Functional properties of defatted chickpea flour heat-induced gels
Abstract
Keywords: defatted chickpea flour, rheological property, freeze-thaw stability, water holding capacity, microstructure
DOI: 10.25165/j.ijabe.20241702.8035
Citation: Bi C H, Qie A X, Zhou T, Liu Y, Tian B. Functional properties of defatted chickpea flour heat-induced gels. Int J Agric & Biol Eng, 2024; 17(2): 280–286.
Keywords
Full Text:
PDFReferences
Bayomy H, Alamri E. Technological and nutritional properties of instant noodles enriched with chickpea or lentil flour. Journal of King Saud University Science, 2022; 34(3): 101833.
Luca S. Functional ingredients of chickpea. Reference Module in Food Science, Elsevier, 2023.
Kotsiou K, Sacharidis D D, Matsakidou A, Biliaderis C, Lazaridou A. Physicochemical and functional aspects of composite wheat-roasted chickpea flours in relation to dough rheology, bread quality and staling phenomena. Food Hydrocolloids, 2022; 124: 107322.
Wang J Y, Li Y H, Li A, Liu R H, Gao X, Li D, et al. Nutritional constituent and health benefits of chickpea (Cicer arietinum L. ): A review. Food Research International, 2021; 110790.
Garcia-Valle D E, La B, Agama-Acevedo, E, Alvarez-Ramirez J. Structural characteristics and in vitro starch digestibility of pasta made with durum wheat semolina and chickpea flour. LWT-Food Science and Technology, 2021; 111347.
Kaur R, Prasad K. Technological, processing and nutritional aspects of chickpea (Cicer arietinum L.): A review. Trends in Food Science & Technology, 2021; 109(1).
Sánchez-Vioque R, Clemente A, Vioque J, Bautist J, Millán F. Polar lipids of defatted chickpea (Cicer arietinum L.) flour and protein isolates. Food Chemistry, 1998; 63(3): 357–361.
Lu L, He C G, Liu B J, Wen Q, Xia S Q. Incorporation of chickpea flour into biscuits improves the physicochemical properties and in vitro starch digestibility. LWT- Food Science and Technology, 2022; 159: 113222.
Ingrassia R, Palazolo G G, Wagner J R, Risso P H. Heat treatments of defatted soy flour: impact on protein structure, aggregation, and cold-set gelation properties. Food Structure, 2019; 22: 100130.
Lin T, & Fernandez-Fraguas C. Effect of thermal and high-pressure processing on the thermo-rheological and functional properties of common bean (Phaseolus vulgaris L. ) flours. LWT-Food Science and Technology, 2020; 127: 109325.
Mesfin N, Belay A, Amare E. Effect of germination, roasting, and variety on physicochemical, techno-functional, and antioxidant properties of chickpea (Cicer arietinum L.) protein isolate powder. Heliyon, 2021; 10: 1016.
Lefèvre C, Bohuon P, Akissoé L, Ollier L, Matignon B, Mestres C. Modeling the gelatinization-melting transition of the starch-water system in pulses (lentil, bean and chickpea). Carbohydrate Polymers, 2021; 3: 117983.
He Y, Meda V, Reaney M J T, Mustafa R. Aquafaba, a new plant-based rheological additive for food applications. Trends in Food Science & Technology, 2021; 111(1): 27–42.
Jiang Y Q, Wang Z J, He Z Y, Zeng M M, Qin F, Chen J. Effect of heat-induced aggregation of soy protein isolate on protein-glutaminase deamidation and the emulsifying properties of deamidated products. LWT - Food Science and Technology, 2022; 154: 112328.
Ji F Y, Xu J J, Ouyang Y Y, Mu D D, Li X J, Luo S Z, et al. Effects of NaCl concentration and temperature on fibrillation, structure, and functional properties of soy protein isolate fibril dispersions. LWT-Food Science and Technology, 2021; 149: 111862.
Beliciu C M, Moraru C I. Physico-chemical changes in heat treated micellar casein-soy protein mixtures. LWT-Food Science and Technology, 2013; 54(2): 469–476.
