Method for the real-time detection of tomato ripeness using a phenotype robot and RP-YolactEdge
Abstract
Keywords: instance segmentation, phenotype robot, tomato, greenhouse-based plant phenotyping, ripeness detection
DOI: 10.25165/j.ijabe.20241702.8403.
Citation: Wang Y Q, Gou W B, Wang C Y, Fan J C, Wen W L, Lu X J, et al. Method for the real-time detection of tomato ripeness using a phenotype robot and RP-YolactEdge. Int J Agric & Biol Eng, 2024; 17(2): 200–210.
Keywords
Full Text:
PDFReferences
Begum N, Hazarika M K. Maturity detection of tomatoes using transfer learning. Measurement: Food, 2022; 7: 100038.
Chen G, Muriki H, Pradalier C, Chen Y, Dellaert F. A hybrid cable-driven robot for non-destructive leafy plant monitoring and mass estimation using structure from motion. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), 2023; pp.11809–11816.
Chen S M, Xiong J T, Jiao J M, Xie Z M, Huo Z W, Hu W X. Citrus fruits maturity detection in natural environments based on convolutional neural networks and visual saliency map. Precision Agriculture, 2022; 23: 1515–1531.
Huang Y P, Si W, Chen K J, Sun Y. Assessment of tomato maturity in different layers by spatially resolved spectroscopy. Sensors, 2020; 20: 7229.
Zheng T X, Jiang M Z, Li Y F, Feng M C. Research on tomato detection in natural environment based on RC-YOLOv4. Computers and Electronics in Agriculture, 2022; 198: 107029.
Atefi A, Ge Y, Pitla S, Schnable J. Robotic technologies for high-throughput plant phenotyping: Contemporary reviews and future perspectives. Front Plant Sci, 2021; 12: 611940.
Dong M, Yu H Y, Zhang L, Wu M Z, Sun Z P, Zeng D Q, et al. Measurement method of plant phenotypic parameters based on image deep learning. Wireless Communications and Mobile Computing, 2022; 2022: 7664045.
Kolhar S, Jagtap J. Convolutional neural network based encoder-decoder architectures for semantic segmentation of plants. Ecological Informatics, 2021; 64: 101373.
Rahul M S P, Rajesh M. Image processing based automatic plant disease detection and stem cutting robot. In: 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli: IEEE, 2020; pp.889–894.
Numsong A, Posom J, Chuan-Udom S. Artificial neural network-based repair and maintenance cost estimation model for rice combine harvesters. Int J Agric & Biol Eng, 2023; 16(2): 38–47.
Feng X B, He P J, Zhang H X, Yin W Q, Qian Y, Cao P, et al. Rice seeds identification based on back propagation neural network model. Int J Agric & Biol Eng, 2019; 12(6): 122–128.
Lu W, Zeng M J, Qin H H. Intelligent navigation algorithm of plant phenotype detection robot based on dynamic credibility evaluation. Int J Agric & Biol Eng, 2021; 14(6): 195–206.
Xiao D Y, Liang G, Liu C L, Huang Y X. Phenotype-based robotic screening platform for leafy plant breeding. IFAC-PapersOnLine, 2016; 49(16): 237–241.
Li Y T, He L Y, Jia J M, Chen J N, Lyu J, Wu C Y. High-efficiency tea shoot detection method via a compressed deep learning model. Int J Agric & Biol Eng, 2022; 15(3): 159–166.
Lu Y, Chen X Y, Wu Z X, Yu J Z, Wen L. A novel robotic visual perception framework for underwater operation. Frontiers of Information Technology & Electronic Engineering, 2022; 23(11): 1602–1619.
Wang Y Q, Fan J C, Yu S, Cai S Z, Guo X Y, Zhao C J. Research advance in phenotype detection robots for agriculture and forestry. Int J Agric & Biol Eng, 2023; 16(1): 14–25.
Yu S, Fan J C, Lu X J, Wen W L, Shao S, Guo X Y, et al. Hyperspectral technique combined with deep learning algorithm for prediction of phenotyping traits in lettuce. Frontiers in Plant Science, 2022; 13: 927832.
Hu H M, Kaizu Y, Zhang H D, Xu Y W, Imou K, Li M, et al. Recognition and localization of strawberries from 3D binocular cameras for a strawberry picking robot using coupled YOLO/Mask R-CNN. Int J Agric & Biol Eng, 2022; 15(6): 175–179.
Widiyanto S, Nugroho D P, Daryanto A, Yunus M, Tri D. Monitoring the growth of tomatoes in real time with deep learning-based image segmentation. International Journal of Advanced Computer Science and Applications, 2021; 12(12): 0121247.
