/s22010194.
Ordinary Least Square. Available: https://deepai.org/machine-learning- glossary-and-terms/ordinary-least-squares. Accessed on [2021-07-01].
Fu L M. Drivable area extraction from multiple aliened frames of point cloud. Master dissertation. Wuhan: Wuhan University, 2017; 67p. (in Chinese)
Zhang C Y, Chen Z H, Han L. Obstacle detection of Lidar based on Improved DBSCAN algorithm. Laser & Optoelectronics Progress, 2021; 58(24): 2428005. doi: 10.3788/LOP202158.2428005.
Chen X Y, Yang Y, Xiang Y F. Measurement of point cloud data segmentation based on Euclidean clustering algorithm. Bulletin of Surveying and Mapping, 2017; 11: 27–31, 36. (in Chinese)
Zhu X K, Gao M J, Li S N. A real-time road boundary detection algorithm based on driverless cars. Journal of Beijing Union University (Natural Sciences), 2015; 29(4): 1–7.
Li G J, Bao H, Xu C. Real-time road edge extraction algorithm based on 3D-Lidar. Computer Science, 2018; 45(9): 294–298. (in Chinese)
Hao X S. The 3D model simplification technology in virtual reality. Master dissertation. Xi'an: Xidian University, 2007; 53p. (in Chinese)
Bellone M, Reina G, Caltagirone L, Wahde M. Learning traversability from point clouds in challenging scenarios. IEEE Transactions on Intelligent Transportation Systems, 2018; 19(1): 296–305.
BasicFinder. Available: https://saas.passport.beisai.com. Accessed on [2021-07-01].
Copyright (c) 2022 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.