Research hotspots and development trends of harvesting robots based on bibliometric analysis and knowledge graphs
Abstract
Keywords: harvesting robots, crops harvesting, bibliometric analysis, research hotspots
DOI: 10.25165/j.ijabe.20241706.8739
Citation: Zhou J G, Wang Y K, Chen J, Luo T Y, Hu G R, Jia J L, et al. Research hotspots and development trends of harvesting robots based on bibliometric analysis and knowledge graphs. Int J Agric & Biol Eng, 2024; 17(6): 1–10.
Keywords
Full Text:
PDFReferences
Sun L L, Sun H R, Cao N, Han X L, Cao G S, Huo W, et al. Intelligent agriculture technology based on internet of things. Intelligent Automation and Soft Computing, 2022; 32 (1): 429–439.
Khare D, Cherussery S, Mohan S. Investigation on design and control aspects of a new autonomous mobile agricultural fruit harvesting robot. P I Mech Eng C-J Mec., 2022; 236 (18): 9966–9977.
Zhang Z, Wang Y J, Zhang Z H, Li D P, Wu Z Z, Bai R, Meng G F. Ergonomic and efficiency analysis of conventional apple harvest process. Int J Agric & Biol Eng, 2019; 12(2): 210–217.
Guo G C, Wen Q Y, Zhu J J. The impact of aging agricultural labor population on farmland output: From the perspective of farmer preferences. Math Probl Eng, 2015; 2015: 730618.
Yu X J, Fan Z M, Wang X D, Wan H, Wang P B, Zeng X L, Jia F. A lab-customized autonomous humanoid apple harvesting robot. Comput Electr Eng., 2021; 96: 107459.
Williams H A M, Jones M H, Nejati M, Seabright M J, Bell J, Penhall N D, et al. Robotic kiwifruit harvesting using machine vision, convolutional neural networks, and robotic arms. Biosyst Eng, 2019; 181: 140–156.
Yang Q H, Chang C, Bao G J, Fan J, Xun Y. Recognition and localization system of the robot for harvesting Hangzhou White Chrysanthemums. Int J Agric & Biol Eng, 2018; 11(1): 88–95.
Magalhaes S A, Moreira A P, dos Santos F N, Dias J. Active perception fruit harvesting robots - A systematic review. J Intell Robot Syst, 2022; 105(1): 22,
Gao J, Zhang F, Zhang J X, Yuan T, Yin J L, Guo H, Yang C. Development and evaluation of a pneumatic finger-like end-effector for cherry tomato harvesting robot in greenhouse. Comput Electron Agric, 2022; 197: 106879.
Van Henten E J, Hemming J, Van Tuijl B A J, Kornet J G, Meuleman J, Bontsema J, Van Os E A. An autonomous robot for harvesting cucumbers in greenhouses. Auton Robot, 2002; 13(3): 241–258.
Villa-Henriksen A, Edwards G T C, Green O, Sorensen C A G. Evaluation of grain quality-based simulated selective harvest performed by an autonomous agricultural robot. Agronomy-Basel, 2021; 11(9): 1728.
Meaclem C V, Chen X Q, Gutschmidt S, Hann C, Parker R. K-means partitioned space path planning (KPSPP) for autonomous robotic harvesting. Int J Adv Robot Syst, 2015; 12: 61816.
Yang H L, Chen L, Chen M T, Ma Z B, Deng F, Li M Z, Li X R. Tender tea shoots recognition and positioning for picking robot using improved YOLO-V3 model. IEEE Access, 2019; 7: 180998–181011.
Li D H, Sun X X, Elkhouchlaa H, Jia Y H, Yao Z W, Lin P Y, et al. Fast detection and location of longan fruits using UAV images. Comput Electron Agric., 2021; 190: 15: 106465.
Hayashi S, Shigematsu K, Yamamoto S, Kobayashi K, Kohno Y, Kamata J, Kurita M. Evaluation of a strawberry-harvesting robot in a field test. Biosyst Eng., 2010; 105 (2): 160–171.