Zhang Y, Tian Z H, Ma W Q, Zhang M, Yang L L. Hyperspectral detection of walnut protein contents based on improved whale optimized algorithm. Int J Agric & Biol Eng, 2022; 15(6): 235–241.
Liu W, Zou S S, Xu X L, Gu Q Y, He W Z, Huang J, et al. Development of UAV-based shot seeding device for rice planting. Int J Agric & Biol Eng, 2022; 15(6): 1–7.
Weyler J, Milioto A, Falck T, Behley J, Stachniss C. Joint plant instance detection and leaf count estimation for in-field plant phenotyping. IEEE Robot and Automation Letters, 2021; 6(2): 3599–3606.
Hosoi F, Nakabayashi K, Omasa K. 3-D modeling of tomato canopies using a high-resolution portable scanning Lidar for extracting structural information. Sensors, 2011; 11(2): 2166–2174.
Yang L L, Tian W Z, Zhai W X, Wang X X, Chen Z B, Wen L, et al. Behavior recognition and fuel consumption prediction of tractor sowing operations using smartphone. Int J Agric & Biol Eng, 2022; 15(4): 154–162.
Li H, Issaka Z, Jiang Y, Tang P, Chen C. Overview of emerging technologies in sprinkler irrigation to optimize crop production. Int J Agric & Biol Eng, 2019; 123): 1–9.
Zu L L, Zhao Y P, Liu J Q, Su F, Zhang Y, Liu P Z. Detection and segmentation of mature green tomatoes based on mask R-CNN with automatic image acquisition approach. Sensors, 2021; 21(23): 7842.
Fan J C, Zhang Y, Wen W L, Gu S H, Lu X J, Guo X Y. The future of Internet of Things in agriculture: Plant high-throughput phenotypic platform. Journal of Cleaner Production, 2021; 280: 123651.
Jin Y, Liu J, Xu Z, Yuan S, Li P, Wang J, et al. Development status and trend of agricultural robot technology. Int J Agric & Biol Eng, 2021; 14(4): 1–19.
Xiang L R, Nolan T M, Bao Y, Elmore M, Tuel T, Gai J Y, et al. Robotic assay for drought (RoAD): An automated phenotyping system for brassinosteroid and drought responses. Plant Journal, 2021; 107: 1837–1853.
Yang C Z. Plant leaf recognition by integrating shape and texture features. Pattern Recognition, 2021; 112: 107809.
He K M, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. 2017 IEEE international Conference on Computer Vision (ICCV), Venice: IEEE, 2017; pp.2980–2988.
Bolya D, Zhou C, Xiao F Y, Lee Y J. YOLACT: Real-time instance segmentation. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul: IEEE, 2019; pp.9156–9165.
Liu H, Rivera Soto R A, Xiao F, Jae Lee Y. YolactEdge: Real-time instance segmentation on the edge. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an: IEEE, 2021; pp.9579–9585.
Young S N, Kayacan E, Peschel J M. Design and field evaluation of a ground robot for high-throughput phenotyping of energy sorghum. Precision Agriculture, 2019; 20: 697–722.
Miao Z H, Yu X Y, Li N, Zhang Z, He C X, Li Z, et al. Efficient tomato harvesting robot based on image processing and deep learning. Precision Agriculture, 2023; 24: 254–287.
Peng H X, Xue C, Shao Y Y, Chen K Y, Liu H N, Xiong J T, et al. Litchi detection in the field using an improved YOLOv3 model. Int J Agric & Biol Eng, 2022; 15(2): 211–220.
Omasa K, Ono E, Ishigami Y, Shimizu Y, Araki Y. Plant functional remote sensing and smart farming applications. Int J Agric & Biol Eng, 2022; 15: 1–6.
Li H H, Wei Y Y, Zhang H M, Chen H, Meng J F. Fine-grained classification of grape leaves via a pyramid residual convolution neural network. Int J Agric & Biol Eng, 2022; 15(2): 197–203.
Yin X, Li W H, Li Z, Yi L L. Recognition of grape leaf diseases using MobileNetV3 and deep transfer learning. Int J Agric & Biol Eng, 2022; 15(3): 184–194.
Yang Z K, Li W Y, Li M, Yang X T. Automatic greenhouse pest recognition based on multiple color space features. Int J Agric & Biol Eng, 2021; 14(2): 188–195.
Sandler M, Howard A, Zhu M L, Zhmoginov A, Chen L-C. Mobilenetv2: Inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City: IEEE, 2018; pp.4510–4520.
Leng Z Q, Tan M X, Liu C X, Cubuk E D, Shi X J, Cheng S Y, et al. Polyloss: A polynomial expansion perspective of classification loss functions. arXiv Preprint, 2022; arXiv: 2204.12511.
Copyright (c) 2024 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.