Cutting of sheep carcass using 3D point cloud with dual-robot system
Abstract
Keywords: sheep carcass, trajectory planning, point cloud, dual-robot system, 3D
DOI: 10.25165/j.ijabe.20221505.7161
Citation: Bao X L, Leng J S, Mao J C, Chen B Y. Cutting of sheep carcass using 3D point cloud with dual-robot system. Int J Agric & Biol Eng, 2022; 15(5): 163–171.
Keywords
Full Text:
PDFReferences
Williams H A, Jones M H, Nejati M, Seabright M J, Bell J, Penhall N D, et al. Robotic kiwifruit harvesting using machine vision, convolutional neural networks, and robotic arms. Biosystems Engineering, 2019; 181: 140–156.
Zhao D A, Lyu J, Ji W, Zhang Y, Chen Y. Design and control of an apple harvesting robot. Biosystems Engineering, 2011; 110(2): 112–122.
Du Z, Liang Y, Yan Z, Sun L, Chen W. Human-robot interaction control of a haptic master manipulator used in laparoscopic minimally invasive surgical robot system. Mechanism and Machine Theory, 2021; 156: 104132. doi: 10.1016/j.mechmachtheory.2020.104132.
Benedict J, Briggs H C. Application of robots in middle school math classes. In: Session: Advances in Aerospace Education I, AIAA, 2019; 2019-0070. doi: 10.2514/6.2019-0070.
Möller C, Schmidt H C, Koch P, Böhlmann C, Kothe S M, Wollnack J, et al. Machining of large scaled CFRP-Parts with mobile CNC-based robotic system in aerospace industry. Procedia manufacturing, 2017; 14: 17–29.
Wang G, Li W L, Jiang C, Zhu D H, Li Z W, Xu W, et al. Trajectory planning and optimization for robotic machining based on measured point cloud. IEEE Transactions on Robotics, 2021; 38(3): 1621–1637.
Misimi E, Øye E R, Eilertsen A, Mathiassen J R, Åsebø O B, Gjerstad T, et al. GRIBBOT-Robotic 3D vision-guided harvesting of chicken fillets. Computers and Electronics in Agriculture, 2016; 121: 84–100.
Hinrichsen L. Manufacturing technology in the Danish pig slaughter industry. Meat Science, 2010; 84(2): 271–275.
Templer R, Osborn A, Nanu A, Blenkinsopp K, Friedrich W. Innovative robotic applications for beef processing. In: Proceedings of Australasian Conference on Robotics and Automation, 2002, Auckland: ARAA, 2002; pp.43–47.
Singh J, Potgieter J, Xu W L. Ovine automation: robotic brisket cutting. Industrial Robot: An International Journal, 2012; 39(2): 191–196.
Park D I, Kim H, Park C, Kim D. Design and analysis of the dual arm manipulator for rescue robot. In: 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Munich: IEEE, 2017; pp.608–612. doi: 10.1109/AIM.2017.8014084.
Lippiello V, Fontanelli G A, Ruggiero F. Image-based visual-impedance control of a dual-arm aerial manipulator. IEEE Robotics and Automation, 2018; 3(3): 1856–1863.
Lehman A C, Berg K A, Dumpert J, Wood N A, Visty A Q, Rentschler M E, et al. Surgery with cooperative robots. Computer Aided Surgery, 2008; 13(2): 95–105.
Wang J, Ren H, Meng M Q-H. A preliminary study on surgical instrument tracking based on multiple modules of monocular pose estimation. In: The 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent, Hong Kong: IEEE, 2014; pp.146–151. doi: 10.1109/CYBER.2014.6917451.
Wu Q, Li M, Qi X, Hu Y, Li B, & Zhang J. Coordinated control of a dual-arm robot for surgical instrument sorting tasks. Robotics and Autonomous Systems, 2018; 112(2019): 1–12.
Bai H, Wen J T. Cooperative load transport: A formation-control perspective. IEEE Transactions on Robotics, 2010; 26(4): 742–750.
Ling X, Zhao Y, Gong L, Liu C, Wang T. Dual-arm cooperation and implementing for robotic harvesting tomato using binocular vision. Robotics and Autonomous Systems, 2019; 114: 134–143.