Chen M Y, Tang Y C, Zou X J, Huang Z F, Zhou H, Chen S Y. 3D global mapping of large-scale unstructured orchard integrating eye-in-hand stereo vision and SLAM. Comput Electron Agric, 2021; 187: 106237.
Motokura K, Takahashi M, Ewerton M, Peters J. Plucking motions for tea harvesting robots using probabilistic movement primitives. IEEE Robot Autom Let, 2020; 5(2): 3275–3282.
Xu L J, Xie Y, Chen X Y, Chen Y J, Kang Z L, Huang P, et al. Design of an efficient combined multipoint picking scheme for tea buds. Front Plant Sci., 2022; 13: 1042035.
Bai Y H, Guo Y X, Zhang Q, Cao B Y, Zhang B H. Multi-network fusion algorithm with transfer learning for green cucumber segmentation and recognition under complex natural environment. Comput Electron Agric., 2022; 194: 106789.
Van Henten E J, Hemming J, Van Tuijl B A J, Kornet J G, Bontsema J. Collision-free motion planning for a cucumber picking robot. Biosyst Eng., 2003; 86 (2): 135–144.
Liu J Z, Peng Y, Faheem M. Experimental and theoretical analysis of fruit plucking patterns for robotic tomato harvesting. Comput Electron Agric, 2020; 173: 105330.
Kondo N, Nishitsuji Y, Ling P P, Ting K C. Visual feedback guided robotic cherry tomato harvesting. T Asae, 1996; 39(6): 2331–2338.
Hayashi S, Ganno K, Ishii Y, Tanaka I. Robotic harvesting system for eggplants. Jarq-Jpn Agr Res Q, 2002; 36(3): 163–168.
Blanes C, Ortiz C, Mellado M, Beltrán P. Assessment of eggplant firmness with accelerometers on a pneumatic robot gripper. Comput Electron Agric, 2015; 113: 44–50.
Arad B, Balendonck J, Barth R, Ben-Shahar O, Edan Y, Hellström T, et al. Development of a sweet pepper harvesting robot. J Field Robot., 2020; 37(6): 1027–1039.
Bac C W, Hemming J, van Henten E J. Robust pixel-based classification of obstacles for robotic harvesting of sweet-pepper. Comput Electron Agric, 2013; 96: 148–162.
Xiong Y, Ge Y Y, Grimstad L, From P J. An autonomous strawberry‐harvesting robot: Design, development, integration, and field evaluation. J Field Robot, 2019; 37(2): 202–224.
Yamamoto S, Hayashi S, Yoshida H, Kobayashi K. Development of a stationary robotic strawberry harvester with a picking mechanism that approaches the target fruit from below. Jarq-Jpn Agr Res Q, 2014; 48(3): 261–269.
Tang Z L, Xu L J, Wang Y C, Kang Z L, Xie H. Collision-free motion planning of a six-link manipulator used in a citrus picking robot. App.Sci-Basel, 2021; 11(23): 11336.
Qiang L, Cai J R, Bin L, Lie D, Zhang Y J. Identification of fruit and branch in natural scenes for citrus harvesting robot using machine vision and support vector machine. Int J Agric & Biol Eng, 2014; 7(2): 115–121.
Fu L S, Wang B, Cui Y J, Su S, Gejima Y, Kobayashi T. Kiwifruit recognition at nighttime using artificial lighting based on machine vision. Int J Agric & Biol Eng, 2015; 8(4): 52–59.
Williams H, Ting C, Nejati M, Jones M H, Penhall N, Lim J, et al. Improvements to and large‐scale evaluation of a robotic kiwifruit harvester. J Field Robot, 2019; 37(2): 187–201.
Zhao D A, Lv J D, Ji W, Zhang Y, Chen Y. Design and control of an apple harvesting robot. Biosyst Eng, 2011; 110(2): 112–122.