Lin D Q, Kelly A L, Maidannyk V, Miao S. Effect of concentrations of alginate, soy protein isolate and sunflower oil on water loss, shrinkage, elastic and structural properties of alginate-based emulsion gel beads during gelation-sciencedirect. Food Hydrocolloids, 2020; 108: 105998.
Bi C H, Zhu Y D, Li L T, Zhang Y L, Hua Z, Zhu J Y, et al. Rheological properties and microstructure of soy protein isolate / κ-carrageenan gels under high-speed shear treatment. Journal of Food Engineering, 2018; 236: 44–50.
Tang M X, Zhu Y D, Li D, Adhikari B, Wang L J. Rheological, thermal and microstructural properties of casein/κ-carrageenan mixed systems. LWT- Food Science and Technology, 2019; 113.
Bi C H, Li D, Wang L J, Adhikari B. Effect of LBG on the gel properties of acid-induced spi gels. LWT - Food Science and Technology, 2017; 75: 1–8.
Bi C H, Chi S Y, Wang X Y, Alkhatib A, Yi L. Effect of flax gum on the functional properties of soy protein isolate emulsion gel. LWT- Food Science and Technology, 2021; 149: 111846.
Bi C H, Wang P L, Sun D Y, Yan Z M, Liu Y, Huang Z G, Gao F. Effect of high-pressure homogenization on gelling and rheological properties of soybean protein isolate emulsion gel. Journal of Food Engineering, 2020; 277: 109923.
Wan Y, Li Y, Guo S. Characteristics of soy protein isolate gel induced by glucono-δ-lactone: effects of the protein concentration during preheating. Food Hydrocolloids, 2021; 113: 106525.
Huang Z G, Wang X Y, Chi S Y, Hua Z, Bi C H. Rheological properties of peanut protein isolate aggregation suspension and acid-induced gel. Int J Agric & Biol Eng, 2021; 14(3): 255–260.
Hu H, Wu J H, Eunice C Y L, Zhu L, Zhang F, Xu X Y, et al. Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions. Food Hydrocolloids, 2013; 30(2): 647–655.
Bi C H, Yan Z M, Wang P L, Alkhatib A, Zhu J Y, Zou H C, et al. Effect of high pressure homogenization treatment on the rheological properties of citrus peel fiber/corn oil emulsion. Journal of the Science of Food and Agriculture, 2020.
da Silva A M, Scherer L G, Daudt R M, Spada J C, Marczak L. Effects of starch source and treatment type - conventional and ohmic heating - on stability and rheological properties of gels. LWT-Food Science and Technology, 2019; 109.
Chang Y Y, Li D, Wang L J, Bi C H, Adhikari B. Effect of gums on the rheological characteristics and microstructure of acid-induced spi-gum mixed gels. Carbohydrate Polymers, 2014; 108: 183–191.
Huang J J, Zeng S W, Xiong S B, Huang Q L. Steady, dynamic, and creep-recovery rheological properties of myofibrillar protein from grass carp muscle. Food Hydrocolloids, 2016; 61: 48–56.
Bi C H, Chi S Y, Zhe H, Li D, Huang Z G, Liu Y. Rheological properties and fractal-rheology analysis of peanut protein isolate suspension. Int J Agric & Biol Eng, 2020; 13(6): 220–226
Mao L, Calligaris S, Barba L, Song M. Monoglyceride self-assembled structure in o/w emulsion: formation, characterization and its effect on emulsion properties. Food Research International, 2014; 58: 81–88.
Jie Y, Yong W, Dong L, Wang L J. Freeze-thaw stability and rheological properties of soy protein isolate emulsion gels induced by NaCl. Food Hydrocolloids, 2021; 123: 107113.
Shi R J, Liu Y, Hu J L, Gao H, Qayum A, Bilawal A, et al. Combination of high-pressure homogenization and ultrasound improves physiochemical, interfacial and gelation properties of whey protein isolate. Innovative Food Science & Emerging Technologies, 2020; 65: 102450.
Chen B, Zhou K, Xie Y, Nie W, Li P J, Zhou H, et al. Glutathione-mediated formation of disulfide bonds modulates the properties of myofibrillar protein gels at different temperatures. Food Chemistry, 2021; 364: 130356.
Copyright (c) 2024 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.