Estimation of winter wheat LAI and SPAD based on fusion of texture features and vegetation indices from UAV image
DOI:
https://doi.org/10.25165/ijabe.v18i4.8969Keywords:
LAI, SPAD, texture features, vegetation indices, stepwise selection, PCAAbstract
Accurate and efficient quantitative estimation of leaf area index (LAI) and soil and plant analyzer development (SPAD) in winter wheat is significant for field management decisions and yield prediction. This study compared the performance of three linear regression techniques: multiple linear regression (MLR), ridge regression (RR), and partial least squares regression (PLSR) and three machine learning algorithms: back-propagation neural networks(BP), random forests (RF) and support vector regression (SVR) with spectral vegetation indices (VIs), texture features (TEs) and their combinations extracted from UAV RGB images. A total of 36 estimation models were constructed, which included 24 models based on single datasets (VIs-based and TEs-based), and 12 models based on data fusion (VIs+TIs-based). The results revealed that combin VIs and TEs improved the accuracy of LAI and SPAD estimation for wheat compared to using VIs or TEs alone. Moreover, different data dimensionality reduction methods include principal component analysis (PCA), and stepwise selection (ST) were used to improve the accuracy of LAI and SPAD estimation.The results showed that ST, PCA and ST_PCA methods have different impacts on the accuracy of estimating crop parameters with the combination of VIS and TEs, where ST_PCA is effective in dealing with high-dimensional data and maintaining the accuracy of the model. The RF model combined with ST_PCA for integrating VIS and TEs achieved the best estimations, with R2 of 0.86 and 0.91, RMSE of 0.26 and 2.01, and MAE of 0.22 and 1.66 for LAI and SPAD, respectively. ST_PCA, combined with machine learning algorithms, holds promising potential for monitoring crop physiological and biochemical parameters.References
Nasrallah, A.; Baghdadi, N.; El Hajj, M.; Darwish, T.; Belhouchette, H.; Faour, G.; Darwich, S.; Mhawej, M. Sentinel-1 Data for Winter Wheat Phenology Monitoring and Mapping. Remote Sensing. 2019, 11(19), 2228. http://doi.org/10.3390/rs11192228.
Qiu, B.; Luo, Y.; Tang, Z.; Chen, C.; Lu, D.; Huang, H.; Chen, Y.; Chen, N.; Xu, W. Winter wheat mapping combining variations before and after estimated heading dates. Isprs Journal of Photogrammetry and Remote Sensing. 2017, 123, 35-46. http://doi.org/https://doi.org/10.1016/j.isprsjprs.2016.09.016.
Zhong, L.; Hu, L.; Zhou, H.; Tao, X. Deep learning based winter wheat mapping using statistical data as ground references in Kansas and northern Texas, US. Remote Sensing of Environment. 2019, 233, 111411. http://doi.org/https://doi.org/10.1016/j.rse.2019.111411
Li, Z.; Jin, X.; Wang, J.; Yang, G.; Nie, C.; Xu, X.; Feng, H. Estimating winter wheat (Triticum aestivum) LAI and leaf chlorophyll content from canopy reflectance data by integrating agronomic prior knowledge with the PROSAIL model. International Journal of Remote Sensing. 2015, 36(10), 2634-2653. http://doi.org/10.1080/01431161.2015.1041176.
Verger, A.; Vigneau, N.; Chéron, C.; Gilliot, J.; Comar, A.; Baret, F. Green area index from an unmanned aerial system over wheat and rapeseed crops. Remote Sensing of Environment. 2014, 152, 654-664. http://doi.org/10.1016/j.rse.2014.06.006.
Darvishzadeh, R.; Skidmore, A.; Schlerf, M.; Atzberger, C.. Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland. Remote Sensing of Environment. 2008, 112(5), 2592-2604. http://doi.org/https://doi.org/10.1016/j.rse.2007.12.003.
Yang, G.; Liu, J.; Zhao, C.; Li, Z.; Huang, Y.; Yu, H.; Xu, B.; Yang, X.; Zhu, D.; Zhang, X.; Zhang, R.; Feng, H.; Zhao, X.; Li, Z.; Li, H.; Yang, H. Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives. Frontiers in Plant Science. 2017, 8, 1111. http://doi.org/10.3389/fpls.2017.01111.