Hohimer C J, Wang H, Bhusal S, Miller J, Mo C, Karkee M. Design and field evaluation of a robotic apple harvesting system with a 3d-printed soft-robotic end-effector. T ASABE, 2019; 62(2): 405–414.
Xiao X, Wang Y N, Jiang Y M. End-Effectors developed for citrus and other spherical crops. App.Sci-Basel, 2022; 12(15): 7945.
Fue K, Porter W, Barnes E, Li C Y, Rains G. Center-Articulated hydrostatic cotton harvesting rover using visual-servoing control and a finite state machine. Electronics, 2020; 9(8): 1226.
Zhang K X, Lammers K, Chu P Y, Li Z J, Lu R F. System design and control of an apple harvesting robot. Mechatronics, 2021; 79: 102644.
Zahid A, Mahmud M S, He L, Choi D, Heinemann P, Schupp J. Development of an integrated 3R end-effector with a cartesian manipulator for pruning apple trees. Comput Electron Agric, 2020; 179: 105837.
Kang M L, Fan Z M, Yu X J, Wan H, Chen Q H, Wang P B, Fu L S. Division-merge based inverse kinematics for Multi-DOFs humanoid robots in unstructured environments. Comput Electron Agric, 2022; 198: 107090.
Xie H B, Kong D Y, Wang Q. Optimization and experimental study of bionic compliant end-effector for robotic cherry tomato harvesting. J Bionic Eng, 2022; 19(5): 1314–1333.
Li J G, Liu X M, Zou L L, Yuan J, Du S. Analysis of the interaction between end-effectors, soil and asparagus during a harvesting process based on discrete element method. Biosyst Eng, 2020; 196: 127–144.
Liu J Z, Hu Y, Xu X Q, Li P P. Feasibility and influencing factors of laser cutting of tomato peduncles for robotic harvesting. Afr J Biotechnol, 2011; 10(69): 15552–15563.
Donthu N, Kumar S, Mukherjee D, Pandey N, Lim W M. How to conduct a bibliometric analysis: An overview and guidelines. J Bus Res, 2021; 133: 285–296.
Li W, Zhao Y. Bibliometric analysis of global environmental assessment research in a 20-year period. Environ Impact Asses, 2015; 50: 158–166.
Bertoglio R, Corbo C, Renga F M, Matteucci M. The digital agricultural revolution: A bibliometric analysis literature review. IEEE Access, 2021; 9: 134762–134782.
Jiang Y Y, Gao Y, Song W Q, Li Y, Quan Q. Bibliometric analysis of UAV swarms. J Syst Eng Electron, 2022; 33(2): 406–425.
Ni P, Niu H, Tang Y R, Zhang Y B, Zhang W Y, Liu Y, Lan H P. Bibliometrics and visual analysis of non-destructive testing technology for fruit quality. Horticulturae, 2023; 9(10): 1091.
Bac C W, van Henten E J, Hemming J, Edan Y. Harvesting robots for high-value crops: State-of-the-art review and challenges ahead. J Field Robot, 2014; 31(6): 888–911.
Tsolakis N, Bechtsis D, Bochtis D. AgROS: A robot operating system based emulation tool for agricultural robotics. Agronomy-Basel, 2019; 9(7): 403.
Bechar A, Vigneault C. Agricultural robots for field operations: Concepts and components. Biosyst Eng, 2016; 149: 94–111.
Liu C L, Gong L, Yuan J, Li Y M. Current status and development trends of agricultural robots. Transactions of the CSAM, 2022; 53(7): 1–22, 55.
Wang Z H, Xun Y, Wang Y K, Yang Q H. Review of smart robots for fruit and vegetable picking in agriculture. Int J Agric & Biol Eng, 2022; 15(1): 33–54.
Laengle S, Merigó J M, Miranda J, Slowinski R, Bomze I, Borgonovo E, et al. Forty years of the European Journal of Operational Research: A bibliometric overview. Eur J Oper Res, 2017; 262(3): 803–816.