Qiao Y, Chen Y, Chen B, Xie J. A novel calibration method for multi-robots system utilizing calibration model without nominal kinematic parameters. Precision Engineering, 2017; 50: 211–221.
Zhao D, Bi Y, Ke Y. Kinematic modeling and base frame calibration of a dual-machine-based drilling and riveting system for aircraft panel assembly. The International Journal of Advanced Manufacturing Technology, 2017; 94(5–8): 1873–1884.
Zhu Q, Xie X, Li C, Xia G, Liu Q. Kinematic self-calibration method for dual-manipulators based on optical axis constraint. IEEE Access, 2019; 7: 7768–7782.
Zhu Q, Xie X, Li C. Dual manipulator system calibration based on virtual constraints. Bulletin of the Polish Academy of Sciences-Technical Sciences, 2019; 67(6): 1149–1158.
Wang J, Wang W, Wu C, Chen S L, Fu J, Lu G. A plane projection-based method for base frame calibration of cooperative manipulators. IEEE Transactions on Industrial Informatics, 2018; 15(3): 1688–1697.
Yan S J, Ong S K, Nee A Y C. Registration of a hybrid robot using the Degradation-Kronecker method and a purely nonlinear method. Robotica, 2015; 34(12): 2729–2740.
Wu L, Wang J, Qi L, Wu K, Ren H, Meng M.Q.-H. Simultaneous hand-eye, tool-flange, and robot-robot calibration for comanipulation by solving the AXB=YCZ problem. IEEE Transactions on Robotics, 2016; 32(2): 413–428.
Wang J, Wu L, Meng M.Q.-H., Ren H. Towards simultaneous coordinate calibrations for cooperative multiple robots. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago: IEEE, 2014; pp.410–415. doi: 10.1109/IROS.2014.6942592.
Ma Q, Goh Z, Ruan S, Chirikjian G S. Probabilistic approaches to the AXB=YCZ calibration problem in multi-robot systems. Autonomous Robots, 2018; 42(7): 1497–1520.
Wang G, Li W, Jiang C, Zhu D, Xie H, Liu X, et al. Simultaneous calibration of multicoordinates for a dual-robot system by solving the AXB=YCZ problem. IEEE Transactions on Robotics, 2021; 37(4): 1172–1185.
Mu S, Qin H B, Wei J, Wen Q K, Liu S H, Wang S C, et al. Robotic 3D vision-guided system for half-sheep cutting robot. Mathematical Problems in Engineering, 2020; 2020(Pt.35): 1520686. doi: 10.1155/2020/1520686.
Bondø M S, Mathiassen J R, Vebenstad P A, Misimi E, Bar E M S, Toldnes B, et al. An automated salmonid slaughter line using machine vision. Industrial Robot: An International Journal, 2011; 38(4): 399–405.
Guire G, Sabourin L, Gogu G, Lemoine E. Robotic cell for beef carcass primal cutting and pork ham boning in meat industry. Industrial Robot: An International Journal, 2010; 37(6): 532–541.
Cheng D, Wong C K, Lim P P K. Vision system for the automation of ovine carcass processing. In: Proceedings of Australasian Conference on Robotics and Automation, Melbourne: The University of Melbourne, 2014; Paper No. 110.
Liu Y, Cong M, Zheng H, Liu D. Porcine automation: Robotic abdomen cutting trajectory planning using machine vision techniques based on global optimization algorithm. Computers and Electronics in Agriculture, 2017; 143: 193–200.
Cong M, Wang Y H, Du Y, Liu D. Porcine abdomen cutting method using robot based on point cloud clustering and PCA. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020; 11: 54–59. (in Chinese)
Cong M, Zhang J, Du Y, Wang Y, Yu X, Liu D. A porcine abdomen cutting robot system using binocular vision techniques based on kernel principal component analysis. Journal of Intelligent & Robotic Systems, 2021; 101(4): 1–10.
NY/T 1564-2007. Cutting technical specification of mutton, 2007. (in Chinese)
Copyright (c) 2022 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.