Luo, H.; Dai, S.; Li, M.; Liu, E.; Zheng, Q.; Hu, Y.; Yi, X. Comparison of machine learning algorithms for mapping mango plantations based on Gaofen-1 imagery. Journal of Integrative Agriculture. 2020, 19(11), 2815-2828. http://doi.org/10.1016/S2095-3119(20)63208-7
Lan, Y.; Huang, Z.; Deng, X.; Zhu, Z.; Huang, H.; Zheng, Z.; Lian, B.; Zeng, G.; Tong, Z. Comparison of machine learning methods for citrus greening detection on UAV multispectral images. Computers and Electronics in Agriculture, 2020, 171, 105234. http://doi.org/https://doi.org/10.1016/j.compag.2020.105234
Yan, G.; Hu, R.; Luo, J.; Weiss, M.; Jiang, H.; Mu, X.,; Xie, D.; Zhang, W. Review of indirect optical measurements of leaf area index: Recent advances, challenges, and perspectives. Agricultural and Forest Meteorology. 2019, 265, 390-411. http://doi.org/https://doi.org/10.1016/j.agrformet.2018.11.033.
Gong, Y.; Yang, K.; Lin, Z.; Fan, S.H.; Wu, X.T.; Zhu, R.S.; Peng, Y. Remote estimation of leaf area index (LAI) with unmanned aerial vehicle (UAV) imaging for different rice cultivars throughout the entire growing season. Plant Methods. 2021, 17, 88. https://doi.org/10.1186/s13007-021-00789-4.
Yang, N.; Zhang, Z.; Ding, B.; Wang, T.; Zhang, J.; Liu, C.; Zhang, Q.; Zuo, X.; Chen, J.; Cui, N.; Shi, L.; Zhao, X. (2023). Evaluation of winter‑wheat water stress with UAV‑based multispectral data and ensemble learning method. Plant and Soil. 2023, 17, 88. https://doi.org/10.1186/s13007-021-00789-4.
Liang, L.; Di, L.; Zhang, L.; Deng, M.; Qin, Z.; Zhao, S.; Lin, H. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sensing of Environment. 2015, 165, 123-134. http://doi.org/https://doi.org/10.1016/j.rse.2015.04.032.
Roth, L.; Streit, B. Predicting cover crop biomass by lightweight UAS-based RGB and NIR photography: an applied photogrammetric approach. Precision Agriculture. 2018, 19(1), 93-114. http://doi.org/10.1007/s11119-017-9501-1.
Wu, S.; Deng, L.; Guo, L.; Wu, Y. Wheat leaf area index prediction using data fusion based on high-resolution unmanned aerial vehicle imagery. Plant Methods. 2022, 18(1), 68. http://doi.org/10.1186/s13007-022-00899-7.
Borhan, M. S.; Panigrahi, S.; Lorenzen, J.H.; Gu, H. Multispectral and color imaging techniques for nitrate and chlorophyll determination of potato leaves in a controlled environment. Transactions of the Asabe. 2004, 47(2):599-608. http://dx.doi.org/10.13031/2013.16023.
Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; Colstoun, E.B.; Mcmurtrey, J.E. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sensing of Environment. 2000, 74(2), 229-239. http://doi.org/https://doi.org/10.1016/S0034-4257(00)00113-9.
Jena, B. The effect of phytoplankton pigment composition and packaging on the retrieval of chlorophyll-a concentration from satellite observations in the Southern Ocean. International Journal of Remote Sensing. 2017, 38(13), 3763-3784. http://doi.org/10.1080/01431161.2017.1308034.
Eckert, S. Improved Forest Biomass and Carbon Estimations Using Texture Measures from WorldView-2 Satellite Data. Remote Sensing. 2012, 4(4), 810-829. http://doi.org/10.3390/rs4040810.
Liu, Y.; Liu, S.; Li, J.; Guo, X.; Wang, S.; Lu, J. Estimating biomass of winter oilseed rape using vegetation indices and texture metrics derived from UAV multispectral images. Computers and Electronics in Agriculture. 2019, 166, 105026. http://doi.org/https://doi.org/10.1016/j.compag.2019.105026.