Zhang Y L, Zhao D H, Liu H C, Huang X R, Deng J Z, Jia R C, et al. Research hotspots and frontiers in agricultural multispectral technology: Bibliometrics and scientometrics analysis of the Web of Science. Front Plant Sci, 2022; 13: 955340.
Moral-Muñoz J A, Herrera-Viedma E, Santisteban-Espejo A, Cobo M J. Software tools for conducting bibliometric analysis in science: An up-to-date review. Prof Inform, 2020; 29(1): ene.03.
Pan X L, Yan E J, Cui M, Hua W N. Examining the usage, citation, and diffusion patterns of bibliometric mapping software: A comparative study of three tools. J Informetr, 2018; 12(2): 481–493.
Fu L H, Yang Z, Wu F Y, Zou X J, Lin J Q, Cao Y J, Duan J L. YOLO-Banana: A lightweight neural network for rapid detection of banana bunches and stalks in the natural environment. Agronomy-Basel, 2022; 12(2): 391.
Au C, Barnett J, Lim S H, Duke M. Workspace analysis of Cartesian robot system for kiwifruit harvesting. Ind Robot, 2020; 47(4): 503–510.
Sarig Y. Robotics of fruit harvesting - a state-of-the-art review. J Agr Eng Res, 1993; 54(4): 265–280.
Plebe A, Grasso G. Localization of spherical fruits for robotic harvesting. Mach Vision Appl, 2001; 13(2): 70–79.
Gongal A, Amatya S, Karkee M, Zhang Q, Lewis K. Sensors and systems for fruit detection and localization: A review. Comput Electron Agric, 2015; 116: 8–19.
Blanes C, Mellado M, Ortiz C, Valera A. Technologies for robot grippers in pick and place operations for fresh fruits and vegetables. Span J Agric Res, 2011; 9(4): 1130–1141.
Vrochidou E, Tsakalidou V N, Kalathas I, Gkrimpizis T, Pachidis T, Kaburlasos V G. An overview of end effectors in agricultural robotic harvesting systems. Agriculture-Basel, 2022; 12(8): 1240.
Moreira G, Magalhaes S A, Pinho T, dos Santos F N, Cunha M. Benchmark of deep learning and a proposed HSV colour space models for the detection and classification of greenhouse tomato. Agronomy-Basel, 2022; 356(2): 356.
Barth R, Hemming J, Van Henten E J. Angle estimation between plant parts for grasp optimisation in harvest robots. Biosyst Eng, 2019; 183: 26–46.
Bulanon D M, Kataoka T, Ota Y, Hiroma T. Segmentation algorithm for the automatic recognition of apples at harvest. Biosyst Eng, 2002; 83(4): 405–412.
Rath T, Kawollek M. Robotic harvesting of Gerbera Jamesonii based on detection and three-dimensional modeling of cut flower pedicels. Comput Electron Agric, 2009; 66(1): 85–92.
Xie D B, Chen L, Liu L C, Chen L Q, Wang H. Actuators and sensors for application in agricultural robots: A review. Machines, 2022; 10(10): 913.
Chen W, Xu T Q, Liu J J, Wang M, Zhao D A. Picking robot visual servo control based on modified fuzzy neural network sliding mode algorithms. Electronics, 2019; 8(6): 605.
Edan Y, Rogozin D, Flash T, Miles G E. Robotic melon harvesting. IEEE T Robotic Autom, 2000; 16(6): 831–835.
Barth R, Hemming J, van Henten E J. Design of an eye-in-hand sensing and servo control framework for harvesting robotics in dense vegetation. Biosyst Eng, 2016; 146: 71–84.
Ravankar A, Ravankar A A, Watanabe M, Hoshino Y, Rawankar A. Development of a low-cost semantic monitoring system for vineyards using autonomous robots. Agriculture-Basel, 2020; 10(5): 182.
Yeshmukhametov A, Koganezawa K, Yamamoto Y, Buribayev Z, Mukhtar Z, Amirgaliyev Y. Development of continuum robot arm and gripper for harvesting cherry tomatoes. App.Sci-Basel, 2022; 12(14): 6922.
Casado-García A, Heras J, Milella A, Marani R. Semi-supervised deep learning and low-cost cameras for the semantic segmentation of natural images in viticulture. Precis Agric, 2022; 23(6): 2001–2026.
Pourdarbani R, Sabzi S, Kalantari D, Paliwal J, Benmouna B, García-Mateos G, Molina-Martínez J M. Estimation of different ripening stages of Fuji apples using image processing and spectroscopy based on the majority voting method. Comput Electron Agric, 2020; 176: 105643.
Gorjian S, Calise F, Kant K, Ahamed M S, Copertaro B, Najafi G, et al. A review on opportunities for implementation of solar energy technologies in agricultural greenhouses. J Clean Prod, 2021; 285: 124807.
Li J, Karkee M, Zhang Q, Xiao K H, Feng T. Characterizing apple picking patterns for robotic harvesting. Comput Electron Agric, 2016; 127: 633–640.
Fu L S, Majeed Y, Zhang X, Karkee M, Zhang Q. Faster R-CNN-based apple detection in dense-foliage fruiting-wall trees using RGB and depth features for robotic harvesting. Biosyst Eng, 2020; 197: 245–256.
Jia W K, Wei J M, Zhang Q, Pan N N, Niu Y, Yin X, et al. Accurate segmentation of green fruit based on optimized mask RCNN application in complex orchard. Front Plant Sci, 2022; 13: 955256.
Kondo N, Monta M, Fujiura T. Basic constitution of a robot for agricultural use. Adv Robotics., 1996; 10(4): 339–353.
Kondo N. Harvesting robot based on physical-properties of grapevine. Jarq-Jpn Agr Res Q, 1995; 29(3): 171–177.
Peng H X, Xue C, Shao Y Y, Chen K Y, Liu H A, Xiong J T, et al. Litchi detection in the field using an improved YOLOv3 model. Int J Agric & Biol Eng, 2022; 15(2): 211–220.
Zhou H Y, Wang X, Au W, Kang H W, Chen C. Intelligent robots for fruit harvesting: recent developments and future challenges. Precis Agric, 2022; 23(5): 1856–1907.
Silwal A, Davidson J R, Karkee M, Mo C K, Zhang Q, Lewis K. Design, integration, and field evaluation of a robotic apple harvester. J Field Robot, 2017; 34(6): 1140–1159.
Gao F F, Fu L S, Zhang X, Majeed Y, Li R, Karkee M, Zhang Q. Multi-class fruit-on-plant detection for apple in SNAP system using Faster R-CNN. Comput Electron Agric, 2020; 176: 105634.
Yu Y, Zhang K L, Yang L, Zhang D X. Fruit detection for strawberry harvesting robot in non-structural environment based on Mask-RCNN. Comput Electron Agric, 2019; 163: 104846.
Sa I, Ge Z Y, Dayoub F, Upcroft B, Perez T, McCool C. DeepFruits: A fruit detection system using deep neural networks. Sensors, 2016; 16(8): 1222.
Tang Y C, Chen M Y, Wang C L, Luo L F, Li J H, Lian G P, Zou X J. Recognition and localization methods for vision-based fruit picking robots: A review. Front Plant Sci, 2020; 11: 510.
Wan S H, Goudos S. Faster R-CNN for multi-class fruit detection using a robotic vision system. Comput Netw, 2020; 168: 107036.
Zhao Y S, Gong L, Huang Y X, Liu C L. A review of key techniques of vision-based control for harvesting robot. Comput Electron Agric, 2016; 127: 311–323.