Roth, L., Aasen, H., Walter, A., Liebisch, F. Extracting leaf area index using viewing geometry effects—A new perspective on high-resolution unmanned aerial system photography. Isprs Journal of Photogrammetry and Remote Sensing. 2018, 141, 161-175. http://doi.org/https://doi.org/10.1016/j.isprsjprs.2018.04.012.
Atzberger, C.; Richter, K. Spatially constrained inversion of radiative transfer models for improved LAI mapping from future Sentinel-2 imagery. Remote Sensing of Environment. 2012, 120, 208-218. http://doi.org/https://doi.org/10.1016/j.rse.2011.10.035.
Qiao, K.; Zhu, W.; Xie, Z.; Li, P. Estimating the Seasonal Dynamics of the Leaf Area Index Using Piecewise LAI-VI Relationships Based on Phenophases. Remote Sensing. 2019, 11(6), 689. http://doi.org/10.3390/rs11060689.
Zhou, X.; Zheng, H.B.; Xu, X.Q.; He, J.Y.; Ge, X.K.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W. X.; Tian, Y.C. ;; Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. Isprs Journal of Photogrammetry and Remote Sensing. 2017, 130, 246-255. http://doi.org/10.1016/j.isprsjprs.2017.05.003.
Atzberger, C.; Darvishzadeh, R.; Immitzer, M.; Schlerf, M.; Skidmore, A.; Maire, G. Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy. International Journal of Applied Earth Observation and Geoinformation. 2015, 43, 19-31. https://doi.org/10.1016/j.jag.2015.01.009.
Jay, S.; Gorretta, N.; Morel, J.; Maupas, F.; Bendoula, R.; Rabatel, G.; Dutartre, D.; Comar, A.; Baret, F. Estimating leaf chlorophyll content in sugar beet canopies using millimeter- to centimeter-scale reflectance imagery. Remote Sensing of Environment. 2017, 198, 173-186. http://doi.org/https://doi.org/10.1016/j.rse.2017.06.008.
Sun, Q.; Gu, X.; Chen, L.; Xu, X.; Wei, Z.; Pan, Y.; Gao, Y. Monitoring maize canopy chlorophyll density under lodging stress based on UAV hyperspectral imagery. Computers and Electronics in Agriculture. 2022, 193, 106671. http://doi.org/https://doi.org/10.1016/j.compag.2021.106671.
Viña, A.; Gitelson, A. A.; Nguy-Robertson, A. L.; Peng, Y. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sensing of Environment. 2011, 115(12), 3468-3478. http://doi.org/https://doi.org/10.1016/j.rse.2011.08.010.
Zhang, X.; Sun, H.; Qiao, X.; Yan, X.; Feng, M.; Xiao, L.; Song, X.; Zhang, M.; Shafiq, F.; Yang, W.; Wang, C. Hyperspectral estimation of canopy chlorophyll of winter wheat by using the optimized vegetation indices. Computers and Electronics in Agriculture. 2022, 193, 106654. http://doi.org/https://doi.org/10.1016/j.compag.2021.106654.
Rouse, J.W.; Haas, R.H.; Schell, J. A.; Deering, D.W. Monitoring vegetation systems in the great plains with ERTS. In NASA SP-351. Third ERTS-1 Symposium; Fraden, S.C., Marcanti, E.P., Becker, M.A., Eds. Scientific and Technical Information Office, National Aeronautics and Space Administration: Washington, DC, USA, 1974, 309–317.
Gitelson, A. A. Wide Dynamic Range Vegetation Index for Remote Quantification of Biophysical Characteristics of Vegetation. Journal of Plant Physiology. 2004, 161(2), 165-173. http://doi.org/https://doi.org/10.1078/0176-1617-01176.
Borhan, M.S., Panigrahi, S., Satter, M. A., Gu, H. Evaluation of computer imaging technique for predicting the SPAD readings in potato leaves. Information Processing in Agriculture. 2017, 4(4), 275-282. http://doi.org/https://doi.org/10.1016/j.inpa.2017.07.005.
Jay, S.; Baret, F.; Dutartre, D.; Malatesta, G.; Héno, S.; Comar, A.; Weiss, M.; Maupas, F. Exploiting the centimeter resolution of UAV multispectral imagery to improve remote-sensing estimates of canopy structure and biochemistry in sugar beet crops. Remote Sensing of Environment. 2019, 231, 110898. http://doi.org/10.1016/j.rse.2018.09.011.
Blancon, J.; Dutartre, D.; Tixier, M.H.; Weiss, M.; Comar, A.; Praud, S.; Baret, F. A High-Throughput Model-Assisted Method for Phenotyping Maize Green Leaf Area Index Dynamics Using Unmanned Aerial Vehicle Imagery. Frontiers in Plant Science. 2019, 10, 685. http://doi.org/10.3389/fpls.2019.00685.
Ferrio, J.P.; Villegas, D.; Zarco, J.; Aparicio, N.; Araus, J. L.; Royo, C. ; Assessment of durum wheat yield using visible and near-infrared reflectance spectra of canopies. Field Crops Research. 2005, 94(2-3), 126-148. http://doi.org/10.1016/j.fcr.2004.12.002.
Lu, D.S. The potential and challenge of remote sensing‐based biomass estimation. International Journal of Remote Sensing. 2006, 27(7), 1297-1328. https://doi.org/10.1080/01431160500486732.
Yue, J.; Feng, H.; Yang, G.; Li, Z. A Comparison of Regression Techniques for Estimation of Above-Ground Winter Wheat Biomass Using Near-Surface Spectroscopy. Remote Sensing. 2018, 10(2), 66. http://doi.org/10.3390/rs10010066.
Yang, K.; Gong, Y.; Fang, S.; Duan, B.; Yuan, N.; Peng, Y.; Wu, X.; Zhu, R. Combining Spectral and Texture Features of UAV Images for the Remote Estimation of Rice LAI throughout the Entire Growing Season. Remote Sensing. 2021, 13(15), 3001. http://doi.org/10.3390/rs13153001.
Zhang, C.; Xie, Z. Combining object-based texture measures with a neural network for vegetation mapping in the Everglades from hyperspectral imagery. Remote Sensing of Environment. 2012, 124, 310-320. http://doi.org/10.1016/j.rse.2012.05.015.
Zheng, H.; Cheng, T.; Zhou, M.; Li, D.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y. Improved estimation of rice aboveground biomass combining textural and spectral analysis of UAV imagery. Precision Agriculture. 2019, 20(3), 611-629. http://doi.org/10.1007/s11119-018-9600-7.
Rischbeck, P.; Elsayed, S.; Mistele, B.; Barmeier, G.; Heil, K.; Schmidhalter, U. Data fusion of spectral, thermal and canopy height parameters for improved yield prediction of drought stressed spring barley. European Journal of Agronomy. 2016, 78, 44-59. http://doi.org/https://doi.org/10.1016/j.eja.2016.04.013.
Ma, Y.; Ma, L.; Zhang, Q.; Huang, C.; Yi, X.; Chen, X.; Hou, T.; Lv, X.; Zhang, Z. Cotton Yield Estimation Based on Vegetation Indices and Texture Features Derived From RGB Image. Frontiers in Plant Science. 2022, 13, 925986. http://doi.org/10.3389/fpls.2022.925986
Jiang, J.; Johansen, K.; Stanschewski, C.S.; Wellman, G.; Mousa, M.A.A.; Fiene, G.M.; Asiry, K.A.; Tester, M.; Mccabe, M.F. Phenotyping a diversity panel of quinoa using UAV-retrieved leaf area index, SPAD-based chlorophyll and a random forest approach. Precision Agriculture. 2022, 23(3), 961-983. http://doi.org/10.1007/s11119-021-09870-3.
Wang, L.; Zhou, X.; Zhu, X.; Dong, Z.; Guo, W. Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. The Crop Journal. 2016, 4(3), 212-219. http://doi.org/10.1016/j.cj.2016.01.008.