Tang X Y, Zhang T Z. Robotics for fruit and vegetable harvesting: A review. Robot, 2005; 1: 90–96.
Fang J J. Present situation and development of mobile harvesting robot. Transactions of the CSAE, 2004; 20(2): 273–278.
Zhao Y, Wu C Y, Hu X D, Yu G H. Research progress and problems of agricultural robot. Transactions of the CSAE, 2003; 19(1): 20–24.
Song J, Zhang T Z, Xu L M, Tang X Y. Research actuality and prospect of picking robot for fruits and vegetables. Transactions of the CSAM, 2006; 37(5): 158–162.
Ji C, Feng Q C, Yuan T, Tan Y Z, Li W. Development and performance analysis on cucumber harvesting robot system in greenhouse. Robot, 2011; 33(6): 726–730.
Gu B X, Ji C Y, Wang H Q, Tian G Z, Zhang G Y, Wang L. Design and experiment of intelligent mobile fruit picking robot. Transactions of the CSAM, 2012; 43(6): 153–160.
Cai J R, Zhou X J, Li Y L, Fan J. Recognition of mature oranges in natural scene based on machine vision. Transactions of the CSAE, 2008; 24(1): 175–178.
Zhao D A, Wu R D, Liu X Y, Zhao Y Y. Apple positioning based on YOLO deep convolutional neural network for picking robot in complex background. Transactions of the CSAE, 2019; 35(3): 164–173.
Wang H, Mao W H, Liu G, Hu X A, Li S J. Identification and location system of multi-operation apple robot based on vision combination. Transactions of the CSAM, 2012; 43(12): 165–170.
Liu J Z, Li P P, Li Z G. Hardware design of the end-effector for tomato-harvesting robot. Transactions of the CSAM, 2008; 39(3): 109–112.
Feng Q C, Zou W, Fan P F, Zhang C F, Wang X. Design and test of robotic harvesting system for cherry tomato. Int J Agric & Biol Eng, 2018; 11(1): 96–100.
Sozzi M, Cantalamessa S, Cogato A, Kayad A, Marinello F. Automatic bunch detection in white grape varieties using YOLOv3, YOLOv4, and YOLOv5 deep learning algorithms. Agronomy-Basel, 2022; 12(2): 319.
Jia W K, Tian Y Y, Luo R, Zhang Z H, Lian J, Zheng Y J. Detection and segmentation of overlapped fruits based on optimized mask R-CNN application in apple harvesting robot. Comput Electron Agric, 2020; 172: 105380.
Chen C L, Lu J Z, Zhou M C, Yi J, Liao M, Gao Z M. A YOLOv3-based computer vision system for identification of tea buds and the picking point. Comput Electron Agric, 2022; 198: 107116.
Ning Z T, Luo L F, Ding X M, Dong Z Q, Yang B F, Cai J H, et al. Recognition of sweet peppers and planning the robotic picking sequence in high-density orchards. Comput Electron Agric, 2022; 196: 106878.
Ye L, Duan J L, Yang Z, Zou X J, Chen M Y, Zhang S. Collision-free motion planning for the litchi-picking robot. Comput Electron Agric, 2021; 185: 106151.
Sepúlveda D, Fernández R, Navas E, Armada M, González-De-Santos P. Robotic aubergine harvesting using dual-arm manipulation. IEEE Access, 2020; 8: 121889–121904.
Wang D, Dong Y X, Lian J, Gu D B. Adaptive end-effector pose control for tomato harvesting robots. J Field Robot, 2023; 40(3): 535–551.
Park Y, Seol J, Pak J, Jo Y, Jun J, Son H I. A novel end-effector for a fruit and vegetable harvesting robot: mechanism and field experiment. Precis Agric, 2022: 23: 948–970.
Saleem M H, Potgieter J, Arif K M. Automation in agriculture by machine and deep learning techniques: A review of recent developments. Precis Agric, 2021; 22(6): 2053–2091.
Copyright (c) 2024 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.