Li, R.; Wang, D.; Zhu, B.; Liu, T.; Sun, C.; Zhang, Z. Estimation of nitrogen content in wheat using indices derived from RGB and thermal infrared imaging. Field Crops Research. 2022, 289, 108735. http://doi.org/https://doi.org/10.1016/j.fcr.2022.108735.
Inoue, Y.; Sakaiya, E.; Wang, C. Capability of C-band backscattering coefficients from high-resolution satellite SAR sensors to assess biophysical variables in paddy rice. Remote Sensing of Environment. 2014, http://doi.org/10.1016/j.rse.2013.09.001.
Maimaitijiang, M.; Sagan, V.; Sidike, P.; Daloye, A.M.; Erkbol, H.; Fritschi, F.B. Crop Monitoring Using Satellite/UAV Data Fusion and Machine Learning. Remote Sensing (Basel, Switzerland). 2020, 12(9), 1357. http://doi.org/10.3390/rs12091357.
Swatantran, A.; Dubayah, R.; Goetz, S; Hofton, M.; Betts, M.G.; Sun, M.; Simard, M.; Holmes, R. Mapping migratory bird prevalence using remote sensing data fusion. Plos One. 2012, 7(1), e28922. http://doi.org/10.1371/journal.pone.0028922.
Lopez-Sanchez, J.M.; Ballester-Berman, J.D.; Hajnsek, I. First Results of Rice Monitoring Practices in Spain by Means of Time Series of TerraSAR-X Dual-Pol Images. Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2011, 4(2), 412-422. http://doi.org/10.1109/JSTARS.2010.2047634.
Wang, K.; Dickinson, R.E. Cotton Yield Estimation Using Very High-Resolution Digital Images Acquired with a Low-Cost Small Unmanned Aerial Vehicle. Transactions of the Asabe. 2016, 59(6), 1563-1574. http://doi.org/10.13031/trans.59.11831.
Meyer, G.E.; Neto, J.C. Verification of color vegetation indices for automated crop imaging applications. Computers and Electronics in Agriculture. 2008, 63(2), 282-293. http://doi.org/https://doi.org/10.1016/j.compag.2008.03.009.
Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment. 2002, 80(1), 76-87. http://doi.org/https://doi.org/10.1016/S0034-4257(01)00289-9.
Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied Earth Observation and Geoinformation. 2015, 39, 79-87. http://doi.org/https://doi.org/10.1016/j.jag.2015.02.012.
Peñuelas, J.; Gamon, J.A.; Fredeen, A.L.; Merino, J.; Field, C.B. Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sensing of Environment. 1994, 48(2), 135-146. http://doi.org/https://doi.org/10.1016/0034-4257(94)90136-8.
Ahmad, I.S.; Reid, J.F. Evaluation of Colour Representations for Maize Images. Journal of Agricultural Engineering Research. 1996, 63(3), 185-195. http://doi.org/https://doi.org/10.1006/jaer.1996.0020.
Wu, J.; Wang, D.; Bauer, M.E. Assessing broadband vegetation indices and QuickBird data in estimating leaf area index of corn and potato canopies. Field Crops Research. 2007, 102(1), 33-42. http://doi.org/10.1016/j.fcr.2007.01.003.
Gamon, J.A.; Surfus, J. S. Assessing leaf pigment content and activity with a reflectometer. New Phytologist. 1999, 143(1), 105-117. http://doi.org/10.1046/j.1469-8137.1999.00424.x.
Sulik, J.J.; Long, D.S. Spectral considerations for modeling yield of canola. Remote Sensing of Environment. 2016, 184, 161-174. http://doi.org/10.1016/j.rse.2016.06.016.
Verrelst, J.; Schaepman, M.E.; Koetz,B.; Kneubühler, M. Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data. Remote Sensing of Environment. 2008, 112(5), 2341-2353. http://doi.org/https://doi.org/10.1016/j.rse.2007.11.001.
Guijarro, M.; Pajares, G.; Riomoros, I.; Herrera, P.J. Burgos-Artizzu, X.P.; Ribeiro, A. Automatic segmentation of relevant textures in agricultural images. Computers and Electronics in Agriculture. 2011, 75(1), 75-83. http://doi.org/10.1016/j.compag.2010.09.013.
Hall-Beyer, M. Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales. International Journal of Remote Sensing. 2017, 38(5), 1312-1338. http://doi.org/10.1080/01431161.2016.1278314.
Li, B.; Xu, X.; Zhang, L.; Han, J.; Bian, C.; Li, G.; Liu, J.; Jin, L. Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging. Isprs Journal of Photogrammetry and Remote Sensing. 2020, 162, 161-172. http://doi.org/https://doi.org/10.1016/j.isprsjprs.2020.02.013.
Liang, Y.; Kou, W.; Lai, H.; Wang, J.; Wang, Q.; Xu, W.; Wang, H.; Lu, N. Improved estimation of aboveground biomass in rubber plantations by fusing spectral and textural information from UAV-based RGB imagery. Ecological Indicators. 2022, 142, 109286. http://doi.org/10.1016/j.ecolind.2022.109286.
Luo, H.; Dai, S.; Li, M.; Liu, E.; Zheng, Q.; Hu, Y.; Yi, X. Comparison of machine learning algorithms for mapping mango plantations based on Gaofen-1 imagery. Journal of Integrative Agriculture. 2020, 19(11), 2815-2828. http://doi.org/10.1016/S2095-3119(20)63208-7.
Zhang, J.; Qiu, X.; Wu, Y.; Zhu, Y.; Cao, Q.; Liu, X.; Cao, W. Combining texture, color, and vegetation indices from fixed-wing UAS imagery to estimate wheat growth parameters using multivariate regression methods. Computers and Electronics in Agriculture. 2021, 185, 106138. http://doi.org/10.1016/j.compag.2021.106138.
Williams, P.C.; Norris, K.H. Near-infrared technology in the agricultural and food industries: American Association of Cereal Chemists, Inc. 1987.
Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems. 2001, 58(2), 109-130. http://doi.org/https://doi.org/10.1016/S0169-7439(01)00155-1.
Zhang, X.; Zhang, K.; Sun, Y.; Zhao, Y.; Zhuang, H.; Ban, W.; Chen, Y.; Fu, E.; Chen, S.; Liu, J.; Hao, Y. Combining Spectral and Texture Features of UAS-Based Multispectral Images for Maize Leaf Area Index Estimation. Remote Sensing (Basel, Switzerland). 2022, 14(2), 331. http://doi.org/10.3390/rs14020331.
Li, R.; Wang, D.; Zhu, B.; Liu, T.; Sun, C.; Zhang, Z. Estimation of grain yield in wheat using source-sink datasets derived from RGB and thermal infrared imaging. Food and Energy Security. 2023, 12(2). http://doi.org/10.1002/fes3.434.
Reddy Maddikunta, P. K.; Hakak, S.; Alazab, M.; Bhattacharya, S.; Gadekallu, T.R.; Khan, W.Z.; Pham, Q. Unmanned Aerial Vehicles in Smart Agriculture: Applications, Requirements, and Challenges. Ieee Sensors Journal. 2021, 21(16), 17608-17619. http://doi.org/10.1109/JSEN.2021.3049471.
Kong, B.; Yu, H.; Du, R.; Wang, Q. Quantitative Estimation of Biomass of Alpine Grasslands Using Hyperspectral Remote Sensing. Rangeland Ecology Management. 2019, 72(2), 336-346. http://doi.org/https://doi.org/10.1016/j.rama.2018.10.005.
Zhang, J.; Liu, X.; Liang, Y.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Using a Portable Active Sensor to Monitor Growth Parameters and Predict Grain Yield of Winter Wheat. Sensors. 2019, 19(5). http://doi.org/10.3390/s19051108.
Cao, Y.; Xu, H.; Song, J. et al. Applying spectral fractal dimension index to predict the SPAD value of rice leaves under bacterial blight disease stress. Plant Methods. 2022, 18, 67. https://doi.org/10.1186/s13007-022-00898-8.
Yamaguchi, T.; Tanaka, Y.; Imachi, Y.; Yamashita, M.; Katsura, K. Feasibility of Combining Deep Learning and RGB Images Obtained by Unmanned Aerial Vehicle for Leaf Area Index Estimation in Rice. Remote Sensing. 2021, 13(1), 84. http://doi.org/10.3390/rs13010084.
Duan, B.; Liu, Y.; Gong, Y.; Peng, Y.; Wu, X.; Zhu, R.; Fang, S. Remote estimation of rice LAI based on Fourier spectrum texture from UAV image. Plant Methods. 2019, 15(1). http://doi.org/10.1186/s13007-019-0507-8.
Guo, A.; Huang, W.; Dong, Y.; Ye, H.; Ma, H.; Liu, B.; Wu, W.; Ren, Y.; Ruan, C.; Geng, Y. Wheat Yellow Rust Detection Using UAV-Based Hyperspectral Technology. Remote Sensing (Basel, Switzerland). 2021, 13(1), 123. http://doi.org/10.3390/rs13010123.
Reddersen, B.; Fricke, T.; Wachendorf, M. A multi-sensor approach for predicting biomass of extensively managed grassland. Computers and Electronics in Agriculture. 2014, 109, 247-260. http://doi.org/https://doi.org/10.1016/j.compag.2014.10.011.
Yue, J.; Yang, G.; Tian, Q.; Feng, H.; Xu, K.; Zhou, C. Estimate of winter-wheat above-ground biomass based on UAV ultrahigh-ground-resolution image textures and vegetation indices. Isprs Journal of Photogrammetry and Remote Sensing. 2019, 150, 226-244. http://doi.org/https://doi.org/10.1016/j.isprsjprs.2019.02.022.
Zhang, Y.; Ta, N.; Guo, S.; Chen, Q.; Zhao, L.; Li, F.; Chang, Q. Combining Spectral and Textural Information from UAV RGB Images for Leaf Area Index Monitoring in Kiwifruit Orchard. Remote Sensing (Basel, Switzerland). 2022, 14(5), 1063. http://doi.org/10.3390/rs14051063.
Zha, H.; Miao, Y.; Wang, T.; Li, Y.; Zhang, J.; Sun, W.; Feng, Z.; Kusnierek, K. Improving Unmanned Aerial Vehicle Remote Sensing-Based Rice Nitrogen Nutrition Index Prediction with Machine Learning. Remote Sensing. 2020, 12(2), 215. http://doi.org/10.3390/rs12020215.
Lee, H.; Wang, J.; Leblon, B. Using Linear Regression, Random Forests, and Support Vector Machine with Unmanned Aerial Vehicle Multispectral Images to Predict Canopy Nitrogen Weight in Corn. Remote Sensing. 2020, 12(13), 2071. http://doi.org/10.3390/rs12132071.
Lin, C.; Chen, S.; Chen, C.; Tai, C. Detecting newly grown tree leaves from unmanned-aerial-vehicle images using hyperspectral target detection techniques. Isprs Journal of Photogrammetry and Remote Sensing. 2018, 142, 174-189. http://doi.org/https://doi.org/10.1016/j.isprsjprs.2018.05.022.
Verrelst, J.; Rivera, J. P.; Veroustraete, F.; Muñoz-Marí, J.; Clevers, J.G.P.W.; Camps-Valls, G.; Moreno, J. Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods – A comparison. Isprs Journal of Photogrammetry and Remote Sensing. 2015, 108, 260-272. http://doi.org/https://doi.org/10.1016/j.isprsjprs.2015.04.013.
Karpouzli, E.; Malthus, T.J.; Place, C.J. Hyperspectral discrimination of coral reef benthic communities in the western Caribbean. Coral Reefs. 2004, 23(1), 141-151. http://doi.org/10.1007/s00338-003-0363-9.
Elmasry, G.; Sun, D.; Allen, P. Non-destructive determination of water-holding capacity in fresh beef by using NIR hyperspectral imaging. Food Research International. 2020, 44(9), 2624-2633. http://doi.org/https://doi.org/10.1016/j.foodres.2011.05.001.
Published
How to Cite
Issue
Section
License
IJABE is an international peer reviewed open access journal, adopting Creative Commons Copyright Notices as follows.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).